A Regulatory-Compliant Genotoxicity Study of a Mixture of C60 and C70 Fullerenes Dissolved in Olive Oil Using the Mammalian Micronucleus Test
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.1.1. Test Item and Chemicals
Test Item
Controls
Chemicals
2.1.2. Test Animals
Number and Groups
Identification and Randomization
Husbandry
2.2. Experimental Procedure
2.2.1. Micronucleus Test
2.2.2. Bone Marrow Preparation and Staining
2.2.3. Examination of Slides
2.3. Statistics and Evaluation of Experimental Data and Interpretation
3. Results
3.1. Preliminary Toxicity Test
3.2. MMT
3.3. Frequency of Micronuclei
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MMI | Mammalian Micronucleus Test |
PCE | PolyChromatic Erythrocyte |
NCE | NormoChromatic Erythrocyte |
MPCE | Micronucleated PolyChromatic Eryhtrocyte |
HAOR | Helianti Annui Oleum Raffinatum |
References
- Kroto, H.W.; Heath, J.R.R.; O’Brien, S.C.; Curl, R.F.; Smalley, R.E. C60: Buckminsterfullerene. Nature 1985, 318, 162–163. [Google Scholar] [CrossRef]
- Jensen, A.W.; Wilson, S.R.; Schuster, D.I. Biological applications of fullerenes. Bioorg. Med. Chem. 1996, 4, 767–779. [Google Scholar] [CrossRef] [PubMed]
- Kepley, C.L. Fullerenes in medicine; will it ever occur? J. Nanomed. Nanotechol. 2012, 3, e111. [Google Scholar] [CrossRef]
- Keykhosravi, S.; Rietveld, I.B.; Couto, D.; Tamarit, J.L.; Barrio, M.; Céolin, R.; Moussa, F. [60]Fullerene for medicinal purposes, a purity criterion towards regulatory considerations. Materials 2019, 12, 2571. [Google Scholar] [CrossRef]
- Burres, C.; Wong, R.; Pedreira, F.; Da Silva Pimenta, M.; Moussa, F. A Regulatory Compliant Short-Term Oral Toxicity Study of Soluble [60]Fullerenes in Rats. EXCLI J. 2024, 23, 772. [Google Scholar] [CrossRef]
- SCCS (Scientific Committee on Consumer Safety). Opinion on Fullerenes, Hydroxylated Fullerenes and Hydrated Forms of Hydroxylated Fullerenes (nano). SCCS/1649/23. 2023. Available online: https://health.ec.europa.eu/system/files/2023-11/sccs_o_271.pdf (accessed on 22 March 2025).
- Henry, T.B.; Menn, F.M.; Fleming, J.T.; Wilgus, J.; Compton, R.N.; Sayler, G.S. Attributing effects of aqueous C60 nano-aggregates to tetrahydrofuran decomposition products in larval zebrafish by assessment of gene expression. Environ. Health Perspect. 2007, 115, 1059–1065. [Google Scholar] [CrossRef]
- Kolosnjaj, J.; Szwarc, H.; Moussa, F. Toxicity studies of fullerenes and derivatives. In Bio-Applications of Nanoparticles; Advances in Experimental Medicine and Biology; Springer Nature: Berlin/Heidelberg, Germany, 2007; pp. 168–180. [Google Scholar] [CrossRef]
- Spohn, P.; Hirsch, C.; Hasler, F.; Bruinink, A.; Krug, H.F.; Wick, P. C60 fullerene: A powerful antioxidant or a damaging agent? The importance of an in-depth material characterization prior to toxicity assays. Environ. Pollut. 2009, 157, 1134–1139. [Google Scholar] [CrossRef]
