Magneto-Absorption Spectra of Laser-Dressed Coupled Quantum Dot–Double Quantum Ring
Abstract
1. Introduction
2. Theory
3. Results
3.1. Electronic Properties of Quantum Dot–Double Quantum Ring in Laser and Magnetic Fields
3.2. Optical Properties of Quantum Dot–Double Quantum Ring in Laser and Magnetic Fields
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jorge, P.; Martins, M.A.; Trindade, T.; Santos, J.L.; Farahi, F. Optical Fiber Sensing Using Quantum Dots. Sensors 2007, 7, 3489–3534. [Google Scholar] [CrossRef] [PubMed]
- Yao, D.; Hu, Z.; Su, Y.; Chen, S.; Zhang, W.; Lü, W.; Xu, H. Significant efficiency enhancement of CdSe/Cds quantum-dot sensitized solar cells by black TiO2 engineered with ultrashort filamentating pulses. Appl. Surf. Sci. Adv. 2021, 6, 100142. [Google Scholar] [CrossRef]
- Nakotte, T.; Luo, H.; Pietryga, J. PbE (E = S, Se) Colloidal Quantum Dot-Layered 2D Material Hybrid Photodetectors. Nanomaterials 2020, 10, 172. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xie, Q.; Ying, Y.; Gao, Z.; Shao, X.; Xia, W.; Zhou, M.; Pei, W.; Tang, X.; Tu, Y. Ostwald ripening inhibition by a bipolar ligand achieves long-term-reaction and scalable synthesis of ultra-stable CsPbX3 perovskite quantum dots towards LEDs. Chem. Eng. J. 2024, 498, 155515. [Google Scholar] [CrossRef]
- Gao, Z.; Shao, X.; Huang, Z.; Xie, Q.; Ying, Y.; Lin, H.; Wang, J.; Tang, X.; Chen, W.; Pei, W.; et al. Short-chain ligand achieves ultra-stable CsPbX3 perovskite quantum dots for white light-emitting diodes. Appl. Phys. Lett. 2024, 124, 041106. [Google Scholar] [CrossRef]
- Lin, Q. Nonblinking Quantum-Dot-Based Blue Light-Emitting Diodes with High Efficiency and a Balanced Charge-Injection Process. ACS Photonics 2018, 5, 939–946. [Google Scholar] [CrossRef]
- Michler, P. (Ed.) Quantum Dots for Quantum Information Technologies; Springer International Publishing: Cham, Germany, 2017. [Google Scholar]
- Grillot, F.; Duan, J.; Dong, B.; Huang, H. Uncovering recent progress in nanostructured light-emitters for information and communication technologies. Light Sci. Appl. 2021, 10, 156. [Google Scholar] [CrossRef]
- Jennings, C.; Ma, X.; Wickramasinghe, T.; Doty, M.; Scheibner, M.; Stinaff, E.; Ware, M. Self-Assembled InAs/GaAs Coupled Quantum Dots for Photonic Quantum Technologies. Adv. Quantum Technol. 2020, 3, 1900085. [Google Scholar] [CrossRef]
- Gudmundsson, V.; Mughnetsyan, V.; Abdullah, N.R.; Tang, C.-S.; Moldoveanu, V.; Manolescu, A. Controlling the excitation spectrum of a quantum dot array with a photon cavity. Phys. Rev. B 2023, 108, 115306. [Google Scholar] [CrossRef]
- Zrazhevskiy, P.; Sena, M.; Gao, X. Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chem. Soc. Rev. 2010, 39, 4326–4354. [Google Scholar] [CrossRef]
- Huang, S.; Huang, G. The utilization of quantum dot labeling as a burgeoning technique in the field of biological imaging. RSC Adv. 2024, 14, 20884–20897. [Google Scholar] [CrossRef] [PubMed]
- Planelles, J.; Rajadell, F.; Climente, J.I.; Royo, M.; Movilla, J.L. Electronic states of laterally coupled quantum rings. J. Phys. Conf. Ser. 2007, 61, 936. [Google Scholar] [CrossRef]
- Fakkahi, A.; Arraoui, R.; Jaouane, M.; Ed-Dahmouny, A.; Sali, A.; Azmi, H.; El-bakkari, K. Central cell correction, pressure and temperature effects on the nonlinear optical rectification and second harmonic generation in a doped GaAs/GaAlAs multi-layer quantum disk. Optik 2025, 327, 172273. [Google Scholar]
- Marın, J.H.; Rodrıguez-Prada, F.A.; Mikhailov, I.D. Vertically coupled non-uniform quantum rings with two separated electrons in threading magnetic field. J. Phys. Conf. Ser. 2010, 245, 012020. [Google Scholar] [CrossRef]
