Forest Tree and Woody Plant-Based Biosynthesis of Nanoparticles and Their Applications
Abstract
:1. Introduction
2. Forest Tree and Woody Plant-Based Synthesis of Nanoparticles
2.1. Biosynthesis of NPs Using Leaf Extracts
Tree Species/Part Used | Tree Family | Chemical Substrate Used for NP Synthesis | Nanoparticles (NPs)/ Size of NPs | Applications of NPs | Reference |
---|---|---|---|---|---|
Eucalyptus camaldulensis/leaves | Myrtaceae | Silver nitrate (AgNO3) solution | Silver nanoparticles (Ag NPs) 8.7–26.5 nm |
| [41] |
Eucalyptus camaldulensis/leaves | Myrtaceae | AgNO3 | Ag NPs ˂100 nm |
| [72] |
Eucalyptus chapmaniana/leaves | Myrtaceae | AgNO3 | Ag NPs 60 nm |
| [73] |
Ecalyptus camaldulensis/leaves | Myrtaceae | AgNO3 | Ag NPs 28–68 nm |
| [57] |
Eucalyptus grandis/leaves | Myrtaceae | AgNO3 | Ag NPs 1.7–52.9 nm |
| [74] |
Eucalyptus oleosa/leaves | Myrtaceae | AgNO3 | Ag NPs 21 nm |
| [75] |
Mimusops elengi/leaves | Sapotaceae | AgNO3 | Ag NPs 4–28 nm |
| [55] |
Azadirachta indica/leaves | Meliaceae | AgNO3 | Ag NPs 10–100 nm |
| [54] |
Ekebergia capensis/leaves | Meliaceae | AgNO3 | Ag NPs 20–120 nm |
| [56] |
Abies webbiana/leaf | Pinaceae | AgNO3 | AW-Ag NPs Not included |
| [58] |
Debregeasia salicifolia/leaves | Urticaceae | AgNO3 | Ag NPs 38.15 nm |
| [76] |
Carissa carandas/leaves | Apocynaceae | AgNO3 | Ag NPs 28–06 nm |
| [77] |
Thevetia peruviana/leaves | Apocynaceae | AgNO3 | Ag NPs 6.4–39.4 nm |
| [78] |
Dalbergia sissoo/leaf | Fabaceae | AgNO3 | Ag NPs 10–25 nm |
| [40] |
Mimusops elengi/leaf | Sapotaceae | AgNO3 | Ag NPs 55–83 |
| [79] |
Prosopis juliflora/leaf | Mimosaceae | AgNO3 | Ag NPs 10–20 nm |
| [80] |
Ziziphus Jujuba/leaf | Rhamnaceae | AgNO3 | Ag NPs 20–30 nm |
| [81] |
Acer pentapomicum/leaf | Sapindaceae | Gold chloride | Au NPs 19–24 nm |
| [63] |
Albizia lebbeck/leaves | Mimosaceae | Fecl3·6H2O | Iron nanoparticles ,size not included |
| [62] |
Diospyros montana/leaf extract | Ebenaceae | AgNO3 | Ag NPs 61.69 nm |
| [82] |
Ficus benghalensis/leaf extract | Moraceae | AgNO3 | Ag NPs 16 nm |
| [83] |
Ficus benghalensis/leaf extract | Moraceae | Gold chloride | Au NPs 2–100 nm |
| [61] |
Juglans regia/leaf extract | Juglandaceae | AgNO3 | Ag NPs 10–50 nm |
| [84] |
Citrus hystrix (kaffir lime)/leaves | Rutaceae | Silver nitrate and gelatin | Ag and AgCl nanoparticles 20–50 nm |
| [59] |
Prosopis juliflora/leaf extract | Mimosaceae | AgNO3 | Ag NPs 35–60 nm |
| [85] |
Oak (Quercus brantii)/leaves | Fagaceae | AgNO3 | Ag NPs 6 nm |
| [86] |
Teak (Tectona grandis)/leaves | Verbenaceae | AgNO3 | Ag NPs 26–28 nm |
| [87] |
Acacia nilotica/leaves | Mimosaceae | AgNO3 | Ag NPs 20 nm |
| [88] |
Cestrum nocturnum/leaf extract | Solanaceae | AgNO3 | Ag NPs 20 nm |
| [36] |
Dalbergia sissoo/leaf extract | Fabaceae | Mg(NO3)2·6H2O | MgO NPs ˂50 nm |
| [47] |
Melia azedarach/leaf extract | Meliaceae | Zn(NO3)26H2O | MaZnO NPs 30–40 nm |
| [67] |
Agrewia optiva and Prunus persica/leaf extracts | Malvaceae and Rosaceae | Iron(II) chloride tetrahydrate (FeCl2·4H2O) | Iron oxide nanoparticles 14–17 nm |
| [65] |
Albizia lebbeck/leaf extract | Mimosaceae | Copper sulfate | Copper oxide nanoparticles (CuO NPs) ˂100 nm |
| [64] |
Tectona grandis/leaf extract | Verbenaceae | Zinc nitrate | Zinc oxide nanoparticles (ZnO NPs) 54 nm |
| [89] |
Terminalia catappa/leaf | Combretaceae | Nd(NO3)3 | Neodimium oxide nanoparticles (Nd2O3 NPs) 40–60 nm |
| [66] |
Rhus punjabensis/leaf extract | Anacardiaceae | Ferric chloride | Iron oxide NPs 41.5 nm |
| [90] |
Rosa brunonii/leaves | Rosaceae | AgNO3 | Ag NPs ˂100 nm |
| [90] |
Oak (Quercus peatrea), mulberry (Morus alba), and cherry (Prunus cerasus)/leaves | Fagaceae, Moraceae, and Rosaceae | Fe(III) solution | Green zero-valent iron nanoparticles (nZVIs) 10–30 nm |
| [60] |
2.2. Biosynthesis of NPs Using Fruit and Seed Extracts
2.3. Biosynthesis of NPs Using Stem Bark Extracts
2.4. Biosynthesis of NPs Using Extracts of Different Plant Parts and Constituents
3. Applications of Woody Plant-Based Biosynthesized NPs
4. Comparative Overview
5. Current Challenges and Research Opportunities in Forest Tree-Based Nanoparticle Synthesis
- The biochemical composition of tree extracts can vary due to the species, age, and environmental conditions, significantly impacting the nanoparticle synthesis outcomes. This variability influences the nanoparticle size, shape, and stability. For example, a study comparing silver nanoparticle synthesis with the use of extracts from collard greens, hazelnut, and green tea revealed that green tea extract, abundant in phenolic compounds, accelerated nanoparticle formation and produced smaller, more stable particles. In contrast, collard greens, having lower phenolic content, resulted in less effective nanoparticle synthesis with larger, more polydisperse particles [135]. Additionally, seasonal changes can modify plants’ phytochemical profiles [136].
- The lack of standardized protocols for plant-mediated nanoparticle synthesis creates considerable challenges regarding reproducibility and scalability. Differences in the plant species, cultivation conditions, and extraction methods may lead to inconsistencies in properties such as the size, shape, and stability of nanoparticles. For instance, variability in the phytochemical content of extracts, influenced by environmental and species factors, can cause batch-to-batch discrepancies in the synthesis results. This highlights the urgent need to standardize the extraction and synthesis methods to achieve consistent and reproducible outcomes across various studies and applications.
- The mass production and disposal of nanoparticles present serious environmental hazards, mainly because their release into air, water, and soil can result in ecosystem contamination and toxicity. Manufactured nanomaterials can enter the environment through intentional and accidental means, including emissions from production sites, waste discharge, spills during transport, and the degradation of consumer items [137].
- This necessitates detailed impact assessments. Research indicates that NPs can trigger oxidative stress, DNA damage, and inflammation in various organisms, threatening human health and ecosystems [138]. Furthermore, releasing nanoparticles into the environment might result in their accumulation in soil and water, potentially disrupting microbial communities and nutrient cycles [139]. Thus, a thorough evaluation of the environmental implications of nanoparticle synthesis and their applications is crucial, ensuring the adoption of sustainable practices to mitigate the adverse effects.
