Previous Issue
Volume 9, January

Table of Contents

Cells, Volume 9, Issue 2 (February 2020) – 243 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Cover Story (view full-size image) Tumors release chemokines that can recruit macrophages and dendritic cells to adjacent nerves. [...] Read more.
Order results
Result details
Select all
Export citation of selected articles as:
Open AccessCommunication
The Timing and Extent of Motor Neuron Vulnerability in ALS Correlates with Accumulation of Misfolded SOD1 Protein in the Cortex and in the Spinal Cord
Cells 2020, 9(2), 502; https://doi.org/10.3390/cells9020502 (registering DOI) - 22 Feb 2020
Abstract
Understanding the cellular and molecular basis of selective vulnerability has been challenging, especially for motor neuron diseases. Developing drugs that improve the health of neurons that display selective vulnerability relies on in vivo cell-based models and quantitative readout measures that translate to patient [...] Read more.
Understanding the cellular and molecular basis of selective vulnerability has been challenging, especially for motor neuron diseases. Developing drugs that improve the health of neurons that display selective vulnerability relies on in vivo cell-based models and quantitative readout measures that translate to patient outcome. We initially developed and characterized UCHL1-eGFP mice, in which motor neurons are labeled with eGFP that is stable and long-lasting. By crossing UCHL1-eGFP to amyotrophic lateral sclerosis (ALS) disease models, we generated ALS mouse models with fluorescently labeled motor neurons. Their examination over time began to reveal the cellular basis of selective vulnerability even within the related motor neuron pools. Accumulation of misfolded SOD1 protein both in the corticospinal and spinal motor neurons over time correlated with the timing and extent of degeneration. This further proved simultaneous degeneration of both upper and lower motor neurons, and the requirement to consider both upper and lower motor neuron populations in drug discovery efforts. Demonstration of the direct correlation between misfolded SOD1 accumulation and motor neuron degeneration in both cortex and spinal cord is important for building cell-based assays in vivo. Our report sets the stage for shifting focus from mice to diseased neurons for drug discovery efforts, especially for motor neuron diseases. Full article
(This article belongs to the Section Cellular Pathology)
Show Figures

Figure 1

Open AccessReview
Arteriogenesis of the Spinal Cord—The Network Challenge
Cells 2020, 9(2), 501; https://doi.org/10.3390/cells9020501 (registering DOI) - 22 Feb 2020
Abstract
Spinal cord ischemia (SCI) is a clinical complication following aortic repair that significantly impairs the quality and expectancy of life. Despite some strategies, like cerebrospinal fluid drainage, the occurrence of neurological symptoms, such as paraplegia and paraparesis, remains unpredictable. Beside the major blood [...] Read more.
Spinal cord ischemia (SCI) is a clinical complication following aortic repair that significantly impairs the quality and expectancy of life. Despite some strategies, like cerebrospinal fluid drainage, the occurrence of neurological symptoms, such as paraplegia and paraparesis, remains unpredictable. Beside the major blood supply through conduit arteries, a huge collateral network protects the central nervous system from ischemia—the paraspinous and the intraspinal compartment. The intraspinal arcades maintain perfusion pressure following a sudden inflow interruption, whereas the paraspinal system first needs to undergo arteriogenesis to ensure sufficient blood supply after an acute ischemic insult. The so-called steal phenomenon can even worsen the postoperative situation by causing the hypoperfusion of the spine when, shortly after thoracoabdominal aortic aneurysm (TAAA) surgery, muscles connected with the network divert blood and cause additional stress. Vessels are a conglomeration of different cell types involved in adapting to stress, like endothelial cells, smooth muscle cells, and pericytes. This adaption to stress is subdivided in three phases—initiation, growth, and the maturation phase. In fields of endovascular aortic aneurysm repair, pre-operative selective segmental artery occlusion may enable the development of a sufficient collateral network by stimulating collateral vessel growth, which, again, may prevent spinal cord ischemia. Among others, the major signaling pathways include the phosphoinositide 3 kinase (PI3K) pathway/the antiapoptotic kinase (AKT) pathway/the endothelial nitric oxide synthase (eNOS) pathway, the Erk1, the delta-like ligand (DII), the jagged (Jag)/NOTCH pathway, and the midkine regulatory cytokine signaling pathways. Full article
(This article belongs to the Special Issue Arteriogenesis and Therapeutic Neovascularization)
Show Figures

Figure 1

Open AccessReview
Molecular Diagnostics in Human Papillomavirus-Related Head and Neck Squamous Cell Carcinoma
Cells 2020, 9(2), 500; https://doi.org/10.3390/cells9020500 (registering DOI) - 22 Feb 2020
Abstract
The incidence of human papillomavirus (HPV)-related head and neck squamous cell carcinoma continues to increase. Accurate diagnosis of the HPV status of a tumor is vital, as HPV+ versus HPV– tumors represent two unique biological and clinical entities with different treatment strategies. High-risk [...] Read more.
The incidence of human papillomavirus (HPV)-related head and neck squamous cell carcinoma continues to increase. Accurate diagnosis of the HPV status of a tumor is vital, as HPV+ versus HPV– tumors represent two unique biological and clinical entities with different treatment strategies. High-risk HPV subtypes encode oncoproteins E6 and E7 that disrupt cellular senescence and ultimately drive tumorigenesis. Current methods for detection of HPV take advantage of this established oncogenic pathway and detect HPV at various biological stages. This review article provides an overview of the existing technologies employed for the detection of HPV and their current or potential future role in management and prognostication. Full article
(This article belongs to the Special Issue HPV-Associated Malignancies: Screening, Prevention and Treatment)
Show Figures