- Gharbi, N.; Pressac, M.; Hadchouel, M.; Szwarc, H.; Wilson, S.R.; Moussa, F. [60]Fullerene is an in vivo powerful antioxidant with no acute or sub-acute toxicity. Nano Lett. 2005, 5, 2578–2585. [Google Scholar] [CrossRef]
- Markovic, Z.; Todorovic-Markovic, B.; Kleut, D.; Nikolic, N.; Vranjes-Djuric, S.; Misirkic, M.; Vucicevic, L.; Janjetovic, K.; Isakovic, A.; Harhaji, L.; et al. The mechanism of cell-damaging reactive oxygen generation by colloidal fullerenes. Biomaterials 2007, 28, 5437–5448. [Google Scholar] [CrossRef]
- Markovic, Z.; Trajkovic, V. Biomedical potential of the reactive oxygen species generation and quenching by fullerenes (C60). Biomaterials 2008, 29, 3561–3573. [Google Scholar] [CrossRef]
- Mori, T.; Takada, H.; Ito, S.; Matsubayashi, K.; Miwa, N.; Sawaguchi, T. Preclinical studies on safety of fullerene upon acute oral administration and evaluation for no mutagenesis. Toxicology 2006, 225, 48–54. [Google Scholar] [CrossRef]
- Dhawan, A.; Taurozzi, J.S.; Pandey, A.K.; Shan, W.; Miller, S.M.; Hashsham, S.A.; Tarabara, V.V. Stable Colloidal Dispersions of C60 Fullerenes in Water: Evidence for Genotoxicity. Environ. Sci. Technol. 2006, 40, 7394–7401. [Google Scholar] [CrossRef]
- Totsuka, Y.; Higuchi, T.; Imai, T.; Nishikawa, A.; Nohmi, T.; Kato, T.; Masuda, S.; Kinae, N.; Hiyoshi, K.; Ogo, S.; et al. Genotoxicity of nano/microparticles in in vitro micronuclei, in vivo comet and mutation assay systems. Part. Fibre Toxicol. 2009, 6, 23. [Google Scholar] [CrossRef]
- Xu, A.; Chai, Y.; Nohmi, T.; Hei, T.K. Genotoxic responses to titanium dioxide nanoparticles and fullerene in gpt delta transgenic MEF cells. Part. Fibre Toxicol. 2009, 6, 3. [Google Scholar] [CrossRef]
- Shinohara, N.; Matsumoto, K.; Endoh, S.; Maru, J.; Nakanishi, J. In vitro and in vivo genotoxicity tests on fullerene C60 nanoparticles. Toxicol. Lett. 2009, 191, 289–296. [Google Scholar] [CrossRef]
- Takahashi, M.; Kato, H.; Doi, H.Y.; Hagiwara, A.; Hirata-Koizumi, M.; Ono, A.; Kubota, R.; Nishimura, T.; Hirose, A. Sub-acute oral toxicity study with fullerene C60 in rats. J. Toxicol. Sci. 2012, 37, 353–361. [Google Scholar] [CrossRef]
- Baati, T.; Bourasset, F.; Gharbi, N.; Njim, L.; Abderrabba, M.; Kerkeni, A.; Szwarc, H.; Moussa, F. The prolongation of the lifespan of rats by repeated oral administration of [60]fullerene. Biomaterials 2012, 19, 4936–4946. [Google Scholar] [CrossRef]
- Yuan, X.; Zhang, X.; Sun, L.; Wei, Y.; Wei, X. Cellular Toxicity and Immunological Effects of Carbon-based Nanomaterials. Part. Fibre Toxicol. 2019, 16, 18. [Google Scholar] [CrossRef]
- Prylutska, S.V.; Grebinyk, A.G.; Lynchak, O.V.; Byelinska, I.V.; Cherepanov, V.V.; Tauscher, E.; Matyshevska, M.P.; Prylutskyy, Y.I.; Rybalchenko, V.K.; Ritter, U.; et al. In vitro and in vivo toxicity of pristine C60 fullerene aqueous colloid solution. Fuller. Nanotub. Carbon Nanostruct. 2019, 27, 715–728. [Google Scholar] [CrossRef]