- Despite these obstacles, there are encouraging research prospects.
- The phytochemical profiling of tree extracts is vital in pinpointing the key compounds involved in NP synthesis, facilitating more controlled and efficient processes. Research has shown that various bioactive compounds in plant extracts, including polyphenols, flavonoids, terpenoids, and alkaloids, can serve as reducing and stabilizing agents during NP formation [140]. This highlights the significance of comprehensive phytochemical analysis in uncovering the nanoparticle synthesis mechanisms and optimizing the processes for targeted results.
- Utilizing forest waste materials such as sawdust, bark, and leaves for nanoparticle synthesis provides a sustainable approach that diminishes the environmental impact while also enhancing the value of by-products usually seen as waste. For example, lignin nanoparticles (LNPs) have been effectively extracted from the sawdust of Iroko (Milicia excelsa) and Norway spruce (Picea abies) trees. These LNPs were subsequently used to coat beech (Fagus sylvatica) wood, increasing its resistance to artificial weathering, showcasing wood waste’s potential in generating functional nanomaterials [141]. This emphasizes the practicality of using forest waste materials in nanoparticle synthesis, encouraging sustainability and reducing waste in the forest product industry.
- Environmental impact studies play a critical role in shaping the development of eco-friendly strategies for nanoparticle synthesis. Life cycle assessments (LCAs) have been utilized to evaluate the environmental effects of green synthesis methods versus traditional ones, showcasing advantages like decreased emissions and energy use. For example, an LCA focused on iron oxide nanoparticle synthesis using natural extracts highlighted a more sustainable approach with lower environmental burdens [142]. These evaluations reinforce the necessity of implementing green synthesis techniques to lessen ecological footprints and advocate for sustainability in the production of nanomaterials.
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- von Maydell, H.-J. Trees and Shrubs of the Sahel: Their Characteristics and Uses, 2nd ed.; Verlag Josef Margraft: Weikersheim, Germany, 1990; pp. 1–407. [Google Scholar]
- Dharan, N. Trees and Shrubs of East Africa, 2nd ed.; Struik Publishers (Pty) Ltd.: Cape Town, South Africa, 2005; p. 4. [Google Scholar]
- Freer-Smith, P.H.; Broadmeadow, M.S.; Lynch, J.M. Forests and Climate Change: The Knowledge-base for Action. In Forestry & Climate Change; Freer-Smith, P.H., Broadmeadow, M.S., Lynch, J.M., Eds.; CAB International: Oxfordshire, UK, 2007; pp. 7–14. [Google Scholar]
- Marshall, E. Health and Wealth from Medicinal Aromatic Plants: Diversification Booklet 17; FAO: Rome, Italy, 2011; pp. 1–23. [Google Scholar]
- Allona, I.; Kirst, M.; Boerjan, W.; Strauss, S.; Sederoff, R. Editorial: Forest Genomics and Biotechnology. Front. Plant Sci. 2019, 10, 1187. [Google Scholar] [CrossRef] [PubMed]
- Pelai, R.; Hagerman, S.; Kozak, R. Biotechnologies in agriculture and forestry: Governance insights from a comparative systematic review of barriers and recommendations. For. Policy Econ. 2020, 117, 102191. [Google Scholar] [CrossRef]
- Murugan, K.; Senthilkumar, B.; Senbagam, D.; Al-Sohaibani, S. Biosynthesis of silver nanoparticles using Acacia leucophloea extract and their antibacterial activity. Int. J. Nanomed. 2014, 9, 2431–2438. [Google Scholar]
- Myburg, A.A.; Hussey, S.; Wang, J.; Street, N.R.; Mizrachi, E. Systems and Synthetic Biology of Forest Trees: A Bioengineering Paradigm for Woody Biomass Feedstocks. Front. Plant Sci. 2019, 10, 775. [Google Scholar] [CrossRef]
- Bett, L.A.; Auer, C.; Karp, S.; Maranho, L. Forest biotechnology: Economic aspects and conservation implications. J. Biotechnol. Biodivers. 2021, 9, 107–117. [Google Scholar] [CrossRef]
- Chimene, A.F.; Julien, H.; Sidoine, M. Effect of Saline Stress on the Growth and Physiological Behavior of Young Planting Acacia nilotica in Nursery and After Transplantation. Plant 2024, 12, 131–141. [Google Scholar] [CrossRef]
- Niu, S.; Ding, J.; Xu, C.; Wang, J. Modern and future forestry based on biotechnology. Mod. Agric. 2023, 1, 27–33. [Google Scholar] [CrossRef]
- Balantrapu, K.; Goia, D.V. Silver nanoparticles for printable electronics and biological applications. J. Mater. Res. 2009, 24, 2828–2836. [Google Scholar] [CrossRef]
- Shibli, R.; Mohusaien, R.; Abu-Zurayk, R.; Qudah, T.; Tahtamouni, R. Silver Nanoparticles (Ag NPs) Boost Mitigation Powers of Chenopodium quinoa (Q6 Line) Grown under In Vitro Salt-Stressing Conditions. Water 2022, 14, 3099. [Google Scholar] [CrossRef]
- Kathiravan, V.; Ravi, S.; Velmurugan, A.; Elumalai, V.; Khatiwada, C. Green synthesis of silver nanoparticles using Croton sparsiflorus morong leaf extract and their antibacterial and antifungal activities. Spectrochim. Acta PartA Mol. Biomol. Spectrosc. 2015, 139, 200–205. [Google Scholar] [CrossRef]
- Malik, S.; Muhammad, K.; Waheed, Y. Nanotechnology: A Revolution in Modern Industry. Molecules 2023, 28, 661. [Google Scholar] [CrossRef] [PubMed]
- Javad, S.; Ghaffar, N.; Naseer, I.; Jabeen, K.; Aftab, A.; Shaheen, S. Antibacterial activity of phyto-mediated silver nanoparticles developed from Melia azedarach. Period. Biol. 2017, 119, 107–111. [Google Scholar] [CrossRef]
- Husen, A.; Jawaid, M. Nanomaterials for Agriculture and Forestry Applications; Husen, A., Jawaid, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 15–100. [Google Scholar]
- Zaheer, Z.; Rafiuddin. Silver nanoparticles to self-assembled films: Green synthesis and characterization. Colloids Surf. B Biointerfaces 2012, 90, 48–52. [Google Scholar] [CrossRef]
- Lokina, S.; Stephen, A.; Kaviyarasan, V.; Arulvasu, C.; Narayanan, V. Cytotoxicity and antimicrobial activities of green synthesized silver nanoparticles. Eur. J. Med. Chem. 2014, 76, 256–263. [Google Scholar] [CrossRef]
- Husen, A.; Siddiqi, K.S. Phytosynthesis of nanoparticles: Concept, controversy and application. Nano Res. Lett. 2014, 9, 229. [Google Scholar] [CrossRef]
- Siddiqi, K.S.; Husen, A.; Rao, R.A. A review on biosynthesis of silver nanoparticles and their biocidal properties. J. Nanobiotechnol 2018, 16, 14. [Google Scholar] [CrossRef]