Figure 1

Open AccessArticle
High Levels of Class I Major Histocompatibility Complex mRNA Are Present in Epstein–Barr Virus-Associated Gastric Adenocarcinomas
Cells 2020, 9(2), 499; https://doi.org/10.3390/cells9020499 (registering DOI) - 21 Feb 2020
Viewed by 117
Abstract
Epstein–Barr virus (EBV) is responsible for approximately 9% of stomach adenocarcinomas. EBV-encoded microRNAs have been reported as reducing the function of the class I major histocompatibility complex (MHC-I) antigen presentation apparatus, which could allow infected cells to evade adaptive immune responses. Using data [...] Read more.
Epstein–Barr virus (EBV) is responsible for approximately 9% of stomach adenocarcinomas. EBV-encoded microRNAs have been reported as reducing the function of the class I major histocompatibility complex (MHC-I) antigen presentation apparatus, which could allow infected cells to evade adaptive immune responses. Using data from nearly 400 human gastric carcinomas (GCs), we assessed the impact of EBV on MHC-I heavy and light chain mRNA levels, as well as multiple other components essential for antigen processing and presentation. Unexpectedly, mRNA levels of these genes were as high, or higher, in EBV-associated gastric carcinomas (EBVaGCs) compared to normal control tissues or other GC subtypes. This coordinated upregulation could have been a consequence of the higher intratumoral levels of interferon γ in EBVaGCs, which correlated with signatures of increased infiltration by T and natural killer (NK) cells. These results indicate that EBV-encoded products do not effectively reduce mRNA levels of the MHC-I antigen presentation apparatus in human GCs. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Cancers: Gastric Cancer)
Open AccessFeature PaperReview
Plasma Membrane Transporters as Biomarkers and Molecular Targets in Cholangiocarcinoma
Cells 2020, 9(2), 498; https://doi.org/10.3390/cells9020498 (registering DOI) - 21 Feb 2020
Viewed by 101
Abstract
The dismal prognosis of patients with advanced cholangiocarcinoma (CCA) is due, in part, to the extreme resistance of this type of liver cancer to available chemotherapeutic agents. Among the complex mechanisms accounting for CCA chemoresistance are those involving the impairment of drug uptake, [...] Read more.
The dismal prognosis of patients with advanced cholangiocarcinoma (CCA) is due, in part, to the extreme resistance of this type of liver cancer to available chemotherapeutic agents. Among the complex mechanisms accounting for CCA chemoresistance are those involving the impairment of drug uptake, which mainly occurs through transporters of the superfamily of solute carrier (SLC) proteins, and the active export of drugs from cancer cells, mainly through members of families B, C and G of ATP-binding cassette (ABC) proteins. Both mechanisms result in decreased amounts of active drugs able to reach their intracellular targets. Therefore, the “cancer transportome”, defined as the set of transporters expressed at a given moment in the tumor, is an essential element for defining the multidrug resistance (MDR) phenotype of cancer cells. For this reason, during the last two decades, plasma membrane transporters have been envisaged as targets for the development of strategies aimed at sensitizing cancer cells to chemotherapy, either by increasing the uptake or reducing the export of antitumor agents by modulating the expression/function of SLC and ABC proteins, respectively. Moreover, since some elements of the transportome are differentially expressed in CCA, their usefulness as biomarkers with diagnostic and prognostic purposes in CCA patients has been evaluated. Full article
Show Figures

Graphical abstract

Open AccessFeature PaperReview
Ribosome and Translational Control in Stem Cells
Cells 2020, 9(2), 497; https://doi.org/10.3390/cells9020497 (registering DOI) - 21 Feb 2020
Viewed by 85
Abstract
Embryonic stem cells (ESCs) and adult stem cells (ASCs) possess the remarkable capacity to self-renew while remaining poised to differentiate into multiple progenies in the context of a rapidly developing embryo or in steady-state tissues, respectively. This ability is controlled by complex genetic [...] Read more.
Embryonic stem cells (ESCs) and adult stem cells (ASCs) possess the remarkable capacity to self-renew while remaining poised to differentiate into multiple progenies in the context of a rapidly developing embryo or in steady-state tissues, respectively. This ability is controlled by complex genetic programs, which are dynamically orchestrated at different steps of gene expression, including chromatin remodeling, mRNA transcription, processing, and stability. In addition to maintaining stem cell homeostasis, these molecular processes need to be rapidly rewired to coordinate complex physiological modifications required to redirect cell fate in response to environmental clues, such as differentiation signals or tissue injuries. Although chromatin remodeling and mRNA expression have been extensively studied in stem cells, accumulating evidence suggests that stem cell transcriptomes and proteomes are poorly correlated and that stem cell properties require finely tuned protein synthesis. In addition, many studies have shown that the biogenesis of the translation machinery, the ribosome, is decisive for sustaining ESC and ASC properties. Therefore, these observations emphasize the importance of translational control in stem cell homeostasis and fate decisions. In this review, we will provide the most recent literature describing how ribosome biogenesis and translational control regulate stem cell functions and are crucial for accommodating proteome remodeling in response to changes in stem cell fate. Full article
(This article belongs to the Special Issue Translational Machinery to Understand and Fight Cancer)
Open AccessArticle
The Cytokine Nicotinamide Phosphoribosyltransferase (eNAMPT; PBEF; Visfatin) Acts as a Natural Antagonist of C-C Chemokine Receptor Type 5 (CCR5)
Cells 2020, 9(2), 496; https://doi.org/10.3390/cells9020496 (registering DOI) - 21 Feb 2020
Viewed by 93
Abstract
(1) Background: Extracellular nicotinamide phosphoribosyltrasferase (eNAMPT) is released by various cell types with pro-tumoral and pro-inflammatory properties. In cancer, eNAMPT regulates tumor growth through the activation of intracellular pathways, suggesting that it acts through a putative receptor, although its nature is still elusive. [...] Read more.
(1) Background: Extracellular nicotinamide phosphoribosyltrasferase (eNAMPT) is released by various cell types with pro-tumoral and pro-inflammatory properties. In cancer, eNAMPT regulates tumor growth through the activation of intracellular pathways, suggesting that it acts through a putative receptor, although its nature is still elusive. It has been shown, using surface plasma resonance, that eNAMPT binds to the C-C chemokine receptor type 5 (CCR5), although the physiological meaning of this finding is unknown. The aim of the present work was to characterize the pharmacodynamics of eNAMPT on CCR5. (2) Methods: HeLa CCR5-overexpressing stable cell line and B16 melanoma cells were used. We focused on some phenotypic effects of CCR5 activation, such as calcium release and migration, to evaluate eNAMPT actions on this receptor. (3) Results: eNAMPT did not induce ERK activation or cytosolic Ca2+-rises alone. Furthermore, eNAMPT prevents CCR5 internalization mediated by Rantes. eNAMPT pretreatment inhibits CCR5-mediated PKC activation and Rantes-dependent calcium signaling. The effect of eNAMPT on CCR5 was specific, as the responses to ATP and carbachol were unaffected. This was strengthened by the observation that eNAMPT inhibited Rantes-induced Ca2+-rises and Rantes-induced migration in a melanoma cell line. (4) Conclusions: Our work shows that eNAMPT binds to CCR5 and acts as a natural antagonist of this receptor. Full article
Show Figures

