Exploring Photocatalytic, Antimicrobial and Antioxidant Efficacy of Green-Synthesized Zinc Oxide Nanoparticles
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phytochemical Screening
2.2. Biosynthesis Mechanism
2.3. UV–Visible Spectroscopy
2.4. FTIR Analysis
2.5. XRD Study
2.6. SEM and EDS Analysis
2.7. Antimicrobial Activity
2.8. Assessment of Antioxidant Characteristics
2.9. Photocatalytic MB Dye Degradation
3. Materials and Methods
3.1. Plant Components and Chemicals
3.2. Preparation of Aloe vera Leaf Extracts
3.3. Phytochemical Screening of Extract of Aloe vera
3.4. Av-ZnO Synthesis
3.5. Characterization of Av-ZnO NPs
3.6. Preparation of Microbial Culture Media
3.6.1. Preparation of MH Media Plates
3.6.2. Antimicrobial Assay Protocol
3.7. Evaluation of Antioxidant Potential Through DPPH Radical Scavenging Assay
3.8. Photocatalytic Study
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, Applications and Toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
- Murthy, H.C.A.; Desalegn, T.; Kassa, M.; Abebe, B.; Assefa, T. Synthesis of Green Copper Nanoparticles Using Medicinal Plant Hagenia Abyssinica (Brace) JF. Gmel. Leaf Extract: Antimicrobial Properties. J. Nanomater. 2020, 2020, 3924081. [Google Scholar] [CrossRef]
- Joudeh, N.; Linke, D. Nanoparticle Classification, Physicochemical Properties, Characterization, and Applications: A Comprehensive Review for Biologists. J. Nanobiotechnol. 2022, 20, 262. [Google Scholar] [CrossRef]
- Mahendra Kumar, S.; Rajni, Y.; Sandeep Prasad, T. Recent Advances in Nanotechnology. Int. J. Nanomater. Nanotechnol. Nanomed. 2023, 9, 015–023. [Google Scholar] [CrossRef]
- Kc, B.R.; Kumar, D.; Bastakoti, B.P. Enhancing Electrocatalytic Performance of RuO2 -Based Catalysts: Mechanistic Insights, Strategic Approaches, and Recent Advances. J. Phys. Energy 2025, 7, 022001. [Google Scholar] [CrossRef]
- Ganguly, S.; Sengupta, J. Green Synthesis of Metal Oxide Nanoparticles. In Handbook of Green and Sustainable Nanotechnology; Shanker, U., Hussain, C.M., Rani, M., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 1–26. [Google Scholar] [CrossRef]
- Kadiyala, U.; Kotov, N.A.; VanEpps, J.S. Antibacterial Metal Oxide Nanoparticles: Challenges in Interpreting the Literature. Curr. Pharm. Des. CPD 2018, 24, 896–903. [Google Scholar] [CrossRef]
- Kanwar, M.K.; Sun, S.; Chu, X.; Zhou, J. Impacts of Metal and Metal Oxide Nanoparticles on Plant Growth and Productivity. In Nanomaterials and Plant Potential; Husen, A., Iqbal, M., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 379–392. [Google Scholar] [CrossRef]
- Kc, B.R.; Kumar, D.; Bastakoti, B.P. Block Copolymer-Mediated Synthesis of TiO2/RuO2 Nanocomposite for Efficient Oxygen Evolution Reaction. J. Mater. Sci. 2024, 59, 10193–10206. [Google Scholar] [CrossRef]
- Singh, K.; Neha; Kumar, M.; Singh, H.; Singh, G. ZnO NPs: Photocatalytic Potential, Mechanistic Insights, Favorable Parameters and Challenges. Mater. Today Proc. 2023, S2214785323010441. [Google Scholar] [CrossRef]