- Halenova, T.; Raksha, N.; Savchuk, O.; Ostapchenko, L.; Prylutskyy, Y.; Ritter, U.; Scharff, P. Evaluation of the Biocompatibility of Water-Soluble Pristine C60 Fullerenes in Rabbit. BioNanoScience 2020, 10, 721–730. [Google Scholar] [CrossRef]
- Krokosz, A.; Lichota, A.; Nowak, K.E.; Grebowski, J. Carbon nanoparticles as possible radioprotectors in biological systems. Radiat. Phys. Chem. 2016, 128, 143–150. [Google Scholar] [CrossRef]
- Galvan, Y.P.; Alperovich, I.; Zolotukhin, P.; Prazdnova, E.; Mazanko, M.; Belanova, A.; Chistyacov, V. Fullerenes as anti-aging antioxidants. Curr. Aging Sci. 2017, 10, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Aly, F.M.; Kotb, A.M.; Haridy, M.A.M.; Hammad, S. Impacts of fullerene C60 and virgin olive oil on cadmium-induced genotoxicity in rats. Sci. Total Environ. 2018, 630, 750–756. [Google Scholar] [CrossRef] [PubMed]
- Bourassa, D.J.; Tulp, O.L.; Einstein, G.P. Electron Scavenging Not Free Radical Scavenging by Fullerene Materials Protects against Mitochondrial Oxidative Stress in Complex Organism. EC Pharmacol. Toxicol. 2020, 8, 61–67. [Google Scholar] [CrossRef]
- Đurašević, S.; Nikolić, G.; Todorović, A.; Drakulić, D.; Pe-jić, S.; Martinović, V.; Mitić-Ćulafić, D.; Milić, D.; Kop, T.J.; Jasnić, N.; et al. Effects of fullerene C60 supplementation on gut microbiota and glucose and lipid homeostasis in rats. Food Chem. Toxicol. 2020, 140, 111302. [Google Scholar] [CrossRef]
- Stetska, V.O.; Dovbynchuk, T.V.; Makedon, Y.S.; Dzi-ubenko, N.V. The effect of water-soluble pristine C60 fullerene on 6-OHDA-induced Parkinson’s disease in rats. Regul. Mech. Biosyst. 2021, 12, 599–607. [Google Scholar] [CrossRef]
- Ye, L.; Kollie, L.; Liu, X.; Guo, W.; Ying, X.; Zhu, J.; Yang, S.; Yu, M. Antitumor Activity and Potential Mechanism of Novel Fullerene Derivative Nanoparticles. Molecules 2021, 26, 3252. [Google Scholar] [CrossRef]
- Đurašević, S.; Pejić, S.; Grigorov, I.; Nikolić, G.; Mitić-Ćulafić, D.; Dragićević, M.; Đorđević, J.; Todorović Vukotić, N.; Đorđević, N.; Todorović, A.; et al. Effects of C60 Fullerene on Thioacetamide-Induced Rat Liver Toxicity and Gut Microbiome Changes. Antioxidants 2021, 10, 911. [Google Scholar] [CrossRef]
- Martínez-Herrera, M.; Figueroa-Gerstenmaier, S.; López-Camacho, P.Y.; Millan-Pacheco, C.; Balderas-Altamirano, M.A.; Mendoza-Franco, G.; García-Sierra, F.; Zavala-Ocampo, L.M.; Basurto-Islas, G. Multiadducts of C60 Modulate Amyloid-β Fibrillation with Dual Acetylcholinesterase Inhibition and Antioxidant Properties: In Vitro and In Silico Studies. J. Alzheimers Dis. 2022, 87, 741–759. [Google Scholar] [CrossRef]
- Xie, L.; Luo, Y.; Lin, D.; Xi, W.; Yang, X.; Wei, G. The molecular mechanism of fullerene-inhibited aggregation of Alzheimer’s β-amyloid peptide fragment. Nanoscale 2014, 6, 9752–9762. [Google Scholar] [CrossRef]