Graphical abstract

Open AccessEditorial
Novel Therapeutic Approach to Induce Autophagy in a Drosophila Model for Huntington’s Disease
Cells 2020, 9(2), 495; https://doi.org/10.3390/cells9020495 (registering DOI) - 21 Feb 2020
Viewed by 80
Abstract
Autophagy induction is an attractive therapeutic approach to ameliorate aggregate accumulation in many neurodegenerative diseases. In Huntington’s disease (HD) in vivo models, a number of genetic and pharmacological mechanisms aimed to induce autophagy have been successfully tested [1], demonstrating the role of autophagy [...] Read more.
Autophagy induction is an attractive therapeutic approach to ameliorate aggregate accumulation in many neurodegenerative diseases. In Huntington’s disease (HD) in vivo models, a number of genetic and pharmacological mechanisms aimed to induce autophagy have been successfully tested [1], demonstrating the role of autophagy in promoting the elimination of mutant huntingtin (mHTT) aggregates and its neuroprotective effect. In their recent report in Cells, Vernizzi and colleagues [2] presented a totally new mechanism to induce autophagy, promote the elimination of mHTT aggregates, and ultimately achieve neuroprotection. This novel therapy is based on the overexpression of glutamine synthetase 1 (GS1), an enzyme that catalyzes the synthesis of L-glutamine from L-glutamate as part of the glutamate glutamine cycle (GGC), a physiological process between glia and neurons that controls glutamate homeostasis [3].[...] Full article
(This article belongs to the Special Issue Autophagy in Neurodegenerative Diseases)
Open AccessArticle
TLR2 Signaling Pathway Combats Streptococcus uberis Infection by Inducing Mitochondrial Reactive Oxygen Species Production
Cells 2020, 9(2), 494; https://doi.org/10.3390/cells9020494 (registering DOI) - 21 Feb 2020
Viewed by 84
Abstract
Mastitis caused by Streptococcus uberis (S. uberis) is a common and difficult-to-cure clinical disease in dairy cows. In this study, the role of Toll-like receptors (TLRs) and TLR-mediated signaling pathways in mastitis caused by S. uberis was investigated using mouse models [...] Read more.
Mastitis caused by Streptococcus uberis (S. uberis) is a common and difficult-to-cure clinical disease in dairy cows. In this study, the role of Toll-like receptors (TLRs) and TLR-mediated signaling pathways in mastitis caused by S. uberis was investigated using mouse models and mammary epithelial cells (MECs). We used S. uberis to infect mammary glands of wild type, TLR2−/− and TLR4−/− mice and quantified the adaptor molecules in TLR signaling pathways, proinflammatory cytokines, tissue damage, and bacterial count. When compared with TLR4 deficiency, TLR2 deficiency induced more severe pathological changes through myeloid differentiation primary response 88 (MyD88)-mediated signaling pathways during S. uberis infection. In MECs, TLR2 detected S. uberis infection and induced mitochondrial reactive oxygen species (mROS) to assist host in controlling the secretion of inflammatory factors and the elimination of intracellular S. uberis. Our results demonstrated that TLR2-mediated mROS has a significant effect on S. uberis-induced host defense responses in mammary glands as well as in MECs. Full article
(This article belongs to the Special Issue Innate-Acquired Linkage in Immunotherapy)
Show Figures