- Kalimuthu, K.; Babu, R.S.; Venkataraman, D.; Bilal, D.; Gurunathan, S.S. Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf. Biointerfaces 2008, 65, 150–153. [Google Scholar] [CrossRef] [PubMed]
- Das, R.K.; Pachapur, V.; Lonappan, L.; Naghdi, M.; Pulicharla, R.; Maiti, S.; Cledon, M.; Dalila, L.M.A.; Sarma, S.J.; Brar, S.K. Biological synthesis of metallic nanoparticles: Plants, animals and microbial aspects. Nanotechnol. Environ. Eng. 2017, 2, 18. [Google Scholar] [CrossRef]
- Sreekanth, T.V.; Nagajyothi, P.; Muthuraman, P.; Enkhtaivan, G.; Vattikuti, S.; Tettey, C.; Kim, D.H.; Shim, J.; Yoo, K. Ultra-sonication-assisted silver nanoparticles using Panax ginseng root extract and their anti-cancer and antiviral activities. J. Photochem. Photobiol. B Biol. 2018, 188, 6–11. [Google Scholar] [CrossRef]
- McKenzie, L.C.; Hutchison, J.E. Green nanoscience. Chim. Oggi 2004, 22, 30–33. [Google Scholar]
- Krishnaswamy, K.; Orsat, V. Insight into the nanodielectric properties of gold nanoparticles synthesized from maple leaf and pine needle extracts. Ind. Crops Prod. 2015, 66, 131–136. [Google Scholar] [CrossRef]
- dos Santos, R.M.; Neto, W.; Silverio, H.; Martins, D.; Dantas, N.; Pasquini, D. Cellulose nanocrystals from pineapple leaf: A new approach for the reuse of this agro-waste. Ind. Crops Prod. 2013, 50, 707–714. [Google Scholar] [CrossRef]
- Venkatesham, M.; Ayodhya, D.; Madhusudhan, A.; Veerabhadram, G. Synthesis of Stable Silver Nanoparticles Using Gum Acacia as Reducing and Stabilizing Agent and Study of Its Microbial Properties: A Novel Green Approach. Int. J. Green Nanotechnol. 2013, 4, 199–206. [Google Scholar] [CrossRef]
- Zhang, J.; Song, H.; Lin, L.; Zhuang, J.; Pang, C.; Liu, S. Microfibrillated cellulose from bamboo pulp and its properties. Biomass Bioenergy 2012, 39, 78–83. [Google Scholar] [CrossRef]
- Verma, S.K.; Kumar, P.; Mishra, A.; Khare, R.; Singh, D. Green nanotechnology: Illuminating the effects of bio-based nanoparticles on plant physiology. Biotechnol. Sustain. Mater. 2024, 1, 1. [Google Scholar] [CrossRef]
- Song, J.Y.; Kim, B.S. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess. Biosyst. Eng. 2009, 32, 79–84. [Google Scholar] [CrossRef]
- Rasheed, T.; Bilal, M.; Iqbal, H.; Li, C. Green biosynthesis of silver nanoparticles using leaves extract of Artemisia vulgaris and their potential biomedical applications. Colloids Surf. B Biointerfaces 2017, 158, 408–415. [Google Scholar] [CrossRef] [PubMed]
- Alara, O.R.; Abdurahman, N.; Ukaegbu, C. Soxhlet extraction of phenolic compounds from Vernonia cinerea leaves and its antioxidant activity. J. Appl. Res. Med. Aromat. Plants 2018, 11, 12–17. [Google Scholar] [CrossRef]
- Sabela, M.; Talent Makhanya, T.; Kanchi, S.; Shahbaaz, M.; Idress, D.; Bisetty, K. One-pot biosynthesis of silver nanoparticles using Iboza Riparia and Ilex Mitis for cytotoxicity on human embryonic kidney cells. J. Photochem. Photobiol. B Biol. 2018, 178, 560–567. [Google Scholar] [CrossRef]
- Anwar, A.; Masri, A.; Rao, K.; Rajendran, K.; Khan, N.; Shah, M.; Siddiqui, R. Antimicrobial activities of green synthesized gums-stabilized nanoparticles loaded with flavonoids. Sci. Rep. 2019, 9, 3122. [Google Scholar] [CrossRef]
- Keshari, A.K.; Srivastava, R.; Singh, P.; Yadav, V.; Nath, G. Antioxidant and antibacterial activity of silver nanoparticles synthesized by Cestrum nocturnum. J. Ayurveda Integr. Med. 2020, 11, 37–44. [Google Scholar] [CrossRef]
- Wu, C.; Chen, D. Facile green synthesis of gold nanoparticles with gum arabic as a stabilizing agent and reducing agent. Gold Bull. 2010, 43, 234–240. [Google Scholar] [CrossRef]
- Tonoli, G.H.; Teixeira, E.; Correa, A.; Marconcini, J.; Caixeta, L.; Silvac, M.; Mattoso, L. Cellulose micro/nanofibres from Eucalyptus kraft pulp: Preparation and properties. Carbohydr. Polym. 2012, 89, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Vasyukova, I.; Gusev, A.; Zakharova, O.; Baranchikov, P.; Yevtushenko, N. Silver nanoparticles for enhancing the efficiency of micropropagation of gray poplar (Populus × canescens Aiton. Sm.). For. IOP Conf. Ser. Earth Environ. Sci. 2021, 875, 012053. [Google Scholar] [CrossRef]
- Khatun, H.; Alam, S.; Abdul Aziz, M.; Karim, M.R.; Rahman, M.H.; Rabbi, M.A.; Habib, M.R. Plant-assisted green preparation of silver nanoparticles using leaf extract of Dalbergia sissoo and their antioxidant, antibacterial and catalytic applications. Bioprocess Biosyst. Eng. 2024, 47, 1347–1362. [Google Scholar] [CrossRef] [PubMed]
- Abdalkreem, I.H.; Zayed, M.Z.; Shetta, N.D.; Yacout, M.M. Green synthesis of AgNPs and their effects on seed germination and seedling vigor of Acacia senegal and Acacia mellifera. J. Trop. For. Sci. 2024, 36, 391–401. [Google Scholar] [CrossRef]
- Edison, T.N.J.; Lee, Y.R.; Sethuraman, M.G. Green synthesis of silver nanoparticles using Terminalia cuneata and its catalytic action in reduction of direct yellow-12 dye. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2016, 161, 122–129. [Google Scholar] [CrossRef]
- Mohanty, A.S.; Jena, B.S. Innate catalytic and free radical scavenging activities of silver nanoparticles synthesized using Dillenia indica bark extract. J. Colloid Interface Sci. 2017, 496, 513–521. [Google Scholar] [CrossRef]
- Sorbiun, M.; Mehr, E.; Ramazani, A.; Fardood, S. Biosynthesis of Ag, ZnO and bimetallic Ag/ZnO alloy nanoparticles by aqueous extract of oak fruit hull (Jaft) and investigation of photocatalytic activity of ZnO and bimetallic Ag/ZnO for degradation of basic violet 3 dye. J. Mater. Sci. Mater. Electron. 2018, 29, 2806–2814. [Google Scholar] [CrossRef]
- Begum, S.; Ahmaruzzaman, M. Green synthesis of SnO2 quantum dots using Parkia speciosa Hassk pods extract for the evaluation of anti-oxidant and photocatalytic properties. J. Photochem. Photobiol. B Biol. 2018, 184, 44–53. [Google Scholar] [CrossRef]
- Arya, G.; Kumari, R.M.; Pundir, R.; Chatterjee, S.; Gupta, N.; Kumar, A.; Chandra, R.; Nimesh, S. Versatile biomedical potential of biosynthesized silver nanoparticles from Acacia nilotica bark. J. Appl. Biomed. 2019, 17, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.I.; Akhtar, M.; Naveed Ashraf, N.; Najeeb, J.; Munir, H.; Awan, T.; Tahir, M.; Kabli, M. Green synthesis of magnesium oxide nanoparticles using Dalbergia sissoo extract for photocatalytic activity and antibacterial efficacy. Appl. Nanosci. 2020, 10, 2351–2364. [Google Scholar] [CrossRef]