- Irede, E.L.; Awoyemi, R.F.; Owolabi, B.; Aworinde, O.R.; Kajola, R.O.; Hazeez, A.; Raji, A.A.; Ganiyu, L.O.; Onukwuli, C.O.; Onivefu, A.P.; et al. Cutting-Edge Developments in Zinc Oxide Nanoparticles: Synthesis and Applications for Enhanced Antimicrobial and UV Protection in Healthcare Solutions. RSC Adv. 2024, 14, 20992–21034. [Google Scholar] [CrossRef]
- Mousa, S.A.; Wissa, D.A.; Hassan, H.H.; Ebnalwaled, A.A.; Khairy, S.A. Enhanced Photocatalytic Activity of Green Synthesized Zinc Oxide Nanoparticles Using Low-Cost Plant Extracts. Sci. Rep. 2024, 14, 16713. [Google Scholar] [CrossRef]
- Jha, S.; Rani, R.; Singh, S. Biogenic Zinc Oxide Nanoparticles and Their Biomedical Applications: A Review. J. Inorg. Organomet. Polym. 2023, 33, 1437–1452. [Google Scholar] [CrossRef]
- Lal, R.; Gour, T.; Dave, N.; Singh, N.; Yadav, J.; Khan, A.; Jain, A.; Agarwal, L.K.; Sharma, Y.K.; Sharma, K. Green Route to Fabrication of Semal-ZnO Nanoparticles for Efficient Solar-Driven Catalysis of Noxious Dyes in Diverse Aquatic Environments. Front. Chem. 2024, 12, 1370667. [Google Scholar] [CrossRef] [PubMed]
- Strachowski, T.; Baran, M.; Małek, M.; Kosturek, R.; Grzanka, E.; Mizeracki, J.; Romanowska, A.; Marynowicz, S. Hydrothermal Synthesis of Zinc Oxide Nanoparticles Using Different Chemical Reaction Stimulation Methods and Their Influence on Process Kinetics. Materials 2022, 15, 7661. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yang, C.; Liu, Y.; Fan, Y.; Dang, F.; Qiu, Y.; Zhou, H.; Wang, W.; Liu, Y. Solvothermal Synthesis of ZnO Nanoparticles for Photocatalytic Degradation of Methyl Orange and P-Nitrophenol. Water 2021, 13, 3224. [Google Scholar] [CrossRef]
- Taka, G.; Das, T.D. Synthesis of ZnO Nanoparticles through a Simple Wet Chemical Precipitation Method. IOP Conf. Ser. Earth Environ. Sci. 2022, 1042, 012017. [Google Scholar] [CrossRef]
- Saloga, P.E.J.; Thünemann, A.F. Microwave-Assisted Synthesis of Ultrasmall Zinc Oxide Nanoparticles. Langmuir 2019, 35, 12469–12482. [Google Scholar] [CrossRef]
- Alishah, H.; Pourseyedi, S.; Ebrahimipour, S.Y.; Mahani, S.E.; Rafiei, N. Green Synthesis of Starch-Mediated CuO Nanoparticles: Preparation, Characterization, Antimicrobial Activities and in Vitro MTT Assay against MCF-7 Cell Line. Rend. Fis. Acc. Lincei 2017, 28, 65–71. [Google Scholar] [CrossRef]
- Mohammadi, S.; Pourseyedi, S.; Amini, A. Green Synthesis of Silver Nanoparticles with a Long Lasting Stability Using Colloidal Solution of Cowpea Seeds (Vigna sp. L). J. Environ. Chem. Eng. 2016, 4, 2023–2032. [Google Scholar] [CrossRef]
- Mensah, E.O.; Adadi, P.; Asase, R.V.; Kelvin, O.; Mozhdehi, F.J.; Amoah, I.; Agyei, D. Aloe vera and Its Byproducts as Sources of Valuable Bioactive Compounds: Extraction, Biological Activities, and Applications in Various Food Industries. PharmaNutrition 2025, 31, 100436. [Google Scholar] [CrossRef]