Figure 1

Open AccessReview
Emerging Diagnostic Tools to Decide When to Discontinue Nucleos(t)ide Analogues in Chronic Hepatitis B
Cells 2020, 9(2), 493; https://doi.org/10.3390/cells9020493 (registering DOI) - 20 Feb 2020
Viewed by 152
Abstract
The aim of this review is to outline emerging biomarkers that can serve as diagnostic tools to identify non-cirrhotic chronic hepatitis B (CHB) patients who could safely discontinue nucleos(t)ide analogues (NAs) before HBsAg loss. Regarding possible predictors of post-NAs outcomes, a number of [...] Read more.
The aim of this review is to outline emerging biomarkers that can serve as diagnostic tools to identify non-cirrhotic chronic hepatitis B (CHB) patients who could safely discontinue nucleos(t)ide analogues (NAs) before HBsAg loss. Regarding possible predictors of post-NAs outcomes, a number of studies have evaluated numerous factors, which can be categorised in markers of hepatitis B virus (HBV) activity, markers of host immune response and markers of other patient characteristics. In clinical practice, the most important question for patients who discontinue NAs is to differentiate those who will benefit by achieving HBsAg loss or at least by remaining in remission and those who will relapse requiring retreatment. Most of the discontinuation studies so far came from Asian and only few from European populations and examined the rates and predictors of post-NA virological and/or combined relapses or HBsAg loss. To date, there is still controversy about predictors of post-NA relapses, while only HBsAg serum levels at NA discontinuation seem to be the most robust predictive marker of the probability of subsequent off-treatment HBsAg seroclearance. Newer viral markers such as HBV RNA and hepatitis B core-related antigen seem promising, but further research is required. Full article
(This article belongs to the Special Issue Biomarkers in Hepatology)
Open AccessArticle
Loss of 5′-Methylthioadenosine Phosphorylase (MTAP) is Frequent in High-Grade Gliomas; Nevertheless, it is Not Associated with Higher Tumor Aggressiveness
Cells 2020, 9(2), 492; https://doi.org/10.3390/cells9020492 (registering DOI) - 20 Feb 2020
Viewed by 157
Abstract
The 5’-methylthioadenosine phosphorylase (MTAP) gene is located in the chromosomal region 9p21. MTAP deletion is a frequent event in a wide variety of human cancers; however, its biological role in tumorigenesis remains unclear. The purpose of this study was to characterize the MTAP [...] Read more.
The 5’-methylthioadenosine phosphorylase (MTAP) gene is located in the chromosomal region 9p21. MTAP deletion is a frequent event in a wide variety of human cancers; however, its biological role in tumorigenesis remains unclear. The purpose of this study was to characterize the MTAP expression profile in a series of gliomas and to associate it with patients’ clinicopathological features. Moreover, we sought to evaluate, through glioma gene-edited cell lines, the biological impact of MTAP in gliomas. MTAP expression was evaluated in 507 glioma patients by immunohistochemistry (IHC), and the expression levels were associated with patients’ clinicopathological features. Furthermore, an in silico study was undertaken using genomic databases totalizing 350 samples. In glioma cell lines, MTAP was edited, and following MTAP overexpression and knockout (KO), a transcriptome analysis was performed by NanoString Pan-Cancer Pathways panel. Moreover, MTAP’s role in glioma cell proliferation, migration, and invasion was evaluated. Homozygous deletion of 9p21 locus was associated with a reduction of MTAP mRNA expression in the TCGA (The Cancer Genome Atlas) - glioblastoma dataset (p < 0.01). In addition, the loss of MTAP expression was markedly high in high-grade gliomas (46.6% of cases) determined by IHC and Western blotting (40% of evaluated cell lines). Reduced MTAP expression was associated with a better prognostic in the adult glioblastoma dataset (p < 0.001). Nine genes associated with five pathways were differentially expressed in MTAP-knockout (KO) cells, with six upregulated and three downregulated in MTAP. Analysis of cell proliferation, migration, and invasion did not show any significant differences between MTAP gene-edited and control cells. Our results integrating data from patients as well as in silico and in vitro models provide evidence towards the lack of strong biological importance of MTAP in gliomas. Despite the frequent loss of MTAP, it seems not to have a clinical impact in survival and does not act as a canonic tumor suppressor gene in gliomas. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Cancers: Glioblastoma)
Show Figures

Graphical abstract

Open AccessReview
Is Desmin Propensity to Aggregate Part of its Protective Function?
Cells 2020, 9(2), 491; https://doi.org/10.3390/cells9020491 (registering DOI) - 20 Feb 2020
Viewed by 151
Abstract
Desmin is the major protein component of the intermediate filaments (IFs) cytoskeleton in muscle cells, including cardiac. The accumulation of cleaved and misfolded desmin is a cellular hallmark of heart failure (HF). These desmin alterations are reversed by therapy, suggesting a causal role [...] Read more.
Desmin is the major protein component of the intermediate filaments (IFs) cytoskeleton in muscle cells, including cardiac. The accumulation of cleaved and misfolded desmin is a cellular hallmark of heart failure (HF). These desmin alterations are reversed by therapy, suggesting a causal role for the IFs in the development of HF. Though IFs are known to play a role in the protection from stress, a mechanistic model of how that occurs is currently lacking. On the other hand, the heart is uniquely suited to study the function of the IFs, due to its inherent, cyclic contraction. That is, HF can be used as a model to address how IFs afford protection from mechanical, and possibly redox, stress. In this review we provide a brief summary of the current views on the function of the IFs, focusing on desmin. We also propose a new model according to which the propensity of desmin to aggregate may have been selected during evolution as a way to dissipate excessive mechanical and possibly redox stress. According to this model, though desmin misfolding may afford protection from acute injury, the sustained or excessive accumulation of desmin aggregates could impair proteostasis and contribute to disease. Full article
(This article belongs to the Special Issue Cells in Cardiovascular Disease)
Open AccessReview
Exploring Novel Molecular Targets for the Treatment of High-Grade Astrocytomas Using Peptide Therapeutics: An Overview
Cells 2020, 9(2), 490; https://doi.org/10.3390/cells9020490 (registering DOI) - 20 Feb 2020
Viewed by 138
Abstract
Diffuse astrocytomas are the most aggressive and lethal glial tumors of the central nervous system (CNS). Their high cellular heterogeneity and the presence of specific barriers, i.e., blood–brain barrier (BBB) and tumor barrier, make these cancers poorly responsive to all kinds of currently [...] Read more.
Diffuse astrocytomas are the most aggressive and lethal glial tumors of the central nervous system (CNS). Their high cellular heterogeneity and the presence of specific barriers, i.e., blood–brain barrier (BBB) and tumor barrier, make these cancers poorly responsive to all kinds of currently available therapies. Standard therapeutic approaches developed to prevent astrocytoma progression, such as chemotherapy and radiotherapy, do not improve the average survival of patients. However, the recent identification of key genetic alterations and molecular signatures specific for astrocytomas has allowed the advent of novel targeted therapies, potentially more efficient and characterized by fewer side effects. Among others, peptides have emerged as promising therapeutic agents, due to their numerous advantages when compared to standard chemotherapeutics. They can be employed as (i) pharmacologically active agents, which promote the reduction of tumor growth; or (ii) carriers, either to facilitate the translocation of drugs through brain, tumor, and cellular barriers, or to target tumor-specific receptors. Since several pathways are normally altered in malignant gliomas, better outcomes may result from combining multi-target strategies rather than targeting a single effector. In the last years, several preclinical studies with different types of peptides moved in this direction, providing promising results in murine models of disease and opening new perspectives for peptide applications in the treatment of high-grade brain tumors. Full article
Show Figures