- Yadaf, V.; Gupta, V. Comparative Analysis of Green Synthesis and Chemical Synthesis of Nanoparticles and its Applications. IJEP 2023, 43, 1022–1035. [Google Scholar]
- Irewale, A.T.; Dimkpa, C.; Agunbiade, F.; Oyetunde, O.; Elemike, E.; Oguzie, E. Unlocking sustainable agricultural development in Africa via bio-nanofertilizer application—Challenges, opportunities and prospects. Sci. Afr. 2024, 25, e02276. [Google Scholar] [CrossRef]
- Fakruddin, M.; Hossain, Z.; Afroz, H. Prospects and applications of nanobiotechnology: A medical perspective. J. Nanobiotechnol. 2012, 10, 31. [Google Scholar] [CrossRef] [PubMed]
- Prasad, R.; Kumar, V.; Prasad, K.S. Nanotechnology in sustainable agriculture: Present concerns and future aspects. Afr. J. Biotechnol. 2014, 13, 705–713. [Google Scholar]
- Wagay, O.; Khan, S.; Rafeeq, J.; Pala, N.; Bhat, G.; Dutt, V.; Peerzada, I.A.; Malik, A.; Sofi, P.; Mushtaq, T.; et al. Nanotechnology and its potential application in forest and forest-based industries: A review. SKUAST J. Res. 2023, 25, 527–537. [Google Scholar] [CrossRef]
- Singh, D.; Sillu, D.; Kumar, A.; Agnihotri, S. Dual nanozyme characteristics of iron oxide nanoparticles alleviate salinity stress and promote the growth of an agroforestry tree, Eucalyptus tereticornis Sm. Environ. Sci. Nano 2021, 8, 1308–1325. [Google Scholar] [CrossRef]
- Tripathy, A.; Raichur, A.M.; Chandrasekaran, N.; Prathna, T.C.; Mukherjee, A. Process variables in biomimetic synthesis of silver nanoparticles by aqueous extract of Azadirachta indica (Neem) leaves. J. Nanopart Resour. 2010, 12, 237–246. [Google Scholar] [CrossRef]
- Ahmad, R.; Parrey, S.H.; Faisal, Q. Role of Cetyltrimethylammonium Bromide in the Green Synthesis of Silver Nanoparticles Using Mimusops elengi, Linn. (Maulsari) Leaf Extract. Adv. Nanoparticles 2016, 5, 44–52. [Google Scholar] [CrossRef]
- Anand, K.; Kaviyarasu, K.; Muniyasamy, S.; Roopan, S.; Gengan, R.; Chuturgoon, A. Bio-Synthesis of Silver Nanoparticles Using Agroforestry Residue and Their Catalytic Degradation for Sustainable Waste Management. J. Clust. Sci. 2017, 28, 2279–2291. [Google Scholar] [CrossRef]
- Alghoraibi, I.; Soukkarieh, C.; Zein, R.; Alahmad, A.; Walter, J.; Daghestani, M. Aqueous extract of Eucalyptus camaldulensis leaves as reducing and capping agent in biosynthesis of silver nanoparticles. Inorg. Nano-Met. Chem. 2020, 50, 895–902. [Google Scholar] [CrossRef]
- Sowmiya, K.; Prakash, J.T. Green-synthesis of silver nanoparticles using Abies webbiana leaves and evaluation of its antibacterial activity. J. Pharmacogn. Phytochem. 2018, 7, 2033–2036. [Google Scholar]
- Chankaew, C.; Somsri, S.; Tapala, W.; Mahatheeranont, S.; Saenjum, C.; Rujiwatra, A. Kaffir lime leaf extract mediated synthesis, anticancer activities and antibacterial kinetics of Ag and Ag/AgCl nanoparticles. Particuology 2018, 40, 160–168. [Google Scholar] [CrossRef]
- Poguberovic, S.; Krcmar, D.; Maletic, S.; Konya, Z.; Pilipovic, D.; Kerkez, D.; Roncevic, S. Removal of As(III) and Cr(VI) from aqueous solutions using “green” zero-valent iron nanoparticles produced by oak, mulberry and cherry leaf extracts. Ecol. Eng. 2016, 90, 42–49. [Google Scholar] [CrossRef]
- Francis, G.; Thombre, R.; Parekh, F.; Leksminarayan, P. Bioinspired Synthesis of Gold Nanoparticles Using Ficus benghalensis (Indian Banyan) Leaf Extract. Chem. Sci. Trans. 2014, 3, 470–474. [Google Scholar]
- Raju, C.A.I.; Bharadwaj, M.S.; Prem, K.; Satyanandam, K. Green Synthesis of Iron Nanoparticles using Albizia lebbeck leaves for Synthetic Dyes decolorization. Int. J. Sci. Eng. Technol. Res. 2016, 5, 3429–3434. [Google Scholar]
- Khan, S.; Bakht, J.; Syed, F. Green synthesis of gold nanoparticles using Acer pentapomicum leaves extract its characterization, antibacterial, antifungal and antioxidant bioassay. Dig. J. Nanomater. Biostructures 2018, 13, 579–589. [Google Scholar]
- Jayakumarai, G.; Gokulpriya, C.; Sudhapriya, R.; Sharmila, G.; Muthukumaran, C. Phytofabrication and characterization of monodisperse copper oxide nanoparticles using Albizia lebbeck leaf extract. Appl. Nanosci. 2015, 5, 1017–1021. [Google Scholar] [CrossRef]
- Mirza, A.U.; Kareem, A.; Nami, S.A.; Khan, M.S.; Rehman, S.; Bhat, S.A.; Mohammad, A.; Nishat, N. Biogenic synthesis of iron oxide nanoparticles using Agrewia optiva and Prunus persica phyto species: Characterization, antibacterial and antioxidant activity. J. Photochem. Photobiol. B Biol. 2018, 185, 262–274. [Google Scholar] [CrossRef]
- Lembang, M.S.; Yulizar, Y.Y.; Sudirman, S.; Apriandanu, D. A Facile Method for Green Synthesis of Nd2O3 Nanoparticles Using Aqueous Extract of Terminalia Catappa Leaf. AIP Conf. Proc. 2017, 2023, 020093-1–020093-6. [Google Scholar] [CrossRef]
- Lakshmeesha, T.R.; Murali, M.M.; Ansari, M.A.; Udayashankar, A.C.; Alzohairy, M.A.; Almatroudi, A.; Asiri, S.M.M.; Ashwini, B.; Kalagatur, N.K.; Nayak, C.S.; et al. Biofabrication of zinc oxide nanoparticles from Melia azedarach and its potential in controlling soybean seed-borne phytopathogenic fungi. Saudi J. Biol. Sci. 2020, 27, 1923–1930. [Google Scholar] [CrossRef]
- Hopkins, W.G.; Huner, N.P.A. Introduction to Plant Physiology, 4th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009; pp. 459–479. [Google Scholar]
- Faleva, A.V.; Ulyanovskii, N.; Onuchina, A.; Falev, D.; Kosyakov, D. Comprehensive Characterization of Secondary Metabolites in Fruits and Leaves of Cloudberry (Rubus chamaemorus L.). Metabolites 2023, 13, 598. [Google Scholar] [CrossRef]
- Puri, J.B.; Shaikh, A.; Dhuldhaj, U.P. Moringa Leaves with Beneficial Secondary Metabolites. Int. J. Adv. Biol. Biomed. Res. 2023, 11, 164–171. [Google Scholar] [CrossRef]
- Wu, Y.; Huang, X.; Yang, H.; Zhang, S.; Lyu, L.; Li, W.; Wu, W. Analysis of flavonoid-related metabolites in different tissues and fruit developmental stages of blackberry based on metabolome analysis. Food Res. Int. 2023, 163, 112313. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, A.E. Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles mediated by Eucalyptus camaldulensis leaf extract. Asian Pac. J. Trop. Biomed. 2015, 5, 382–386. [Google Scholar] [CrossRef]