- Sinegubova, E.O.K.; Raevaya, O.A.; Volobueva, A.S.; Zhilenkov, A.V.; Shestakov, A.F.; Baykov, S.V.; Troshin, P.A.; Zarubaev, V.V. Water-Soluble Fullerene C60 Derivatives Are Effective Inhibitors of Influenza Virus Replication. Microorganisms 2023, 11, 681. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Deng, R.; Li, J.; Li, H.; Xu, Z.; Zhang, L.; Feng, L.; Shu, C.; Zhen, M.; Wang, C. Oral [60]fullerene reduces neuroinflammation to alleviate Parkinson’s disease via regulating gut microbiome. Theranostics 2023, 13, 4936–4951. [Google Scholar] [CrossRef] [PubMed]
- Hui, M.; Jia, X.; Li, X.; Lazcano-Silveira, R.; Shi, M. Anti-Inflammatory and Antioxidant Effects of Liposoluble C60 at the Cellular, Molecular, and Whole-Animal Levels. J. Inflamm. Res. 2023, 16, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Omelchuk, O.; Prylutska, S.; Nozdrenko, D.; Mo tuziu, O.; Vareniu, I.; Bogutska, K.; Vygovs, O.; Zholos, A.; Prylutskyy, Y. C60 fullerene attenuates the signs of acute renal failure in rats under rhabdomyolysis due to inhibition of oxidative stress. Ukr. Biochem. J. 2023, 95, 61–75. [Google Scholar] [CrossRef]
- Motuziuk, O.; Nozdrenko, D.; Prylutska, S.; Vareniuk, I.; Bogutska, K.; Braniuk, S.; Korotkyi, O.; Prylutskyy, Y.; Ritter, U.; Piosik, J. C60 fullerene reduces the level of fluctuations in the force response of muscle gastrocnemius in chronically alcoholized rats. Appl. Nanosci. 2023, 13, 7057–7067. [Google Scholar] [CrossRef]
- Galkina, A.A.; Bolyakina, D.K.; Shatilova, A.V.; Shatilov, A.A.; Babikhina, M.O.; Golomidova, A.K.; Andreev, S.M.; Shershakova, N.N.; Khaitov, M.R. Developing and evaluating the effectiveness of wound-healing compounds based on cationic peptides and fullerene. Extrem. Med. 2023, 3, 53–60. [Google Scholar] [CrossRef]
- Beyaz, S.; Aslan, A.; Gok, O.; Ozercan, I.H.; Agca, C.A. Fullerene C60 protects against 7,12-dimethylbenz [a] anthracene (DMBA) induced-pancreatic damage via NF-κB and Nrf-2/HO-1 axis in rats. Toxicol. Res. 2023, 12, 954–963. [Google Scholar] [CrossRef]
- Singh, P.; Singh, R.R.B.; Yadav, A.K.; Singh, J.; Solanki, P.R.; Singh, R.P. Carbon-based nanostructured materials for effective strategy in wound management. In Nanotechnological Aspects for Next-Generation Wound Management; Pratima, R., Solanki, R., Kumar, A., Singh, R.P., Singh, J., Singh, K.R.B., Eds.; Academic Press: Cambridge, MA, USA, 2024; pp. 193–218. [Google Scholar] [CrossRef]
- Ivkovic, S.; Koruga, D. Role of fullerenols derivative 3HFWC in the treatment of Alzheimer’s disease. Neural Regen. Res. 2024, 19, 1641–1642. [Google Scholar] [CrossRef]
- Moussa, F. [60]Fullerene and derivatives for biomedical applications. In Nanobiomaterials, Nanostructured Materials for Biomedical Applications; Narayan, R., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 113–136. Available online: https://www.sciencedirect.com/book/9780081007167/nanobiomaterials (accessed on 3 March 2024).