Figure 1

Open AccessArticle
Melatonin Orchestrates Lipid Homeostasis through the Hepatointestinal Circadian Clock and Microbiota during Constant Light Exposure
Cells 2020, 9(2), 489; https://doi.org/10.3390/cells9020489 (registering DOI) - 20 Feb 2020
Viewed by 120
Abstract
Misalignment between natural light rhythm and modern life activities induces disruption of the circadian rhythm. It is mainly evident that light at night (LAN) interferes with the human endocrine system and contributes to the increasing rates of obesity and lipid metabolic disease. Maintaining [...] Read more.
Misalignment between natural light rhythm and modern life activities induces disruption of the circadian rhythm. It is mainly evident that light at night (LAN) interferes with the human endocrine system and contributes to the increasing rates of obesity and lipid metabolic disease. Maintaining hepatointestinal circadian homeostasis is vital for improving lipid homeostasis. Melatonin is a chronobiotic substance that plays a main role in stabilizing bodily rhythm and has shown beneficial effects in protecting against obesity. Based on the dual effect of circadian rhythm regulation and antiobesity, we tested the effect of melatonin in mice under constant light exposure. Exposure to 24-h constant light (LL) increased weight and insulin resistance compared with those of the control group (12-h light–12-h dark cycle, LD), and simultaneous supplementation in the melatonin group (LLM) ameliorated this phenotype. Constant light exposure disturbed the expression pattern of a series of transcripts, including lipid metabolism, circadian regulation and nuclear receptors in the liver. Melatonin also showed beneficial effects in improving lipid metabolism and circadian rhythm homeostasis. Furthermore, the LL group had increased absorption and digestion of lipids in the intestine as evidenced by the elevated influx of lipids in the duodenum and decrease in the efflux of lipids in the jejunum. More interestingly, melatonin ameliorated the gut microbiota dysbiosis and improved lipid efflux from the intestine. Thus, these findings offer a novel clue regarding the obesity-promoting effect attributed to LAN and suggest a possibility for obesity therapy by melatonin in which melatonin could ameliorate rhythm disorder and intestinal dysbiosis. Full article
(This article belongs to the Special Issue Melatonin in Human Health and Diseases)
Open AccessArticle
A 12-mer Peptide of Tag7 (PGLYRP1) Forms a Cytotoxic Complex with Hsp70 and Inhibits TNF-Alpha Induced Cell Death
Cells 2020, 9(2), 488; https://doi.org/10.3390/cells9020488 (registering DOI) - 20 Feb 2020
Viewed by 102
Abstract
Investigation of interactions between a pro-inflammatory cytokine tumor necrosis factor (TNFα) and its receptor is required for the development of new treatments for autoimmune diseases associated with the adverse effects of TNFα. Earlier, we demonstrated that the innate immunity protein Tag7 (PGRP-S, PGLYRP1) [...] Read more.
Investigation of interactions between a pro-inflammatory cytokine tumor necrosis factor (TNFα) and its receptor is required for the development of new treatments for autoimmune diseases associated with the adverse effects of TNFα. Earlier, we demonstrated that the innate immunity protein Tag7 (PGRP-S, PGLYRP1) can interact with the TNFα receptor, TNFR1, and block the transduction of apoptotic signals through this receptor. A complex formed between the Tag7 protein and the major heat shock protein Hsp70 can activate TNFR1 receptor and induce tumor cell death via either apoptotic or necroptotic pathway. In this study, we show that a 12-mer peptide, designated 17.1, which was derived from the Tag7 protein, can be regarded as a novel TNFα inhibitor, also is able to form a cytotoxic complex with the heat shock protein Hsp70. This finding demonstrates a new role for Hsp70 protein in the immune response. Also, this new inhibitory 17.1 peptide demonstrates an anti-inflammatory activity in the complete Freund's adjuvant (CFA)-induced autoimmune arthritis model in laboratory mice. It appears that the 17.1 peptide could potentially be used as an anti-inflammatory agent. Full article
(This article belongs to the Special Issue Molecular Chaperones: Cancer and Cell Death)
Open AccessReview
Technical Considerations in Ex Vivo Human Regulatory T Cell Migration and Suppression Assays
Cells 2020, 9(2), 487; https://doi.org/10.3390/cells9020487 (registering DOI) - 20 Feb 2020
Viewed by 104
Abstract
Regulatory T cells (Tregs) are renowned for maintaining homeostasis and self-tolerance through their ability to suppress immune responses. For over two decades, Tregs have been the subject of intensive research. The immunosuppressive and migratory potentials of Tregs have been exploited, especially in the [...] Read more.
Regulatory T cells (Tregs) are renowned for maintaining homeostasis and self-tolerance through their ability to suppress immune responses. For over two decades, Tregs have been the subject of intensive research. The immunosuppressive and migratory potentials of Tregs have been exploited, especially in the areas of cancer, autoimmunity and vaccine development, and many assay protocols have since been developed. However, variations in assay conditions in different studies, as well as covert experimental factors, pose a great challenge to the reproducibility of results. Here, we focus on human Tregs derived from clinical samples and highlighted caveats that should be heeded when conducting Tregs suppression and migration assays. We particularly delineated how factors such as sample processing, choice of reagents and equipment, optimization and other experimental conditions could introduce bias into the assay, and we subsequently proffer recommendations to enhance reliability and reproducibility of results. It is hoped that prioritizing these factors will reduce the tendencies of generating false and misleading results, and thus, help improve our understanding and interpretation of Tregs functional studies. Full article
Open AccessArticle
Expression of the microRNA-200 Family, microRNA-205, and Markers of Epithelial–Mesenchymal Transition as Predictors for Endoscopic Submucosal Dissection over Esophagectomy in Esophageal Adenocarcinoma: A Single-Center Experience
Cells 2020, 9(2), 486; https://doi.org/10.3390/cells9020486 (registering DOI) - 20 Feb 2020
Viewed by 93
Abstract
Endoscopic submucosal dissection (ESD) is an effective treatment of early esophageal adenocarcinomas (EACs). The decision of ESD over esophagectomy is based on clinical evaluation of tumor depth and invasion. On a molecular level, tumor invasion is strongly associated with epithelial-to-mesenchymal transition (EMT). Here, [...] Read more.
Endoscopic submucosal dissection (ESD) is an effective treatment of early esophageal adenocarcinomas (EACs). The decision of ESD over esophagectomy is based on clinical evaluation of tumor depth and invasion. On a molecular level, tumor invasion is strongly associated with epithelial-to-mesenchymal transition (EMT). Here, we investigated whether localized ESD-resected and surgically resected EAC samples displayed different expression profiles of EMT protein and microRNA markers and whether these different expression profiles were able to retrospectively discriminate localized and surgically resected samples. By doing this, we aimed to evaluate whether preoperative measurement of EMT marker expression might support the decision regarding ESD over surgery. The results showed that ESD-resected samples displayed an epithelial expression profile, i.e., high expression of epithelial protein markers, whereas surgically resected samples displayed high expression of mesenchymal markers. In addition, the anti-EMT microRNA-205 was significantly more expressed in ESD-resected samples, whereas we found no significant differences in the expression levels of microRNA-200 family members. Furthermore, in our retrospective approach, we have demonstrated that measurement of selected EMT markers and microRNA-205 has significant discrimination power to distinguish ESD-resected and surgically resected samples. We suggest that the assessment of EMT status of EAC samples on a molecular level may support clinical evaluation regarding the applicability of ESD. Full article
(This article belongs to the Special Issue microRNA as Biomarker)
Show Figures