- Sulaiman, G.M.; Mohammed, W.H.; Marzoog, T.R.; AlAmiery, A.A.; Kadhum, A.H.; Mohamad, A. Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles using Eucalyptus chapmaniana leaves extract. Asian Pac. J. Trop. Biomed. 2013, 3, 58–63. [Google Scholar] [CrossRef]
- Oliveira, L.M.F.; da Silva, U.P.; Braga, J.P.; Teixeira, A.V.; Ribon, A.; Varejão, E.; Coelho, E.; de Freitas, C.; Teixeira, R.; Moreira, R.; et al. Green Synthesis, Characterization and Antibacterial and Leishmanicidal Activities of Silver Nanoparticles Obtained from Aqueous Extract of Eucalyptus grandis. J. Braz. Chem. Soc. 2023, 34, 527–536. [Google Scholar] [CrossRef]
- Pourmortazavi, S.M.; Taghdiri, M.; Makari, V.; Rahimi-Nasrabadi, M. Procedure optimization for green synthesis of silver nanoparticles by aqueous extract of Eucalyptus oleosa. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 136, 1249–1254. [Google Scholar] [CrossRef]
- Khan, J.; Irsa Naseem, I.; Bibi, S.; Ahmad, S.; Altaf, F.; Hafeez, M.; Almoneef, M.M.; Ahmad, K. Green Synthesis of Silver Nanoparticles (Ag-NPs) Using Debregeasia Salicifolia for Biological Applications. Materials 2023, 16, 129. [Google Scholar] [CrossRef]
- Singh, D.; Kumar, V.; Yadav, E.; Falls, N.; Singh, M.; Komal, U.; Verma, A. One-pot green synthesis and structural characterization of silver nanoparticles using aqueous leaves extract of Carissa carandas: Antioxidant, anticancer and antibacterial activities. IET Nanobiotechnology 2018, 12, 748–756. [Google Scholar] [CrossRef] [PubMed]
- Oluwaniyi, O.O.; Adegoke, H.I.; Adesuji, E.T.; Alabi, A.B.; Bodede, S.O.; Labulo, A.H.; Oseghale, C.O. Biosynthesis of silver nanoparticles using aqueous leaf extract of Thevetia peruviana Juss and its antimicrobial activities. Appl. Nanosci. 2016, 6, 903–912. [Google Scholar] [CrossRef]
- Prakash, P.; Gnanaprakasama, P.; Emmanuel, R.; Arokiyaraj, S.; Saravanan, M. Green synthesis of silver nanoparticles from leaf extract of Mimusops elengi, Linn. for enhanced antibacterial activity against multi drug resistant clinical isolates. Colloids Surf. B Biointerfaces 2013, 108, 255–259. [Google Scholar] [CrossRef]
- Arya, G.; Kumari, R.M.; Sharma, N.; Gupta, N.; Kumar, A.; Chatterjee, S.; Nimesh, S. Catalytic, antibacterial and antibiofilm efficacy of biosynthesized silver nanoparticles using Prosopis juliflora leaf extract along with their wound healing potential. J. Photochem. Photobiol. B Biol. 2019, 190, 50–58. [Google Scholar] [CrossRef]
- Gavade, N.L.; Kadam, A.N.; Suwarnkar, M.B.; Ghodake, V.P.; Garadkar, K.M. Biogenic synthesis of multi-applicative silver nanoparticles by using Ziziphus Jujuba leaf extract. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 136, 953–960. [Google Scholar] [CrossRef] [PubMed]
- Siddiqi, K.S.; Rashid, M.; Tajuddin Husen, A.; Rehman, S. Biofabrication of Silver Nanoparticles from Diospyros montana, Their Characterization and Activity Against Some Clinical Isolates. BioNanoScience 2019, 9, 302–312. [Google Scholar] [CrossRef]
- Saxena, A.; Tripathi, R.M.; Zafar, F.; Singh, P. Green synthesis of silver nanoparticles using aqueous solution of Ficus benghalensis leaf extract and characterization of their antibacterial activity. Mater. Lett. 2012, 67, 91–94. [Google Scholar] [CrossRef]
- Korbekandi, H.; Asghari, G.; Jalayer, S.; Jalayer, M.; Bandegani, M. Nanosilver Particle Production Using Juglans Regia L.(Walnut) Leaf Extract. Jundishapur J. Nat. Pharm. Prod. 2012, 8, 20–26. [Google Scholar] [CrossRef]
- Raja, K.; Saravanakumar, A.; Vijayakumar, R. Efficient synthesis of silver nanoparticles from Prosopis juliflora leaf extract and its antimicrobial activity using sewage. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 97, 490–494. [Google Scholar] [CrossRef]
- Korbekandi, H.; Chitsazi, M.; Asghari, G.; Najafi, R.; Badii, A.; Iravani, S. Green biosynthesis of silver nanoparticles using Quercus brantii (oak) leaves hydroalcoholic extract. Pharm. Biol. 2015, 53, 807–881. [Google Scholar] [CrossRef]
- Devadiga, A.; Shetty, K.V.; Saidutta, M.B. Timber industry waste-teak (Tectona grandis Linn.) leaf extract mediated synthesis of antibacterial silver nanoparticles. Int. Nano Lett. 2015, 5, 205–214. [Google Scholar] [CrossRef]
- Saratale, R.G.; Dattatray, G.; Saratale, G.; Cho, S.; Ghodake, G.; Kadam, A.; Kumar, S.; Mulla, S.I.; Kim, D.-S.; Jeon, B.-H.; et al. Phyto-fabrication of silver nanoparticles by Acacia nilotica leaves: Investigating their antineoplastic, free radical scavenging potential and application in H2O2 sensing. J. Taiwan Inst. Chem. Eng. 2019, 99, 239–249. [Google Scholar] [CrossRef]
- Senthilkumar, N.; Nandhakumar, E.; Priya, P.; Soni, D.; Vimalan, M.; Potheher, I.V. Synthesis of ZnO nanoparticles using leaf extract of Tectona grandis (L.) and their anti-bacterial, anti-arthritic, anti-oxidant and in vitro cytotoxicity activities. New J. Chem. 2017, 41, 10347–10356. [Google Scholar] [CrossRef]
- Naz, S.; Islam, M.; Tabassum, S.; Fernandes, N.; de Blanco, E.; Zia, M. Green synthesis of hematite (a-Fe2O3) nanoparticles using Rhus punjabensis extract and their biomedical prospect in pathogenic diseases and cancer. J. Mol. Struct. 2019, 1185, 1–7. [Google Scholar] [CrossRef]
- Bhagat, M.; Anand, R.; Datt, R.; Gupta, V.; Arya, S. Green Synthesis of Silver Nanoparticles Using Aqueous Extract of Rosa brunonii Lindl and Their Morphological, Biological and Photocatalytic Characterizations. J. Inorg. Organomet. Polym. Mater. 2019, 29, 1039–1047. [Google Scholar] [CrossRef]
- Da’na, E.; Taha, A.; Afkar, E. Green Synthesis of Iron Nanoparticles by Acacia nilotica Pods Extract and Its Catalytic, Adsorption, and Antibacterial Activities. Appl. Sci. 2018, 8, 1922. [Google Scholar] [CrossRef]
- Saheed, Y. Antifungal Potential of silver nanoparticles from Acacia nilotica pod against Dermatophytes. J. Drug Deliv. Ther. 2021, 11, 85–95. [Google Scholar] [CrossRef]
- Kotakadi, V.S.; Gaddam, S.A.; Venkata, S.K.; Prasad, T.N.; Sai Gopal, D.V. Ficus fruit-mediated biosynthesis of silver nanoparticles and their antibacterial activity against antibiotic resistant E. coli strains. Curr. Nanosci. 2015, 11, 527–538. [Google Scholar] [CrossRef]