- Gudkov, S.V.; Burmistrov, D.E.; Serov, D.A.; Rebezov, M.B.; Semenova, A.A.; Lisitsyn, A.B. A Mini Review of Antibacterial Properties of ZnO Nanoparticles. Front. Phys. 2021, 9, 641481. [Google Scholar] [CrossRef]
- Halim, O.M.A.; Mustapha, N.H.; Mohd Fudzi, S.N.; Azhar, R.; Zanal, N.I.N.; Nazua, N.F.; Nordin, A.H.; Mohd Azami, M.S.; Mohd Ishak, M.A.; Ismail, W.I.N.W.; et al. A Review on Modified ZnO for the Effective Degradation of Methylene Blue and Rhodamine B. Results Surf. Interfaces 2025, 18, 100408. [Google Scholar] [CrossRef]
- Vyas, A.; Ng, S.; Fu, T.; Anum, I. ZnO-Embedded Carboxymethyl Cellulose Bioplastic Film Synthesized from Sugarcane Bagasse for Packaging Applications. Polymers 2025, 17, 579. [Google Scholar] [CrossRef] [PubMed]
- Chong, W.J.; Shen, S.; Li, Y.; Trinchi, A.; Pejak Simunec, D.; Kyratzis, I.; Sola, A.; Wen, C. Biodegradable PLA-ZnO Nanocomposite Biomaterials with Antibacterial Properties, Tissue Engineering Viability, and Enhanced Biocompatibility. Smart Mater. Manuf. 2023, 1, 100004. [Google Scholar] [CrossRef]
- Zhu, X.; Li, H.; Cai, L.; Wu, Y.; Wang, J.; Xu, S.; Wang, S.; Wang, H.; Wang, D.; Chen, J. ZnO Nanoparticles Encapsulated Cellulose-Lignin Film for Antibacterial and Biodegradable Food Packaging. iScience 2024, 27, 110008. [Google Scholar] [CrossRef] [PubMed]
- Kryuchkov, M.; Adamcik, J.; Katanaev, V.L. Bactericidal and Antiviral Bionic Metalized Nanocoatings. Nanomaterials 2022, 12, 1868. [Google Scholar] [CrossRef]
- Khadka, D.; Bista, P.; Baral, J.; Gautam, S.K.; Bastakoti, B.P.; Poudel, B.R.; Pokhrel, M.R. Green Synthesis of Zinc Oxide Nanoparticles Using Swertia Chirayita for Photocatalytic and Antimicrobial Activity. J. Inst. Sci. Technol. 2025, 30, 45–56. [Google Scholar] [CrossRef]
- Baral, J.; Pokharel, N.; Dhungana, S.; Tiwari, L.; Khadka, D.; Pokhrel, M.R.; Poudel, B.R. Green Synthesis of Copper Oxide Nanoparticles Using Mentha (Mint) Leaves Characterization and Its Antimicrobial Properties with Phytochemicals Screening. J. Nepal. Chem. Soc. 2025, 45, 111–121. [Google Scholar] [CrossRef]
- Kancherla, N.; Dhakshinamoothi, A.; Chitra, K.; Komaram, R.B. Preliminary Analysis of Phytoconstituents and Evaluation of Anthelminthic Property of Cayratia Auriculata (In Vitro). Maedica 2019, 14, 350. [Google Scholar] [CrossRef]
- Abdelbaky, A.S.; Mohamed, A.M.H.A.; Sharaky, M.; Mohamed, N.A.; Diab, Y.M. Green Approach for the Synthesis of ZnO Nanoparticles Using Cymbopogon Citratus Aqueous Leaf Extract: Characterization and Evaluation of Their Biological Activities. Chem. Biol. Technol. Agric. 2023, 10, 63. [Google Scholar] [CrossRef]
- Singh, B.N.; Rawat, A.K.S.; Khan, W.; Naqvi, A.H.; Singh, B.R. Biosynthesis of Stable Antioxidant ZnO Nanoparticles by Pseudomonas Aeruginosa Rhamnolipids. PLoS ONE 2014, 9, e106937. [Google Scholar] [CrossRef]