Figure 1

Open AccessArticle
WNK2 Inhibits Autophagic Flux in Human Glioblastoma Cell Line
Cells 2020, 9(2), 485; https://doi.org/10.3390/cells9020485 (registering DOI) - 20 Feb 2020
Viewed by 127
Abstract
Autophagy is a cell-survival pathway with dual role in tumorigenesis, promoting either tumor survival or tumor death. WNK2 gene, a member of the WNK (with no lysine (K)) subfamily, acts as a tumor suppressor gene in gliomas, regulating cell migration and invasion; however, [...] Read more.
Autophagy is a cell-survival pathway with dual role in tumorigenesis, promoting either tumor survival or tumor death. WNK2 gene, a member of the WNK (with no lysine (K)) subfamily, acts as a tumor suppressor gene in gliomas, regulating cell migration and invasion; however, its role in autophagy process is poorly explored. The WNK2-methylated human glioblastoma cell line A172 WT (wild type) was compared to transfected clones A172 EV (empty vector), and A172 WNK2 (WNK2 overexpression) for the evaluation of autophagy using an inhibitor (bafilomycin A1—baf A1) and an inducer (everolimus) of autophagic flux. Western blot and immunofluorescence approaches were used to monitor autophagic markers, LC3A/B and SQSTM1/p62. A172 WNK2 cells presented a significant decrease in LC3B and p62 protein levels, and in LC3A/B ratio when compared with control cells, after treatment with baf A1 + everolimus, suggesting that WNK2 overexpression inhibits the autophagic flux in gliomas. The mTOR pathway was also evaluated under the same conditions, and the observed results suggest that the inhibition of autophagy mediated by WNK2 occurs through a mTOR-independent pathway. In conclusion, the evaluation of the autophagic process demonstrated that WNK2 inhibits the autophagic flux in glioblastoma cell line. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Cancers: Glioblastoma)
Show Figures

Graphical abstract

Open AccessArticle
An Alternative Splice Variant of HIPK2 with Intron Retention Contributes to Cytokinesis
Cells 2020, 9(2), 484; https://doi.org/10.3390/cells9020484 (registering DOI) - 20 Feb 2020
Viewed by 138
Abstract
HIPK2 is a DYRK-like kinase involved in cellular stress response pathways, development, and cell division. Two alternative splice variants of HIPK2, HIPK2-FL and HIPK2-Δe8, have been previously identified as having different protein stability but similar functional activity in the stress response. Here, we [...] Read more.
HIPK2 is a DYRK-like kinase involved in cellular stress response pathways, development, and cell division. Two alternative splice variants of HIPK2, HIPK2-FL and HIPK2-Δe8, have been previously identified as having different protein stability but similar functional activity in the stress response. Here, we describe one additional HIPK2 splice variant with a distinct subcellular distribution and functional activity in cytokinesis. This novel splice variant lacks the last two exons and retains intron13 with a stop codon after 89 bp of the intron, generating a short isoform, HIPK2-S, that is detectable by 2D Western blots. RT-PCR analyses of tissue arrays and tumor samples show that HIPK2-FL and HIPK2-S are expressed in normal human tissues in a tissue-dependent manner and differentially expressed in human colorectal and pancreatic cancers. Gain- and loss-of-function experiments showed that in contrast to HIPK2-FL, HIPK2-S has a diffuse, non-speckled distribution and is not involved in the DNA damage response. Rather, we found that HIPK2-S, but not HIPK2-FL, localizes at the intercellular bridge, where it phosphorylates histone H2B and spastin, both required for faithful cell division. Altogether, these data show that distinct human HIPK2 splice variants are involved in distinct HIPK2-regulated functions like stress response and cytokinesis. Full article
(This article belongs to the Special Issue Cell Cycle Control and Cancer)
Show Figures