- Swarnavalli, G.C.; Dinakaran, S.; Raman, N.; Jegadeesh, R.; Pereira, C. Bio inspired synthesis of monodispersed silver nano particles using Sapindus emarginatus pericarp extract: Study of antibacterial efficacy. J. Saudi Chem. Soc. 2015, 21, 172–179. [Google Scholar] [CrossRef]
- Niluxsshun, M.C.D.; Masilamani, K.; Mathiventhan, U. Green Synthesis of Silver Nanoparticles from the Extracts of Fruit Peel of Citrus tangerina, Citrus sinensis, and Citrus limon for Antibacterial Activities. Bioinorg. Chem. Appl. 2021, 6695734. [Google Scholar] [CrossRef]
- Heydari, R.; Rashidipour, M. Green Synthesis of Silver Nanoparticles Using Extract of Oak Fruit Hull (Jaft): Synthesis and In Vitro Cytotoxic Effect on MCF-7 Cells. Int. J. Breast Cancer 2015, 2015, 846743. [Google Scholar] [CrossRef] [PubMed]
- Velmurugan, P.; Lee, S.; Iydroose, M.; Lee, K.; Oh, B. Pine cone-mediated green synthesis of silver nanoparticles and their antibacterial activity against agricultural pathogens. Appl. Microbiol. Biotechnol. 2013, 97, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Rautela, A.; Rani, J.; Debnath, M. Green synthesis of silver nanoparticles from Tectona grandis seeds extract: Characterization and mechanism of antimicrobial action on different microorganisms. J. Anal. Sci. Technol. 2019, 10, 5. [Google Scholar] [CrossRef]
- Veisi, H.; Hemmati, S.; Qomi, M. Aerobic oxidation of benzyl alcohols through biosynthesized palladium nanoparticles mediated by Oak fruit bark extract as an efficient heterogeneous nanocatalyst. Tetrahedron Lett. 2017, 58, 4191–4196. [Google Scholar] [CrossRef]
- Baghkheirati, E.K.; Bagherieh-Najjar, M.; Fadafan, H.; Abdolzadeh, A. Synthesis and antibacterial activity of stable bio-conjugated nanoparticles mediated by walnut (Juglans regia) green husk extract. J. Exp. Nanosci. 2016, 11, 512–517. [Google Scholar] [CrossRef]
- Sorbiun, M.; Mehr, E.; Ramazani, A.; Fardood, S. Green Synthesis of Zinc Oxide and Copper Oxide Nanoparticles Using Aqueous Extract of Oak Fruit Hull (Jaft) and Comparing their Photocatalytic Degradation of Basic Violet 3. Int. J. Environ. Res. 2018, 12, 29–37. [Google Scholar] [CrossRef]
- Edison, T.N.J.; Sethuraman, M.J. Electrocatalytic Reduction of Benzyl Chloride by Green Synthesized Silver Nanoparticles Using Pod Extract of Acacia nilotica. ACS Sustain. Chem. Eng. 2013, 1, 1326–1332. [Google Scholar] [CrossRef]
- Veisi, H.; Hemmati, S.; Shirvani, H.; Veisi, H. Green synthesis and characterization of monodispersed silver nanoparticles obtained using oak fruit bark extract and their antibacterial activity. Appl. Organometalic Chem. 2016, 30, 387–391. [Google Scholar] [CrossRef]
- Ramesh, S.; Vinitha, U.G.; Anthony, S.P.; Muthuraman, M.S. Pods of Acacia nilotica mediated synthesis of copper oxide nanoparticles and it’s in vitro biological applications. Mater. Today Proc. 2021, 47, 751–756. [Google Scholar] [CrossRef]
- Hossain, A.; Abdallah, Y.; Ali, M.; Masum, M.; Bin Li, B.; Sun, G.; Meng, Y.; Wang, Y.; An, Q. Lemon-Fruit-Based Green Synthesis of Zinc Oxide Nanoparticles and Titanium Dioxide Nanoparticles against Soft Rot Bacterial Pathogen Dickeya dadantii. Biomolecules 2019, 9, 863. [Google Scholar] [CrossRef]
- Muralidharan, V.A.; Ramesh, S.; Muthukrishnan, L. Facile fabrication of Annona squamosa L. seed extract mediated silver nanoparticles challenged against biofilm forming oral pathogens. Plant Nano Biol. 2023, 3, 100023. [Google Scholar]
- Edison, T.N.J.; Atchudan, R.; Sethuraman, M.; Lee, Y. Reductive-degradation of carcinogenic azo dyes using Anacardium occidentale testa derived silver nanoparticles. J. Photochem. Photobiol. B Biol. 2016, 162, 604–610. [Google Scholar] [CrossRef] [PubMed]
- Mehnath, S.; Sathishkumar, G.; Arivoli, A.; Rajan, M.; Praphakar, R.; Jeyaraj, M. Green synthesis of AgNPs by Walnut seed extract and its role in photocatalytic degradation of a textile dye effluent. Trans. Eng. Sci. 2017, 5, 31–40. [Google Scholar]
- Venkateswarlu, P.; Ankanna, S.; Prasad, T.N.; Elumalai, E.K.; Nagajyothi, P.C.; Savithramma, N. Green synthesis of silver nanoparticles using shorea tumbuggaia stem bark. Int. J. Drug Dev. Res. 2010, 2, 720–723. [Google Scholar]
- Saheed, Y.; Umar, A.F.; Iliyasu, M.Y. Potential of Silver Nano Particles Synthesized from Ficus sycomorus Linn Against Multidrug Resistant Shigella species Isolated from Clinical Specimens. Am. J. Life Sci. 2020, 8, 82–90. [Google Scholar]
- Arya, G.; Kumari, R.M.; Gupta, N.; Kumar, A.; Chandra, R.; Nimesh, S. Green synthesis of silver nanoparticles using Prosopis juliflora bark extract: Reaction optimization, antimicrobial and catalytic activities. Artif. Cells Nanomed. Biotechnol. 2018, 46, 985–993. [Google Scholar] [CrossRef]
- Shah, Z.; Hassan, S.; Shaheen, K.; Khan, S.A.; Gul, T.; Anwar, Y.; Al-shaeri, M.A.; Khan, M.; Khan, R.; Haleem, M.A.; et al. Synthesis of AgNPs coated with secondary metabolites of Acacia nilotica: An efficient antimicrobial and detoxification agent for environmental toxic organic pollutants. Mater. Sci. Eng. C 2020, 111, 110829. [Google Scholar] [CrossRef]
- Nayak, D.; Ashe, S.; Rauta, P.R.; Kumari, M.; Nayak, B. Bark extract mediated green synthesis of silver nanoparticles: Evaluation of antimicrobial activity and antiproliferative response against osteosarcoma. Mater. Sci. Eng. C 2016, 58, 44–52. [Google Scholar] [CrossRef]
- Ahmed, Q.; Gupta, N.; Kumar, A.; Nimesh, S. Antibacterial efficacy of silver nanoparticles synthesized employing Terminalia arjuna bark extract. Artif. Cells Nanomed. Biotechnol. 2017, 45, 1192–1200. [Google Scholar] [CrossRef]
- Savithramma, N.; Ankanna, S.; Bhumi, G. Effect of nanoparticles on seed germination and seedling growth of Boswellia ovalifoliolata—An endemic and endangered medicinal tree taxon. Nano Vis. 2012, 2, 61–68. [Google Scholar]
- Iravani, S.; Zolfaghari, B. Green Synthesis of Silver Nanoparticles Using Pinus eldarica Bark Extract. BioMed Res. Int. 2013, 2013, 639725. [Google Scholar] [CrossRef] [PubMed]
- Travasarou, A.; Angelopoulou, M.; Vougogiannopoulou, K.; Papadopoulou, A.; Aligiannis, N.; Cantrell, C.L.; Kletsas, D.; Fokialakis, N.; Pratsinis, H. Bioactive Metabolites of the Stem Bark of Strychnos aff. darienensis and Evaluation of their Antioxidant and UV Protection Activity in Human Skin Cell Cultures. Cosmetics 2019, 6, 7. [Google Scholar] [CrossRef]