- Shaikhaldein, H.O.; Al-Qurainy, F.; Khan, S.; Nadeem, M.; Tarroum, M.; Salih, A.M.; Gaafar, A.-R.Z.; Alshameri, A.; Alansi, S.; Alenezi, N.A.; et al. Biosynthesis and Characterization of ZnO Nanoparticles Using Ochradenus Arabicus and Their Effect on Growth and Antioxidant Systems of Maerua Oblongifolia. Plants 2021, 10, 1808. [Google Scholar] [CrossRef]
- Vindhya, P.S.; Suresh, S.; Kunjikannan, R.; Kavitha, V.T. Antimicrobial, Antioxidant, Cytotoxicity and Photocatalytic Performance of Co Doped ZnO Nanoparticles Biosynthesized Using Annona Muricata Leaf Extract. J. Env. Health Sci. Eng. 2023, 21, 167–185. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Wang, J.; Li, Y.; Liu, Y.; Zhao, W.; Zhang, H.; Liu, S. Comprehensive Enhancement of Photocatalytic H2O2 Generation and Antibacterial Efficacy on Carbon Nitride through a Straightforward Polydopamine Coating Strategy. Surf. Interfaces 2025, 56, 105566. [Google Scholar] [CrossRef]
- Siddique, A.B.; Hossain, R.; Rahman, M.M.; Islam, M.T.; Barua, R.; Hossain, M.S. Optimization of Photodegradation of Crystal Violet Dye and Biomedical Applications of Greenly Synthesized NiO Nanoparticles. Mater. Adv. 2025, 6, 1330–1344. [Google Scholar] [CrossRef]
- Jayeola, K.D.; Adewuyi, B.O.; Oyekunle, J.A.O.; Bakare, B.B. The Design and Characterisation of a Z-Scheme Bi2O2S/ZnO Heterojunction Photoanode for the Photoelectrochemical Removal of Ciprofloxacin in Synthetic and Real Wastewater. Chem. Eng. J. 2024, 479, 147482. [Google Scholar] [CrossRef]
- Mousavi, M.; Habibi-Yangjeh, A.; Abitorabi, M. Fabrication of Novel Magnetically Separable Nanocomposites Using Graphitic Carbon Nitride, Silver Phosphate and Silver Chloride and Their Applications in Photocatalytic Removal of Different Pollutants Using Visible-Light Irradiation. J. Colloid Interface Sci. 2016, 480, 218–231. [Google Scholar] [CrossRef]
- Khadka, D.; Gautam, P.; Dahal, R.; Ashie, M.D.; Paudyal, H.; Ghimire, K.N.; Pant, B.; Poudel, B.R.; Bastakoti, B.P.; Pokhrel, M.R. Evaluating the Photocatalytic Activity of Green Synthesized Iron Oxide Nanoparticles. Catalysts 2024, 14, 751. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, T.; Ji, B.; Chou, Y.; Du, X. Green Synthesis of Zinc Oxide Nanoparticles Using Aloe vera Leaf Extract and Evaluation of the Antimicrobial and Antioxidant Properties of the ZnO/Regenerated Cellulose Film. Cellulose 2024, 31, 4849–4864. [Google Scholar] [CrossRef]
- Anbuvannan, M.; Ramesh, M.; Viruthagiri, G.; Shanmugam, N.; Kannadasan, N. Synthesis, Characterization and Photocatalytic Activity of ZnO Nanoparticles Prepared by Biological Method. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 143, 304–308. [Google Scholar] [CrossRef]
- Assad, N.; Abbas, A.; Fayyaz Ur Rehman, M.; Naeem-ul-Hassan, M. Photo-Catalytic and Biological Applications of Phyto-Functionalized Zinc Oxide Nanoparticles Synthesized Using a Polar Extract of Equisetum Diffusum D. RSC Adv. 2024, 14, 22344–22358. [Google Scholar] [CrossRef]