- Castrillón, J.D.; Gómez-Ramírez, D.A.; Rivera, J.; Suaza, Y.A.; Marín, J.H.; Fulla, M.R. Artificial Hydrogen molecule in vertically stacked Ga1−xAlx As nanoscale rings: Structural and external probes effects on their quantum levels. Phys. E 2020, 117, 113765. [Google Scholar] [CrossRef]
- Ciftja, O.; Batle, J.; Abdel-Aty, M.; Hafez, M.A.; Alkhazaleh, S. Spatial Entanglement Between Electrons Confined to Rings. Symmetry 2024, 16, 1662. [Google Scholar] [CrossRef]
- Kim, H.; Kyhm, K.; Taylor, R.A.; Kim, J.S.; Song, J.D.; Park, S. Optical shaping of the polarization anisotropy in a laterally coupled quantum dot dimer. Light Sci. Appl. 2020, 9, 100. [Google Scholar] [CrossRef] [PubMed]
- Khordad, R.; Sedehi, H.R.R. Thermodynamic Properties of a Double Ring-Shaped Quantum Dot at Low and High Temperatures. J. Low Temp. Phys. 2018, 190, 200–212. [Google Scholar] [CrossRef]
- Baghramyan, H.M.; Barseghyan, M.G.; Kirakosyan, A.A.; Ojeda, J.H.; Bragard, J.; Laroze, D. Modeling of anisotropic properties of double quantum rings by the terahertz laser field. Sci. Rep. 2018, 8, 6145. [Google Scholar] [CrossRef]
- Sherly, I.J.; Nithiananthi, P. Influence of electric field on direct and indirect exciton in a concentrically coupled quantum ring heterostructure embedded in SiO2 matrix. Superlatt. Microstruct. 2020, 137, 106334. [Google Scholar] [CrossRef]
- Bejan, D.; Stan, C. Geometry tailored magneto-optical absorption spectra of elliptically deformed double quantum rings. Philos. Mag. 2022, 102, 1755–1777. [Google Scholar] [CrossRef]
- Bejan, D.; Stan, C. Refraction index of elliptic double quantum rings in magnetic field. UPB Sci. Bull. A Appl. Math. Phys. 2023, 85, 139–150. [Google Scholar]
- Bejan, D.; Stan, C. Impurity and geometry effects on the optical rectification spectra of quasi-elliptical double quantum rings. Phys. E 2023, 147, 115598. [Google Scholar] [CrossRef]
- Kuroda, T.; Mano, T.; Ochiai, T.; Sanguinetti, S.; Sakoda, K.; Kido, G.; Koguchi, N. Optical transitions in quantum ring complexes. Phys. Rev. B 2005, 72, 205301. [Google Scholar] [CrossRef]
- Somaschini, C.; Bietti, S.; Fedorov, A.; Koguchi, N.; Sanguinetti, S. Concentric multiple rings by droplet epitaxy: Fabrication and study of the morphological anisotropy. Nanoscale Res. Lett. 2010, 5, 1865–1867. [Google Scholar] [CrossRef]
- Salehani, K.H.; Esmaeilzadeh, M.; Shakouri, K. Magnetic field effects on electron eigenstates in a concentric triple quantum ring. J. Nano Res. 2010, 10, 121–130. [Google Scholar] [CrossRef]
- Escartín, J.M.; Barranco, M.; Pi, M. Ground state and infrared response of triple concentric quantum ring structures. Phys. Rev. B 2010, 82, 195427. [Google Scholar] [CrossRef]
- Bejan, D.; Radu, A.; Stan, C. Electronic and optical responses of laser dressed triple concentric quantum rings in electric field. Philos. Mag. 2023, 103, 1738–1755. [Google Scholar] [CrossRef]
- Bejan, D.; Stan, C. Controlling the interband transitions in triple quantum ring: Effects of intense laser and electric fields. J. Phys. Chem. Solids 2024, 188, 111887. [Google Scholar] [CrossRef]
- Somaschini, C.; Bietti, S.; Koguchi, N.; Sanguinetti, S. Coupled quantum dot–ring structures by droplet epitaxy. Nanotechnology 2011, 22, 185602. [Google Scholar] [CrossRef]
- Elborg, M.; Noda, T.; Mano, T.; Kuroda, T.; Yao, Y.; Sakuma, Y.; Sakoda, K. Self-assembly of vertically aligned quantum ring-dot structure by Multiple Droplet Epitaxy. J. Cryst. Growth 2017, 477, 239–242. [Google Scholar] [CrossRef]
- Abbarchi, M.; Mastrandrea, C.A.; Vinattieri, A.; Sanguinetti, S.; Mano, T.; Kuroda, T.; Koguchi, N.; Sakoda, K.; Gurioli, M. Photon antibunching in double quantum ring structures. Phys. Rev. B 2009, 79, 085308. [Google Scholar] [CrossRef]
