Trends in Electrochemical Nanosensing

A special issue of Nanomaterials (ISSN 2079-4991). This special issue belongs to the section "Nanoelectronics, Nanosensors and Devices".

Deadline for manuscript submissions: 31 March 2025 | Viewed by 2495

Special Issue Editor


E-Mail Website
Guest Editor
Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
Interests: functional materials-based biosensors; chemiluminescence; electrochemiluminescence; photoelectrochemical biosensors

Special Issue Information

Dear Colleagues,

Increasing evidence has shown that specific biomarkers are helpful for the early detection, prognosis, and efficient evaluation of cancer. Highly sensitive sensing technologies (based on biomarkers derived from cerebrospinal fluid, blood, saliva, urine, or tissues and organs) can effectively measure and identify changes in clinically meaningful outcomes.

Nanomaterials are receiving increasing interest in sensing applications. There have been countless reports about cancer diagnostics composed of nanomaterials (i.e., metal oxide nanomaterials, metal nanomaterials, polymers, and nonmetal nanomaterials) that demonstrate their unique and advanced properties, which make them extremely useful in diagnosing diseases. In particular, electrochemical nanosensing, as a promising method, has gained much attention in the analytical community by inheriting the advantage of being highly sensitive.

In this Special Issue, entitled “Trends in Electrochemical Nanosensing”, topics include, but are not limited to, the following: design and engineering of functional electrochemical materials, label-free and label-based electrochemical bioassays, electrochemical sensing devices, and detection modes.

Dr. Yanhu Wang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nanoparticles
  • nanostructures
  • nanomedicine
  • electrochemical nanosensing
  • charge separation and transfer
  • nanostructure engineering
  • environmental pollution
  • food safety
  • biomarker detection
  • diagnostic application

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 3574 KiB  
Article
Electrochemical Sensing Device for Carboplatin Monitoring in Proof-of-Concept Drug Delivery Nanosystems
by Alexandra Pusta, Mihaela Tertis, Catalina Ardusadan, Simona Mirel and Cecilia Cristea
Nanomaterials 2024, 14(9), 793; https://doi.org/10.3390/nano14090793 - 2 May 2024
Viewed by 1335
Abstract
(1) Background: Carboplatin (CBP) is a chemotherapeutic drug widely used in the treatment of a variety of cancers. Despite its efficiency, CBP is associated with side effects that greatly limit its clinical use. To mitigate these effects, CBP can be encapsulated in targeted [...] Read more.
(1) Background: Carboplatin (CBP) is a chemotherapeutic drug widely used in the treatment of a variety of cancers. Despite its efficiency, CBP is associated with side effects that greatly limit its clinical use. To mitigate these effects, CBP can be encapsulated in targeted delivery systems, such as liposomes. Ensuring the adequate loading and release of CBP from these carriers requires strict control in pharmaceutical formulation development, demanding modern, rapid, and robust analytical methods. The aim of this study was the development of a sensor for the fast and accurate quantification of CBP and its application on proof-of-concept CBP-loaded nanosomes. (2) Methods: Screen-printed electrodes were obtained in-lab and the electrochemical behavior of CBP was tested on the obtained electrodes. (3) Results: The in-lab screen-printed electrodes demonstrated superior properties compared to commercial ones. The novel sensors demonstrated accurate detection of CBP on a dynamic range from 5 to 500 μg/mL (13.5–1350 μM). The method was successfully applied on CBP loaded and released from nanosomes, with strong correlations with a spectrophotometric method used as control. (4) Conclusions: This study demonstrates the viability of electrochemical techniques as alternative options during the initial phases of pharmaceutical formulation development. Full article
(This article belongs to the Special Issue Trends in Electrochemical Nanosensing)
Show Figures

Graphical abstract

14 pages, 2851 KiB  
Communication
A MOF-Templated Double-Shelled Co3O4/NiCo2O4 Nanocomposite for Electrochemical Detection of Alfuzosin
by Al-Amin, Gajapaneni Venkata Prasad, Seung Joo Jang, Jeong-Wook Oh and Tae Hyun Kim
Nanomaterials 2024, 14(9), 757; https://doi.org/10.3390/nano14090757 - 25 Apr 2024
Viewed by 893
Abstract
We developed a novel electrochemical sensor for the detection of alfuzosin (AFZ), a drug used to treat benign prostatic hyperplasia, using a double-shelled Co3O4/NiCo2O4 nanocomposite-modified electrode. The nanocomposites were synthesized using a template-assisted approach, with zeolitic [...] Read more.
We developed a novel electrochemical sensor for the detection of alfuzosin (AFZ), a drug used to treat benign prostatic hyperplasia, using a double-shelled Co3O4/NiCo2O4 nanocomposite-modified electrode. The nanocomposites were synthesized using a template-assisted approach, with zeolitic imidazole framework-67 (ZIF-67) as the sacrificial template, involving the formation of uniform ZIF-67/Ni-Co layered double hydroxide (LDH) hollow structures followed by calcination to achieve the final nanocomposite. The nanocomposite was characterized by various techniques and showed high porosity, large surface area, and good conductivity. The nanocomposite-modified electrode exhibited excellent electrocatalytic activity towards AFZ oxidation, with a wide linear range of 5–180 µM and a low limit of detection of 1.37 µM. The sensor also demonstrated good repeatability, reproducibility, and stability selectivity in the presence of common interfering substances. The sensor was successfully applied to determine the AFZ in pharmaceutical tablets and human serum samples, with satisfactory recoveries. Our results suggest that the double-shelled Co3O4/NiCo2O4 nanocomposite is a promising material for the fabrication of electrochemical sensors for AFZ detection. Full article
(This article belongs to the Special Issue Trends in Electrochemical Nanosensing)
Show Figures

Figure 1

Back to TopTop