- Ali, K.; Ahmed, B.; Dwivedi, S.; Saquib, Q.; Al-Khedhairy, A.A.; Musarrat, J. Aloe vera Extract Functionalized Zinc Oxide Nanoparticles as Nanoantibiotics against Multi-Drug Resistant Clinical Bacterial Isolates. J. Colloid Interface Sci. 2016, 472, 145–156. [Google Scholar] [CrossRef]
- Amina, S.J.; Guo, B. A Review on the Synthesis and Functionalization of Gold Nanoparticles as a Drug Delivery Vehicle. Int. J. Nanomed. 2020, 15, 9823–9857. [Google Scholar] [CrossRef] [PubMed]
- MuthuKathija, M.; Sheik Muhideen Badhusha, M.; Rama, V. Green Synthesis of Zinc Oxide Nanoparticles Using Pisonia Alba Leaf Extract and Its Antibacterial Activity. Appl. Surf. Sci. Adv. 2023, 15, 100400. [Google Scholar] [CrossRef]
- Geetha, M.S.; Nagabhushana, H.; Shivananjaiah, H.N. Green Mediated Synthesis and Characterization of ZnO Nanoparticles Using Euphorbia Jatropa Latex as Reducing Agent. J. Sci. Adv. Mater. Devices 2016, 1, 301–310. [Google Scholar] [CrossRef]
- Sathish Kumar, R.; Johnson Jeyakumar, S.; Jothibas, M.; Kartharinal Punithavathy, I.; Prince Richard, J. Influence of Molar Concentration on Structural, Optical and Magnetic Properties of NiO Nanoparticles. J. Mater. Sci. Mater. Electron. 2017, 28, 15668–15675. [Google Scholar] [CrossRef]
- El Faroudi, L.; Saadi, L.; Barakat, A.; Mansori, M.; Abdelouahdi, K.; Solhy, A. Facile and Sustainable Synthesis of ZnO Nanoparticles: Effect of Gelling Agents on ZnO Shapes and Their Photocatalytic Performance. ACS Omega 2023, 8, 24952–24963. [Google Scholar] [CrossRef]
- Mohamed, R.; Anuar, M.S.A. Structural and Electrochemical Behaviors of ZnO Structure: Effect of Different Zinc Precursor Molarity. Condens. Matter 2022, 7, 71. [Google Scholar] [CrossRef]
- Flores, B.; Guzman, M.; Chumpitaz, O.; Flores, S.; Rodriguez, A.; Herrera, J.E. Crystallographic and Optical Properties of ZnO Nanoparticles Prepared by Two Different Methods. Appl. Phys. A 2025, 131, 300. [Google Scholar] [CrossRef]
- Ahammed, K.R.; Rahman, M.M.; Khan, M.Z.H.; Sultana, M.A.; Karim, M.R. Microwave Assisted Synthesis of Zinc Oxide (ZnO) Nanoparticles in a Noble Approach: Utilization for Antibacterial and Photocatalytic Activity. SN Appl. Sci. 2020, 2, 955. [Google Scholar] [CrossRef]
- Kanimozhi, S.; Suresh, S.; Thambidurai, S.; Suresh, N.; Prabu, K.M. Facile Co-Precipitation Assisted Synthesis and Characterization of Zinc Oxide-Tin Oxide Nanocomposites and Their Performance Evaluation as Photoanodes in Dye-Sensitized Solar Cell. Results Chem. 2022, 4, 100615. [Google Scholar] [CrossRef]
- Momoh, J.O.; Kumar, S.; Olaleye, O.N.; Adekunle, O.M.; Aiyelero, T.S. Green Synthesis of Characterized Bio-Functionalized ZnO Nanoparticles from Terminalia catappa (Almond) Methanol Leaf Extract and Their Potential Antioxidant and Antibacterial Properties. Trop. J. Nat. Prod. Res. 2024, 8, 9296. [Google Scholar] [CrossRef]
- Garcia-Rubio, R.; De Oliveira, H.C.; Rivera, J.; Trevijano-Contador, N. The Fungal Cell Wall: Candida, Cryptococcus, and Aspergillus Species. Front. Microbiol. 2020, 10, 2993. [Google Scholar] [CrossRef] [PubMed]
- Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N.H.M.; Ann, L.C.; Bakhori, S.K.M.; Hasan, H.; Mohamad, D. Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nano-Micro Lett. 2015, 7, 219–242. [Google Scholar] [CrossRef] [PubMed]
- Mustak, M.H.; Islam, K.S.; Alam, M.S.; Karim, M.M.; Khan, G.M.A. Revalorization of Coconut Husk Lignin Through ZnO Nanoparticles Synthesis: Antibacterial Assay and Photocatalytic Activities. Waste Biomass Valor. 2024, 16, 1839–1853. [Google Scholar] [CrossRef]
- Haque, M.J.; Bellah, M.M.; Hassan, M.R.; Rahman, S. Comparative Study on ZnO Nanoparticles Synthesized via Two Different Methods: Structural, Antibacterial, Photocatalytic, and Optical Characterization. Nano Ex. 2020, 1, 010007. [Google Scholar] [CrossRef]
- Abdelbaky, A.S.; Abd El-Mageed, T.A.; Babalghith, A.O.; Selim, S.; Mohamed, A.M.H.A. Green Synthesis and Characterization of ZnO Nanoparticles Using Pelargonium Odoratissimum (L.) Aqueous Leaf Extract and Their Antioxidant, Antibacterial and Anti-Inflammatory Activities. Antioxidants 2022, 11, 1444. [Google Scholar] [CrossRef]
- Parajuli, K.; Khanal, L.N.; Gc, G.; Koju, S.; Bhujel, S.; Khadka, D.; Sharma, M.L.; Pant, B.; Poudel, B.R. Lentil-Husk-Mediated Green Synthesis of Silver Nanoparticles: Characterization and Antibacterial Activity. ChemEngineering 2025, 9, 17. [Google Scholar] [CrossRef]
- Sharmila, G.; Thirumarimurugan, M.; Muthukumaran, C. Green Synthesis of ZnO Nanoparticles Using Tecoma Castanifolia Leaf Extract: Characterization and Evaluation of Its Antioxidant, Bactericidal and Anticancer Activities. Microchem. J. 2019, 145, 578–587. [Google Scholar] [CrossRef]
- Ghaffar, S.; Abbas, A.; Naeem-ul-Hassan, M.; Assad, N.; Sher, M.; Ullah, S.; Alhazmi, H.A.; Najmi, A.; Zoghebi, K.; Al Bratty, M.; et al. Improved Photocatalytic and Antioxidant Activity of Olive Fruit Extract-Mediated ZnO Nanoparticles. Antioxidants 2023, 12, 1201. [Google Scholar] [CrossRef]
- Isai, K.A.; Shrivastava, V.S. Photocatalytic Degradation of Methylene Blue Using ZnO and 2%Fe–ZnO Semiconductor Nanomaterials Synthesized by Sol–Gel Method: A Comparative Study. SN Appl. Sci. 2019, 1, 1247. [Google Scholar] [CrossRef]
- Azeez, F.; Altaf, M.; Ahmad, I.; Shahid, M.; Raza, A.; Nazir, A. Surface Charge-Dependent Photocatalytic Degradation of Methylene Blue Using Chargeable Titania Nanoparticles. Sci. Rep. 2018, 8, 7104. [Google Scholar] [CrossRef]
- Vijaya Kumar, P.; Jafar Ahamed, A.; Karthikeyan, M. Chemically and Green Synthesized NiO Nanoparticles: Characterization and Toxicological Comparison in Microbial and MCF-7 Cell Models. SN Appl. Sci. 2019, 1, 1083. [Google Scholar] [CrossRef]
- Purushotham, D.; Banu, N.H.; Kumar, K.S.; Sundar, K.; Harikrishna, S.; Kalaiselvi, S. Green Synthesis of Zinc Oxide Nanoparticles Using Aqueous Extract of Pavonia zeylanica to Mediate Photocatalytic Degradation of Methylene Blue: Studies on Reaction Kinetics, Reusability and Mineralization. Int. J. Mol. Sci. 2025, 26, 4739. [Google Scholar] [CrossRef] [PubMed]