- Kerna, N.A.; Flores, J.V.; Pruitt, K.D.; Nwokorie, U.; Holets, H. The application of fullerene derivatives in human nutrition: Brain health, immunity, longevity, quality of life, skin tone, sports performance, vitality, and weight loss. EC Nutr. 2020, 15, 01–06. [Google Scholar] [CrossRef]
- Fernandes, N.B.; Shenoy, R.U.K.; Kajampady, K.; DCruz, C.E.M.; Shirodkar, R.K.; Kumar, L.; Verma, R. Fullerenes for the treatment of cancer: An emerging tool. Environ. Sci. Pollut. Res. Int. 2022, 39, 58607–58627. [Google Scholar] [CrossRef]
- Heflich, L.W. Carbon 60: Vision for the future. Acta Sci. Nutr. Health. 2023, 7, 16–20. [Google Scholar] [CrossRef]
- Ghosh, D.; Dutta, G.; Sugumaran, A.; Chakrabarti, G.; Debnath, B. Fullerenes: Bucky Balls in the Therapeutic Application. In Carbon Nanostructures in Biomedical Applications. Advances in Material Research and Technology; Hasnain, M.S., Nayak, A.K., Alkahtani, S., Eds.; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Khudhur, Z.O.; Maad, A.H.; Ghanimi, H.A.; Abdolmaleki, A. Fullerene nanoparticle as new therapeutic agent for the nervous system disorders. Nanomed. J. 2024, 11, 342–359. [Google Scholar]
- Moussa, F.; Trivin, F.; Céolin, R.; Hadchouel, M.; Sizaret, P.Y.; Greugny, V.; Fabre, C.; Rassat, A.; Szwarc, H. Early effects of C60 administration in Swiss mice: A preliminary account for in vivo C60 toxicity. Fuller. Sci. Technol. 1996, 4, 21–29. [Google Scholar] [CrossRef]
- OECD 2016. Ninth Addendum to OECD Guidelines for Testing of Chemicals, Section 4, No. 474, “Mammalian Erythrocyte Micronucleus Test”. adopted 29th July 2016. Available online: https://www.oecd.org/en/publications/test-no-474-mammalian-erythrocyte-micronucleus-test_9789264264762-en.html (accessed on 31 August 2024).
- EPA. Health Effects Test Guidelines OPPTS 870.5395 “Mammalian Erythrocyte Micronucleus Test” August-1998. Available online: https://www.regulations.gov/document/EPA-HQ-OPPT-2009-0156-0032 (accessed on 31 August 2024).
- Ajie, H.; Alvarez, M.M.; Anz, S.J.; Beck, R.D.; Diederich, F.; Fostiropoulos, K.; Huffman, D.R.; Kraetschmer, W. Characterization of the soluble all-carbon molecules C60 and C70. J. Phys. Chem. 1990, 94, 8630–8633. [Google Scholar] [CrossRef]
- Mikheev, I.V.; Sozarukova, M.M.; Izmailov, D.Y.; Kareev, I.E.; Proskurnina, E.V.; Proskurnin, M.A. Antioxidant Potential of Aqueous Dispersions of Fullerenes C60, C70, and Gd@C82. Int. J. Mol. Sci. 2021, 22, 5838. [Google Scholar] [CrossRef]
- Folkmann, J.K.; Risom, L.; Jacobsen, N.R.; Wallin, H.; Loft, S.; Møller, P. Oxidatively damaged DNA in rats exposed by oral gavage to C60 fullerenes and single-walled carbon nanotubes. Environ. Health Perspect. 2009, 117, 703–708. [Google Scholar] [CrossRef]
- FDA. Guidance for Industry Estimating the Maximum Safe Starting Dose in Initial Clinical Trials for Therapeutics in Adult Healthy Volunteers. Available online: https://www.fda.gov/media/72309/download (accessed on 18 May 2025).