- Yin, M.L.; Li, C.; Wang, Y.; Fu, J.; Sun, Y.; Zhang, Q. Comparison analysis of metabolite profiling in seeds and bark of Ulmus parvifolia, a Chinese medicine species. Plant Signal. Behav. 2022, 17, e2138041. [Google Scholar] [CrossRef]
- Leutcha, P.; Jouda, J.; Tankeu, V.; Magnibou, L.; Wahab, A.; Choudhry, M.; Lannang, A. Secondary metabolites from the stem bark of Stereospermum acuminatissimum and their antimicrobial activity. Biochem. Syst. Ecol. 2023, 109, 104648. [Google Scholar] [CrossRef]
- Sadgrove, N.J.; Mitaine-Offer, A.; Khumalo, G.; Van Wyk, B. An overview of the phytochemistry of medicinal bark (trunk, stem or root) from the most popular southern African species. Phytochem. Rev. 2025. [Google Scholar] [CrossRef]
- Bharali, P.; Das, S.; Bhandari, N.; Das, A.K.; Kalta, M.C. Sunlight induced biosynthesis of silver nanoparticle from the bark extract of Amentotaxus assamica D.K. Ferguson and its antibacterial activity against Escherichia coli and Staphylococcus aureus. IET Nanobiotechnology 2019, 13, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Guidelli, E.J.; Ramos, A.P.; Zaniquelli, M.E.; Baffa, O. Green synthesis of colloidal silver nanoparticles using natural rubber latex extracted from Hevea brasiliensis. Spectrochim. Acta Part A 2011, 82, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Kora, A.J.; Beedu, S.R.; Jayaraman, A. Size-controlled green synthesis of silver nanoparticles mediated by gum ghatti (Anogeissus latifolia) and its biological activity. Org. Med. Chem. Lett. 2012, 2, 17. [Google Scholar] [CrossRef]
- Mohamed, N.H.; Ismail, M.A.; Abdel-Mageed, W.M.; Shoreit, A.A. Antimicrobial activity of latex silver nanoparticles using Calotropis procera. Asian Pac. J. Trop. Biomed. 2014, 4, 876–883. [Google Scholar] [CrossRef]
- Salem, W.M.; Haridy, M.; Sayed, W.F.; Hassan, N.H. Antibacterial activity of silver nanoparticles synthesized from latex and leaf extract of Ficus sycomorus. Ind. Crops Prod. 2014, 62, 228–234. [Google Scholar] [CrossRef]
- Khatami, M.; Mortazavi, S.; Kishani-Farahani, Z.; Abbas Amini, A.; Amini, E.; Heli, H. Biosynthesis of Silver Nanoparticles Using Pine Pollen and Evaluation of the Antifungal Efficiency. Iran. J. Biotech. 2017, 15, e1436. [Google Scholar] [CrossRef] [PubMed]
- Oves, M.; Aslam, M.; Rauf, M.; Qayyum, S.; Qari, H.; Khan, M.S.; Alam, M.Z.; Tabrez, S.; Pugazhendhi, A.; Ismail, I.M. Antimicrobial and anticancer activities of silver nanoparticles synthesized from the root hair extract of Phoenix dactylifera. Mater. Sci. Eng. C 2018, 89, 429–443. [Google Scholar] [CrossRef]
- Escarcega-Gonzalez, C.E.; Garza-Cervantes, J.A.; Vazques-Rodriques, A.; Montelongo-Peralta, L.Z.; Treviño-Gonzalez, M.T.; Castro, E.D.B.; Saucedo-Salazar, E.M.; Morales, R.M.C.; Regalado-Soto, D.I.; Treviño-González, F.M.; et al. In vivo antimicrobial activity of silver nanoparticles produced via a green chemistry synthesis using Acacia rigidula as a reducing and capping agent. Int. J. Nanomed. 2018, 13, 2349–2363. [Google Scholar] [CrossRef]
- Jonoobi, M.; Khazaeian, A.; Tahir, P.; Azry, S.; Oksman, K. Characteristics of cellulose nanofibers isolated from rubberwood and empty fruit bunches of oil palm using chemo-mechanical process. Cellulose 2011, 18, 1085–1095. [Google Scholar] [CrossRef]
- Sheltami, R.M.; Abdullah, I.; Ahmad, I.; Dufresne, A.; Kargarzadeh, H. Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius). Carbohydr. Polym. 2012, 88, 772–779. [Google Scholar] [CrossRef]
- Karimirad, R.; Behnamian, M.; Dezhsetan, S.; Sonnenberg, A. Chitosan nanoparticles-loaded Citrus aurantium essential oil: A novel delivery system for preserving the postharvest quality of Agaricus bisporus. J. Sci. Food Agric. 2018, 98, 5112–5119. [Google Scholar] [CrossRef]
- Babali, N.; Nadaroglu, H.; Taki Demir, T.; Alayli, A. Use of Nano-iron Fertilizer Additive Produced by Green Synthesis in Flame Tree (Photinia frasserii) and Smoke Tree (Cotinus coggyria) Cultivation. Indones. J. Soc. Environ. Issues 2024, 5, 182–191. [Google Scholar]
- Schneider, G.F.; Diego Salazar, D.; Hildreth, S.; Helm, R.; Whitehead, S. Comparative Metabolomics of Fruits and Leaves in a Hyperdiverse Lineage Suggests Fruits Are a Key Incubator of Phytochemical Diversification. Front. Plant Sci. 2021, 12, 693739. [Google Scholar] [CrossRef] [PubMed]
- Demirel Bayik, G.; Baykal, B. Impact of Plant Species on the Synthesis and Characterization of Biogenic Silver Nanoparticles: A Comparative Study of Brassica oleracea, Corylus avellana, and Camellia sinensis. Nanomaterials 2024, 14, 1954. [Google Scholar] [CrossRef]
- Ogwu, M.C.; Izah, S.C.; Joshua, M.T. Ecological and environmental determinants of phytochemical variability in forest trees. Phytochem. Rev. 2025. [Google Scholar] [CrossRef]
- Ray, P.C.; Yu, H.; Fu, P.P. Toxicity and environmental risks of nanomaterials: Challenges and future needs. J. Environ. Sci. Health Part C 2009, 27, 1–35. [Google Scholar] [CrossRef] [PubMed]
- Rim, K.T.; Song, S.W.; Kim, H.Y. Oxidative DNA damage from nanoparticle exposure and its application to workers’ health: A literature review. Saf. Health Work 2013, 4, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Kumah, E.A.; Fopa, R.D.; Harati, S.; Boadu, P.; Zohoori, F.V.; Pak, T. Human and environmental impacts of nanoparticles: A scoping review of the current literature. BMC Public Health 2023, 23, 1059. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Desimone, M.F.; Pandya, S.; Jasani, S.; George, N.; Adnan, M.; Aldarhami, A.; Bazaid, A.; Alderhami, S. Revisiting the Green Synthesis of Nanoparticles: Uncovering Influences of Plant Extracts as Reducing Agents for Enhanced Synthesis Efficiency and Its Biomedical Applications. Int. J. Nanomed. 2023, 18, 4727–4750. [Google Scholar] [CrossRef]
- Zikeli, F.; Vinciguerra, V.; D’Annibale, A.; Capitani, D.; Romagnoli, M.; Scarascia Mugnozza, G. Preparation of Lignin Nanoparticles from Wood Waste for Wood Surface Treatment. Nanomaterials 2019, 9, 281. [Google Scholar] [CrossRef]