- Shinde, S.S.; Shinde, P.S.; Bhosale, C.H.; Rajpure, K.Y. Zinc Oxide Mediated Heterogeneous Photocatalytic Degradation of Organic Species under Solar Radiation. J. Photochem. Photobiol. B Biol. 2011, 104, 425–433. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, A.M.; Karthikeyan, C.; Loganathan, M.; Ramachandran, R.; Ramesh, M.; Muthuraj, V. Visible Light Driven Photocatalytic and Competent Antioxidant Properties of Phyto-Fabricated Zinc Oxide Nanoparticles (ZnO-NPs) from Borreria hispida. J. Mol. Struct. 2023, 1293, 136152. [Google Scholar] [CrossRef]
- Batra, V.; Kaur, I.; Pathania, D.; Sonu; Chaudhary, V. Efficient Dye Degradation Strategies Using Green Synthesized ZnO-Based Nanoplatforms: A Review. Appl. Surf. Sci. Adv. 2022, 11, 100314. [Google Scholar] [CrossRef]
- Aldalbahi, A.; Alterary, S.; Ali Abdullrahman Almoghim, R.; Awad, M.A.; Aldosari, N.S.; Fahad Alghannam, S.; Nasser Alabdan, A.; Alharbi, S.; Ali Mohammed Alateeq, B.; Abdulrahman Al Mohsen, A.; et al. Greener Synthesis of Zinc Oxide Nanoparticles: Characterization and Multifaceted Applications. Molecules 2020, 25, 4198. [Google Scholar] [CrossRef]
- Selim, Y.A.; Azb, M.A.; Ragab, I.; Abd El-Azim, M.H.M. Green Synthesis of ZnO Nanoparticles Using Deverra tortuosa Aqueous Extract and Evaluation of Their Cytotoxic Activities. Sci. Rep. 2020, 10, 3445. [Google Scholar] [CrossRef]
- Dhungana, S.; Gauli, A.; Tiwari, L.; Khadka, D.; Gautam, S.K.; Pokhrel, M.R.; Baral, J.; Poudel, B.R. Synthesis and Characterization of Copper Oxide Nanoparticles Isolated from Acmella Oleracea and Study of Antimicrobial and Phytochemical Properties. Amrit Res. J. 2024, 5, 18–29. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Baral, J.; Shrestha, D.; Devkota, H.P.; Adhikari, A. Potent ROS Inhibitors from Zanthoxylum armatum DC of Nepali Origin. Nat. Prod. Res. 2023, 38, 3753–3761. [Google Scholar] [CrossRef]
- APHA; AWWA; WEF. Standard Methods for the Examination of Water and Wastewater, 24th ed.; Method 5220 B. Chemical Oxygen Demand (COD): Closed Reflux, Titrimetric Method; American Public Health Association: Washington, DC, USA, 2017. [Google Scholar]
S.N. | Secondary Metabolites | Test | Result |
---|---|---|---|
1. | Flavonoids | Alkaline reagent test | + |
2. | Alkaloids | Wagner test | + |
3. | Saponins | Froth test | + |
4. | Glycosides | Keller–Kiliani test | − |
5. | Tannins | Ferric chloride test | + |
6. | Quinones | Conc. HCl test | − |
7. | Anthraquinones | Borntrager’s test | + |
8. | Phenols | Ferric chloride test | + |
θ | FWHM | Miller Index | Crystallite Size (D), nm | d-Spacing [Å] | δ (nm) | ε | SF | Rel. Int. [%] |
---|---|---|---|---|---|---|---|---|
15.86 | 0.78838 | (1 0 0) | 10.48 | 2.81718 | 0.00911 | 0.00331 | 0.02065 | 65.05 |
17.14 | 0.78838 | (0 0 2) | 10.54 | 2.60650 | 0.00899 | 0.00328 | 0.01980 | 51.46 |