- Kubota, R.; Tahara, M.; Shimizu, K.; Sugimoto, N.; Hirose, A.; Nishimura, T. Time-dependent variation in the biodistribution of C60 in rats determined by liquid chromatography-tandem mass spectrometry. Toxicol. Lett. 2011, 206, 172–177. [Google Scholar] [CrossRef]
- Semenov, K.N.; Ivanova, D.A.; Ageev, S.V.; Semenov, K.N.; Ivanova, D.A.; Ageev, S.V.; Petrov, A.V.; Podolsky, N.E.; Volochaeva, E.M.; Fedorova, E.M.; et al. Evaluation of the C60 biodistribution in mice in a micellar ExtraOx form and in an oil solution. Sci. Rep. 2021, 11, 8362. [Google Scholar] [CrossRef]
- Chang, X.L.; Ruan, L.; Yang, S.T.; Sun, B.; Guo, C.; Zhou, L.; Dong, J.; Yuan, H.; Xing, G.; Zhao, Y.; et al. Quantification of carbon nanomaterials in vivo: Direct stable isotope labeling on the skeleton of fullerene C60. Environ. Sci. Nano 2014, 1, 64–70. [Google Scholar] [CrossRef]
- Suzuki, Y.; Nagae, Y.; Li, J.; Sakaba, H.; Mozawa, K.; Takahashi, A.; Shimizu, H. The micronucleus test and erythropoiesis. Effects of erythropoietin and a mutagen on the ratio of polychromatic to normochromatic erythrocytes (P/N ratio). Mutagenesis 1989, 4, 420–424. [Google Scholar] [CrossRef]
- De Person, M.; Heron, S.; Ben Arfa, K.; Abderrabba, M.; Tchapla, A.; Moussa, F. Direct and rapid profiling of triacylglycerols in extra virgin olive oil using UHPLC-MS/MS. Food Control 2024, 158, 110266. [Google Scholar] [CrossRef]
Group | Treatment (mg/kg bw) | Dose of Ti (mg/mL) | Total Dose of Fullerenes (mg/kg bw × 2) | N. of Animals | S. Time (h) |
---|---|---|---|---|---|
NC | Solvent | 0.0 | 0.0 | 5 | 24 |
PC | Cyclophosphamide | 6.0 | 0.0 | 5 | 24 |
Ti | 500 | 50 | 0.90 | 5 | 24 |
Ti | 1000 | 100 | 1.80 | 5 | 24 |
Ti | 2000 | 200 | 3.60 | 7 | 24 |
Groups | N. of PCEs Analyzed | MPCEs | PCE/(PCE + NCE) | ||
---|---|---|---|---|---|
Mean | SD | Mean | SD | ||
Solvent | 20,000 | 5.40 | 1.14 | 0.52 | 0.02 |
Positive Control | 20,000 | 150.80 */** | 9.86 | 0.37 ** DN | 0.02 |
500 mg/kg bw | 20,000 | 5.00 | 0.74 | 0.52 | 0.01 |
1000 mg/kg bw | 20,000 | 5.60 | 1.52 | 0.49 ** | 0.01 |
2000 mg/kg bw | 20,000 | 5.40 | 1.34 | 0.46 ** | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moussa, F. A Regulatory-Compliant Genotoxicity Study of a Mixture of C60 and C70 Fullerenes Dissolved in Olive Oil Using the Mammalian Micronucleus Test. Nanomaterials 2025, 15, 870. https://doi.org/10.3390/nano15110870
Moussa F. A Regulatory-Compliant Genotoxicity Study of a Mixture of C60 and C70 Fullerenes Dissolved in Olive Oil Using the Mammalian Micronucleus Test. Nanomaterials. 2025; 15(11):870. https://doi.org/10.3390/nano15110870
Chicago/Turabian StyleMoussa, Fathi. 2025. "A Regulatory-Compliant Genotoxicity Study of a Mixture of C60 and C70 Fullerenes Dissolved in Olive Oil Using the Mammalian Micronucleus Test" Nanomaterials 15, no. 11: 870. https://doi.org/10.3390/nano15110870
APA StyleMoussa, F. (2025). A Regulatory-Compliant Genotoxicity Study of a Mixture of C60 and C70 Fullerenes Dissolved in Olive Oil Using the Mammalian Micronucleus Test. Nanomaterials, 15(11), 870. https://doi.org/10.3390/nano15110870