- Zeng, Z.; Garoufalis, C.S.; Baskoutas, S. Linear and nonlinear optical susceptibilities in a laterally coupled quantum-dot-quantum ring system. Phys. Lett. A 2014, 378, 2713–2718. [Google Scholar] [CrossRef]
- Barseghyan, M.G. Electronic states of coupled quantum dot-ring structure under lateral electric field with and without a hydrogenic or impurity. Phys. E 2015, 69, 219–223. [Google Scholar] [CrossRef]
- Pal, S.; Ghosh, M.; Duque, C.A. Impurity related optical properties in tuned quantum dot/ring systems. Philos. Mag. 2019, 99, 2457–2486. [Google Scholar] [CrossRef]
- Mora-Ramos, M.E.; Vinasco, J.A.; Laroze, D.; Radu, A.; Restrepo, R.L.; Heyn, C.; Tulupenko, V.; Hieu, N.N.; Phuc, H.V.; Ojeda, J.H.; et al. Electronic structure of vertically coupled quantum dot-ring heterostructures under applied electromagnetic probes. A finite-element approach. Sci. Rep. 2021, 11, 4015. [Google Scholar] [CrossRef]
- Khordad, R.; Mohammadi, S.A. Simultaneous effects of pressure, temperature, and external magnetic field on absorption threshold frequency of tuned quantum dot/ring systems: An analytical study. J. Comput. Electron. 2023, 22, 641–647. [Google Scholar] [CrossRef]
- Kim, H.; Park, S.; Okuyama, R.; Kyhm, K.; Eto, M.; Taylor, R.A.; Nogues, G.; Dang, L.S.; Potemski, M.; Je, K.; et al. Light controlled optical Aharonov–Bohm oscillations in a single quantum ring. Nano Lett. 2018, 18, 6188–6194. [Google Scholar] [CrossRef]
- Ospina, D.A.; Duque, D.; Mora-Ramos, M.E.; Vinasco, J.A.; Radu, A.; Restrepo, R.L.; Morales, A.L.; Sierra-Ortega, J.; Escorcia-Salas, G.E.; Giraldo, M.A.; et al. Hopf-link GaAs-AlGaAs quantum ring under geometric and external field settings. Phys. E 2024, 163, 116032. [Google Scholar] [CrossRef]
- Bhakti, B.; Ghosh, M. Analysing polarisability, dipole moment, Stark shift, self-polarisation effect and diamagnetic susceptibility of GaAs quantum dot under the simultaneous influence of noise and spatial dissemination of impurity. Philos. Mag. 2025, in press. [CrossRef]
- Senouci, D.; Nasri, D.; Duque, C.A. Electronic and optical properties of eccentric two dimensional quantum rings subjected to transverse tilted magnetic field. Phil. Mag 2023, 103, 2029–2053. [Google Scholar] [CrossRef]
- Nasri, D. Electronic and optical properties of eccentric quantum ring under parallel magnetic field. Phys. B Cond. Matt. 2021, 615, 413077. [Google Scholar] [CrossRef]
- Liu, G.; Wang, S.; Wang, D.; Chen, G.; Wu, F.; Liu, Y.; Zheng, Y.; Dai, J.; Guo, K.; Tao, Y.; et al. Floquet engineering of electronic states and optical absorption in laterally-coupled quantum rings under a magnetic field. Opt. Express 2024, 32, 26265–26278. [Google Scholar] [CrossRef]
- León-González, J.C.; Rafael, G.; Toscano-Negrette, A.L.; Vinasco, J.A.; Yücel, M.B.; Sari, H.; Kaspoglu, E.; Sakiroglu, S.; Mora-Ramos, M.E.; Restrepo, R.L.; et al. Spin–orbit and Zeeman effects on the electronic properties of single quantum rings: Applied magnetic field and topological defects. Nanomaterials 2023, 13, 1461. [Google Scholar] [CrossRef]
- Bejan, D.; Stan, C.; Petrescu-Niță, A. Magnetic properties of pseudo-elliptic quantum rings: Influence of impurity position and electron spin. UPB Sci. Bull. A Appl. Math. Phys. 2022, 84, 163–174. [Google Scholar]
- Mora-Ramos, M.E.; Vinasco, J.A.; Radu, A.; Restrepo, R.L.; Morales, A.L.; Sahin, M.; Mommadi, O.; Sierra-Ortega, J.; Escorcia-Salas, G.E.; Heyn, C.; et al. Double Quantum Ring under an Intense Nonresonant Laser Field: Zeeman and Spin-Orbit Interaction Effects. Cond. Matt. 2023, 8, 79. [Google Scholar] [CrossRef]