18.09 | 0.78838 | (1 0 1) | 10.60 | 2.47842 | 0.00890 | 0.00327 | 0.01926 | 100 |
23.70 | 1.18257 | (1 0 2) | 7.34 | 1.91322 | 0.01856 | 0.00473 | 0.02491 | 14.62 |
28.26 | 0.78838 | (1 1 0) | 11.44 | 1.62650 | 0.00764 | 0.00303 | 0.01492 | 41.47 |
31.40 | 0.98548 | (1 0 3) | 9.44 | 1.47896 | 0.01122 | 0.00367 | 0.01759 | 22.46 |
33.14 | 0.59129 | (2 0 0) | 16.05 | 1.40859 | 0.00388 | 0.00216 | 0.01021 | 4.34 |
33.92 | 0.59129 | (1 1 2) | 16.19 | 1.40859 | 0.00381 | 0.00214 | 0.01006 | 27.16 |
34.58 | 0.59129 | (2 0 1) | 16.32 | 1.35982 | 0.00375 | 0.00212 | 0.00996 | 10.58 |
36.18 | 0.78838 | (0 0 4) | 12.48 | 1.30325 | 0.00642 | 0.00277 | 0.01293 | 1.79 |
38.38 | 0.78838 | (2 0 2) | 12.85 | 1.23921 | 0.00606 | 0.00269 | 0.01234 | 1.68 |
Method | Crystallite Size (nm) | Dislocation Density (δ, nm−2) | Strain (ε) | Reference |
---|---|---|---|---|
Sol–gel | 50.76–69.65 | 0.21–0.39 | 0.89–1.21 | [48] |
Hydrothermal | 31–51 | 0.00384–0.0056 | 0.015–1.59 | [49] |
Precipitation | 23.5 ± 6.9 | 0.0018 | 0.347 | [50] |
Microwave | 20–22 | 0.0021–0.00285 | 0.0388–0.0438 | [51] |
Green synthesis | 6–18 | 0.003–0.027 | 0.00202–0.00598 | [46] |
Coprecipitation | 16.81–31.80 | 0.001–0.0035 | 0.0049–0.008 | [52] |
Green synthesis | 7.34–16.32 | 0.00375–0.01856 | 0.00212–0.00473 | This work |
Microbes | Reference Culture | Type | Positive Control (C+), cm | Plant Extract, cm | Av-ZnO NPs, cm |
---|---|---|---|---|---|
Escherichia coli | ATCC8739 | Gram −ve | 1.8 | 0 | 1.3 |
Bacillus subtilis | ATCC 6051 | Gram +ve | 2.0 | 0 | 1.3 |
Candida albicans | ATCC2091 | Fungi | 1.9 | 0 | 1.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shrestha, S.; Tiwari, L.; Dhungana, S.; Maharjan, J.; Khadka, D.; Kim, A.A.; Pokhrel, M.R.; Baral, J.; Park, M.; Poudel, B.R. Exploring Photocatalytic, Antimicrobial and Antioxidant Efficacy of Green-Synthesized Zinc Oxide Nanoparticles. Nanomaterials 2025, 15, 858. https://doi.org/10.3390/nano15110858
Shrestha S, Tiwari L, Dhungana S, Maharjan J, Khadka D, Kim AA, Pokhrel MR, Baral J, Park M, Poudel BR. Exploring Photocatalytic, Antimicrobial and Antioxidant Efficacy of Green-Synthesized Zinc Oxide Nanoparticles. Nanomaterials. 2025; 15(11):858. https://doi.org/10.3390/nano15110858
Chicago/Turabian StyleShrestha, Sabina, Laxmi Tiwari, Sujan Dhungana, Jasana Maharjan, Devendra Khadka, Allison A. Kim, Megh Raj Pokhrel, Janaki Baral, Mira Park, and Bhoj Raj Poudel. 2025. "Exploring Photocatalytic, Antimicrobial and Antioxidant Efficacy of Green-Synthesized Zinc Oxide Nanoparticles" Nanomaterials 15, no. 11: 858. https://doi.org/10.3390/nano15110858
APA StyleShrestha, S., Tiwari, L., Dhungana, S., Maharjan, J., Khadka, D., Kim, A. A., Pokhrel, M. R., Baral, J., Park, M., & Poudel, B. R. (2025). Exploring Photocatalytic, Antimicrobial and Antioxidant Efficacy of Green-Synthesized Zinc Oxide Nanoparticles. Nanomaterials, 15(11), 858. https://doi.org/10.3390/nano15110858