Figure 1

Open AccessArticle
Patient iPSC-Derived Macrophages to Study Inborn Errors of the IFN-γ Responsive Pathway
Cells 2020, 9(2), 483; https://doi.org/10.3390/cells9020483 (registering DOI) - 19 Feb 2020
Viewed by 254
Abstract
Interferon γ (IFN-γ) was shown to be a macrophage activating factor already in 1984. Consistently, inborn errors of IFN-γ immunity underlie Mendelian Susceptibility to Mycobacterial Disease (MSMD). MSMD is characterized by genetic predisposition to disease caused by weakly virulent mycobacterial species. Paradoxically, macrophages [...] Read more.
Interferon γ (IFN-γ) was shown to be a macrophage activating factor already in 1984. Consistently, inborn errors of IFN-γ immunity underlie Mendelian Susceptibility to Mycobacterial Disease (MSMD). MSMD is characterized by genetic predisposition to disease caused by weakly virulent mycobacterial species. Paradoxically, macrophages from patients with MSMD were little tested. Here, we report a disease modeling platform for studying IFN-γ related pathologies using macrophages derived from patient specific induced pluripotent stem cells (iPSCs). We used iPSCs from patients with autosomal recessive complete- and partial IFN-γR2 deficiency, partial IFN-γR1 deficiency and complete STAT1 deficiency. Macrophages from all patient iPSCs showed normal morphology and IFN-γ-independent functionality like phagocytic uptake of bioparticles and internalization of cytokines. For the IFN-γ-dependent functionalities, we observed that the deficiencies played out at various stages of the IFN-γ pathway, with the complete IFN-γR2 and complete STAT1 deficient cells showing the most severe phenotypes, in terms of upregulation of surface markers and induction of downstream targets. Although iPSC-derived macrophages with partial IFN-γR1 and IFN-γR2 deficiency still showed residual induction of downstream targets, they did not reduce the mycobacterial growth when challenged with Bacillus Calmette–Guérin. Taken together, we report a disease modeling platform to study the role of macrophages in patients with inborn errors of IFN-γ immunity. Full article
(This article belongs to the Section Stem Cells)
Show Figures