- Radu, A.; Kirakosyan, A.A.; Laroze, D.; Baghramyan, H.M.; Barseghyan, M.G. Electronic and intraband optical properties of single quantum rings under intense laser field radiation. J Appl. Phys. 2014, 116, 093101. [Google Scholar] [CrossRef]
- León-González, J.C.; Toscano-Negrette, R.G.; Vinasco, J.A.; Morales, A.L.; Mora-Ramos, M.E.; Duque, C.A. Influence of a non-resonant intense laser and structural defect on the electronic and optical properties of a gas quantum ring under inversely quadratic potential. Cond. Matt. 2023, 8, 52. [Google Scholar] [CrossRef]
- Lima, C.P.; Lima, F.M.S.; Fonseca, A.L.A.; Morales, A.L.; Mora-Ramos, M.E.; Duque, C.A. Magnetic field effect on the laser-driven density of states for electrons in a cylindrical quantum wire: Transition from one-dimensional to zero-dimensional behavior. New J. Phys. 2011, 13, 073005. [Google Scholar] [CrossRef]
- Vinasco, J.A.; Radu, A.; Niculescu, E.; Mora-Ramos, M.E.; Feddi, E.; Tulupenko, V.; Restrepo, R.L.; Kasapoglu, E.; Morales, A.L.; Duque, C.A. Electronic states in GaAs-(Al, Ga) As eccentric quantum rings under nonresonant intense laser and magnetic fields. Sci. Rep. 2019, 9, 1427. [Google Scholar] [CrossRef]
- Chakraborty, T.; Manaselyan, A.; Barseghyan, M.; Laroze, D. Controllable continuous evolution of electronic states in a single quantum ring. Phys. Rev. B 2018, 97, 041304. [Google Scholar] [CrossRef]
- Radu, A.; Stan, C.; Bejan, D. Finite element 3D model of a double quantum ring: Effects of electric and laser fields on the interband transition. New J. Phys. 2023, 25, 113025. [Google Scholar] [CrossRef]
- Restrepo, R.L.; González-Pereira, J.P.; Kasapoglu, E.; Morales, A.L.; Duque, C.A. Linear and nonlinear optical properties in the terahertz regime for multiple-step quantum wells under intense laser field: Electric and magnetic field effects. Opt. Mater. 2018, 86, 590–599. [Google Scholar] [CrossRef]
- Bejan, D.; Stan, C. Geometry-Tuned Optical Absorption Spectra of the Coupled Quantum Dot–Double Quantum Ring Structure. Nanomaterials 2024, 14, 1337. [Google Scholar] [CrossRef]
- Gavrila, M.; Kaminski, J.Z. Free-free transitions in intense high-frequency laser fields. Phys. Rev. Lett. 1984, 52, 613–616. [Google Scholar] [CrossRef]
- COMSOL Multiphysics®, version 5.6; COMSOL AB: Stockholm, Sweden. Available online: www.comsol.com (accessed on 10 April 2025).
- Paspalakis, E.; Boviatsis, J.; Baskoutas, S. Effects of probe field intensity in nonlinear optical processes in asymmetric semiconductor quantum dots. J. Appl. Phys. 2013, 114, 153107. [Google Scholar] [CrossRef]
- Bejan, D.; Stan, C. Aharonov-Bohm oscillations in pseudo-elliptic quantum rings: Influence of geometry, eccentricity and electric field. Eur. Phys. J. Plus 2019, 134, 127. [Google Scholar] [CrossRef]
- Slater, J.C. Quantum Theory of Matter; McGrawHill Book Co., Ltd.: New York, NY, USA, 1951. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bejan, D.; Stan, C.; Petrescu-Niță, A. Magneto-Absorption Spectra of Laser-Dressed Coupled Quantum Dot–Double Quantum Ring. Nanomaterials 2025, 15, 869. https://doi.org/10.3390/nano15110869
Bejan D, Stan C, Petrescu-Niță A. Magneto-Absorption Spectra of Laser-Dressed Coupled Quantum Dot–Double Quantum Ring. Nanomaterials. 2025; 15(11):869. https://doi.org/10.3390/nano15110869
Chicago/Turabian StyleBejan, Doina, Cristina Stan, and Alina Petrescu-Niță. 2025. "Magneto-Absorption Spectra of Laser-Dressed Coupled Quantum Dot–Double Quantum Ring" Nanomaterials 15, no. 11: 869. https://doi.org/10.3390/nano15110869
APA StyleBejan, D., Stan, C., & Petrescu-Niță, A. (2025). Magneto-Absorption Spectra of Laser-Dressed Coupled Quantum Dot–Double Quantum Ring. Nanomaterials, 15(11), 869. https://doi.org/10.3390/nano15110869