- Patino-Ruiz, D.A.; Meramo-Hurtado, S.I.; Gonzalez-Delgado, A.D.; Herrera, A. Environmental sustainability evaluation of iron oxide nanoparticles synthesized via green synthesis and the coprecipitation method: A comparative life cycle assessment study. ACS Omega 2021, 6, 12410–12423. [Google Scholar] [CrossRef]
Tree Species/Part Used | Tree Family | Main Chemical Substrate Used for Nanomaterial Synthesis | Nanoparticles (NPs)/ Size of NPs | Applications of NPs | Reference |
---|---|---|---|---|---|
Acacia nilotica/pods | Mimosaceae | Silver nitrate (AgNO3) solution | Silver nanoparticles (Ag NPs) ˂100 nm |
| [93] |
Ficus benghalensis/fruit | Moraceae | AgNO3 | Ag NPs 70–90 nm |
| [94] |
Sapindus emarginatus/pericarp | Sapindaceae | AgNO3 | Silver nanoparticles 5–20 nm |
| [95] |
Acacia nilotica/pod | Mimosaceae | AgNO3 | Ag NPs 20–30 nm |
| [103] |
Acacia nilotica/pods | Mimosaceae | Ferrous sulfate (FeSO4·7H2O), Methyl Orange (MO), and NaOH | Iron nanoparticles (Fe NPs) 39 nm |
| [92] |
Parkia speciosa/pod extract | Mimosaceae | SnCl4·5H2O | SnO2 quantum dots 1.9 nm |
| [45] |
Citrus limon, Citrus sinensis, and Citrus tangerina/fruit peel | Rutaceae | AgNO3 | Ag NPs 10–70 nm for C. limon, 5–80 nm for C. tangerina, and 10–50 nm for C. sinensis |
| [96] |
Oak (Quercus spp.)/ fruit bark extract | Fagaceae | AgNO3 | Ag NPs 20–25 nm |
| [104] |
Oak (Quercus spp.)/ fruit bark extract | Fagaceae | PdCl2 | Palladium nanoparticles (Pd NPs) 5–7 nm |
| [100] |
Oak (Quercus spp.)/ fruit hull | Fagaceae | AgNO3 | Ag NPs 40 nm |
| [97] |
Acacia nilotica/pods | Mimosaceae | Copper nitrate | Copper oxide nanoparticles (CuO NPs) 1–100 nm |
| [105] |
Lemon (Citrus limon)/fruit | Rutaceae | Not included | ZnO NPs 60.8 nm and TiO2 NPs 41.5 nm |
| [106] |
Oak (Quercus spp.)/ fruit hull | Fagaceae | Zinc acetate dihydrate and copper(II) acetate monohydrate | ZnO and CuO nanoparticles 34 nm |
| [102] |
Oak (Quercus spp.)/ fruit hull | Fagaceae | AgNO3 and Zn(CH3COO)2·2H2O | Ag NPs, ZnO NPs, and bimetallic silver/zinc oxide nanoparticles (Ag/ZnO NPs) 57 nm for Ag NPs, 34 nm for ZnO, and 19.2 for Ag/ZnO |
| [44] |
Pine (Pinus spp.)/ cone extract | Pinaceae | AgNO3 | Ag NPs |
| [98] |
Walnut (Juglans regia)/ fruit husk extract | Juglandaceae | AgNO3 | Silver chloride nanoparticles (AgCl NPs) 4–30 nm |
| [101] |
Annona squamosa/seeds | Annonaceae | AgNO3 | Ag NPs 20–57 nm |
| [107] |
Anacardium occidentale/seed testa | Anacardiaceae | AgNO3 | Ag NPs 25 nm |
| [108] |
Teak (Tectona grandis)/seeds | Verbenaceae | AgNO3 | Ag NPs 10–30 nm |
| [99] |
Walnut (Juglans regia L.)/ seed extract | Juglandaceae | AgNO3 | Ag NPs 80–90 nm |
| [109] |
Tree Species/Part Used | Tree Family | Main Chemical Substrate Used for Nanomaterial Synthesis | Nanoparticles (NPs)/ Size of NPs | Applications of NPs | Reference |
---|---|---|---|---|---|
Boswellia ovalifoliolata/stem bark | Burseraceae | Silver nitrate (AgNO3) solution | Silver nanoparticles (Ag NPs) 30–40 nm |
| [116] |
Acacia nilotica/stem | Mimosaceae | AgNO3 | Ag NPs 2–43 nm |
| [113] |
Ficus sycomorus/stem bark | Moraceae | AgNO3 | Ag NPs 30–75 nm |
| [111] |
Shorea tumbuggaia/stem bark | Dipterocarpaceae | AgNO3 | Ag NPs 40 nm |
| [110] |
Amentotaxus assamica/bark | Taxaceae | AgNO3 | Ag NPs 100 nm |
| [122] |
Acacia nilotica/bark | Mimosaceae | AgNO3 | Ag NPs 20–50 nm |
| [46] |
Dillenia indica/bark | Dilleniaceae | AgNO3 | Ag NPs 15–35 nm |
| [43] |
Prosopis juliflora/bark | Mimosaceae | AgNO3 | Ag NPs 10–50 nm |
| [112] |
Terminalia arjuna/bark | Combretaceae | AgNO3 | Ag NPs 30–50 nm |
| [115] |
Terminalia cuneata/bark | Combretaceae | AgNO3 | Ag NPs 25–50 nm |
| [42] |
Acacia leucophloea/bark | Mimosaceae | AgNO3 | Ag NPs 17–29 nm |
| [7] |
Ficus benghalensis and Azadirachta indica/bark | Moraceae and Meliaceae | AgNO3 | Ag NPs 85.95 nm for F. benghalensis and 90.13 nm for A. indica |
| [114] |
Pinus eldarica/bark extract | Pinaceae | AgNO3 | Ag NPs 10–40 nm |
| [117] |
Tree Species/Part Used | Tree Family | Chemical Substrate Used for NP Synthesis | Nanoparticles (NPs)/ Size of NPs | Applications of NPs | Reference |
---|---|---|---|---|---|
Gum ghatti (Anogeissus latifolia)/gum | Combretaceae | Silver nitrate (AgNO3) solution | Silver nanoparticles (Ag NPs) 5.7 nm |
| [124] |
Ficus sycomorus/latex and leaf | Moraceae | AgNO3 | Ag NPs ≤20 nm for leaves and ≤100 nm for latex |
| [126] |
Calotropis procera/serum latex | Asclepiadaceae | AgNO3 | Ag NPs 4–25 nm |
| [125] |
Hevea brasiliensis/rubber latex | Euphorbiaceae | AgNO3 | Ag NPs 2–100 nm |
| [123] |
Citrus aurantium/oil | Rutaceae | Chitosan and glacial acetic acid | Citrus aurantium essential oil-loaded chitosan nanoparticles (CAEO-CS NPs) 20–60 nm |
| [132] |
Pine (Pinus spp.)/pollen | Pinaceae | AgNO3 | Ag NPs 12 nm |
| [127] |
Phoenix dactylifera/root extracts | Palmae | AgNO3 | Ag NPs 15–40 nm |
| [128] |
Acacia rigidula/stems and roots | Mimosaceae | AgNO3 | Ag NPs 6–66 nm |
| [129] |
Screw pine (Pandanus tectorius)/leaf cellulose | Pandanaceae | H2SO4 solution | Cellulose nanocrystals 5–25 nm |
| [131] |
Rubberwood (Hevea brasiliensis)/stem fiber and oil palm (Elaeis guineensis)/fruit pulp | Euphorbiaceae and Palmae | Chemo-mechanical processes | Cellulose nanofibers 10–90 nm for H. brasiliensis and 5–40 nm for E. guineensis |
| [130] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siam, A.M.J.; Abu-Zurayk, R.; Siam, N.; Abdelkheir, R.M.; Shibli, R. Forest Tree and Woody Plant-Based Biosynthesis of Nanoparticles and Their Applications. Nanomaterials 2025, 15, 845. https://doi.org/10.3390/nano15110845
Siam AMJ, Abu-Zurayk R, Siam N, Abdelkheir RM, Shibli R. Forest Tree and Woody Plant-Based Biosynthesis of Nanoparticles and Their Applications. Nanomaterials. 2025; 15(11):845. https://doi.org/10.3390/nano15110845
Chicago/Turabian StyleSiam, Abubakr M. J., Rund Abu-Zurayk, Nasreldeen Siam, Rehab M. Abdelkheir, and Rida Shibli. 2025. "Forest Tree and Woody Plant-Based Biosynthesis of Nanoparticles and Their Applications" Nanomaterials 15, no. 11: 845. https://doi.org/10.3390/nano15110845
APA StyleSiam, A. M. J., Abu-Zurayk, R., Siam, N., Abdelkheir, R. M., & Shibli, R. (2025). Forest Tree and Woody Plant-Based Biosynthesis of Nanoparticles and Their Applications. Nanomaterials, 15(11), 845. https://doi.org/10.3390/nano15110845