Graphical abstract

Open AccessReview
T Helper Cells: The Modulators of Inflammation in Multiple Sclerosis
Cells 2020, 9(2), 482; https://doi.org/10.3390/cells9020482 (registering DOI) - 19 Feb 2020
Viewed by 107
Abstract
Multiple sclerosis (MS) is a chronic neurodegenerative disease characterized by the progressive loss of axonal myelin in several areas of the central nervous system (CNS) that is responsible for clinical symptoms such as muscle spasms, optic neuritis, and paralysis. The progress made in [...] Read more.
Multiple sclerosis (MS) is a chronic neurodegenerative disease characterized by the progressive loss of axonal myelin in several areas of the central nervous system (CNS) that is responsible for clinical symptoms such as muscle spasms, optic neuritis, and paralysis. The progress made in more than one decade of research in animal models of MS for clarifying the pathophysiology of MS disease validated the concept that MS is an autoimmune inflammatory disorder caused by the recruitment in the CNS of self-reactive lymphocytes, mainly CD4+ T cells. Indeed, high levels of T helper (Th) cells and related cytokines and chemokines have been found in CNS lesions and in cerebrospinal fluid (CSF) of MS patients, thus contributing to the breakdown of the blood–brain barrier (BBB), the activation of resident astrocytes and microglia, and finally the outcome of neuroinflammation. To date, several types of Th cells have been discovered and designated according to the secreted lineage-defining cytokines. Interestingly, Th1, Th17, Th1-like Th17, Th9, and Th22 have been associated with MS. In this review, we discuss the role and interplay of different Th cell subpopulations and their lineage-defining cytokines in modulating the inflammatory responses in MS and the approved as well as the novel therapeutic approaches targeting T lymphocytes in the treatment of the disease. Full article
(This article belongs to the Special Issue The Molecular and Cellular Basis for Multiple Sclerosis 2020)
Open AccessFeature PaperArticle
The VDAC1-based R-Tf-D-LP4 Peptide as a Potential Treatment for Diabetes Mellitus
Cells 2020, 9(2), 481; https://doi.org/10.3390/cells9020481 (registering DOI) - 19 Feb 2020
Viewed by 148
Abstract
Diabetes mellitus is a metabolic disorder approaching epidemic proportions. Non-alcoholic fatty liver disease (NAFLD) regularly coexists with metabolic disorders, including type 2 diabetes, obesity, and cardiovascular disease. Recently, we demonstrated that the voltage-dependent anion channel 1 (VDAC1) is involved in NAFLD. VDAC1 is [...] Read more.
Diabetes mellitus is a metabolic disorder approaching epidemic proportions. Non-alcoholic fatty liver disease (NAFLD) regularly coexists with metabolic disorders, including type 2 diabetes, obesity, and cardiovascular disease. Recently, we demonstrated that the voltage-dependent anion channel 1 (VDAC1) is involved in NAFLD. VDAC1 is an outer mitochondria membrane protein that serves as a mitochondrial gatekeeper, controlling metabolic and energy homeostasis, as well as crosstalk between the mitochondria and the rest of the cell. It is also involved in mitochondria-mediated apoptosis. Here, we demonstrate that the VDAC1-based peptide, R-Tf-D-LP4, affects several parameters of a NAFLD mouse model in which administration of streptozotocin (STZ) and high-fat diet 32 (STZ/HFD-32) led to both type 2 diabetes (T2D) and NAFLD phenotypes. We focused on diabetes, showing that R-Tf-D-LP4 peptide treatment of STZ/HFD-32 fed mice restored the elevated blood glucose back to close to normal levels, and increased the number and average size of islets and their insulin content as compared to untreated controls. Similar results were obtained when staining the islets for glucose transporter type 2. In addition, the R-Tf-D-LP4 peptide decreased the elevated glucose levels in a mouse displaying obese, diabetic, and metabolic symptoms due to a mutation in the obese (ob) gene. To explore the cause of the peptide-induced improvement in the endocrine pancreas phenotype, we analyzed the expression levels of the proliferation marker, Ki-67, and found it to be increased in the islets of STZ/HFD-32 fed mice treated with the R-Tf-D-LP4 peptide. Moreover, peptide treatment of STZ/HFD-32 fed mice caused an increase in the expression of β-cell maturation and differentiation PDX1 transcription factor that enhances the expression of the insulin-encoding gene, and is essential for islet development, function, proliferation, and maintenance of glucose homeostasis in the pancreas. This increase occurred mainly in the β-cells, suggesting that the source of their increased number after R-Tf-D-LP4 peptide treatment was most likely due to β-cell proliferation. These results suggest that the VDAC1-based R-Tf-D-LP4 peptide has potential as a treatment for diabetes. Full article
(This article belongs to the Special Issue Differential Regulation of Glial and Neuronal Functions by TSPO)
Open AccessArticle
Permanent Pro-Tumorigenic Shift in Adipose Tissue-Derived Mesenchymal Stromal Cells Induced by Breast Malignancy
Cells 2020, 9(2), 480; https://doi.org/10.3390/cells9020480 (registering DOI) - 19 Feb 2020
Viewed by 111
Abstract
During cancer progression, breast tumor cells interact with adjacent adipose tissue, which has been shown to be engaged in cancer aggressiveness. However, the tumor-directed changes in adipose tissue-resident stromal cells affected by the tumor–stroma communication are still poorly understood. The acquired changes might [...] Read more.
During cancer progression, breast tumor cells interact with adjacent adipose tissue, which has been shown to be engaged in cancer aggressiveness. However, the tumor-directed changes in adipose tissue-resident stromal cells affected by the tumor–stroma communication are still poorly understood. The acquired changes might remain in the tissue even after tumor removal and may contribute to tumor relapse. We investigated functional properties (migratory capacity, expression and secretion profile) of mesenchymal stromal cells isolated from healthy (n = 9) and tumor-distant breast adipose tissue (n = 32). Cancer patient-derived mesenchymal stromal cells (MSCs) (MSC-CA) exhibited a significantly disarranged secretion profile and proliferation potential. Co-culture with MDA-MB-231, T47D and JIMT-1, representing different subtypes of breast cancer, was used to analyze the effect of MSCs on proliferation, invasion and tumorigenicity. The MSC-CA enhanced tumorigenicity and altered xenograft composition in immunodeficient mice. Histological analysis revealed collective cell invasion with a specific invasive front of EMT-positive tumor cells as well as invasion of cancer cells to the nerve-surrounding space. This study identifies that adipose tissue-derived mesenchymal stromal cells are primed and permanently altered by tumor presence in breast tissue and have the potential to increase tumor cell invasive ability through the activation of epithelial-to-mesenchymal transition in tumor cells. Full article
(This article belongs to the Special Issue Adipose-Derived Stromal/Stem Cells)
Show Figures

Graphical abstract

Open AccessArticle
The Role of miR-21 in Osteoblasts–Osteoclasts Coupling In Vitro
Cells 2020, 9(2), 479; https://doi.org/10.3390/cells9020479 (registering DOI) - 19 Feb 2020
Viewed by 126
Abstract
MiR-21 is being gradually more and more recognized as a molecule regulating bone tissue homeostasis. However, its function is not fully understood due to the dual role of miR-21 on bone-forming and bone-resorbing cells. In this study, we investigated the impact of miR-21 [...] Read more.
MiR-21 is being gradually more and more recognized as a molecule regulating bone tissue homeostasis. However, its function is not fully understood due to the dual role of miR-21 on bone-forming and bone-resorbing cells. In this study, we investigated the impact of miR-21 inhibition on pre-osteoblastic cells differentiation and paracrine signaling towards pre-osteoclasts using indirect co-culture model of mouse pre-osteoblast (MC3T3) and pre-osteoclast (4B12) cell lines. The inhibition of miR-21 in MC3T3 cells (MC3T3inh21) modulated expression of genes encoding osteogenic markers including collagen type I (Coll-1), osteocalcin (Ocl), osteopontin (Opn), and runt-related transcription factor 2 (Runx-2). Inhibition of miR-21 in osteogenic cultures of MC3T3 also inflected the synthesis of OPN protein which is essential for proper mineralization of extracellular matrix (ECM) and anchoring osteoclasts to the bones. Furthermore, it was shown that in osteoblasts miR-21 regulates expression of factors that are vital for survival of pre-osteoclast, such as receptor activator of nuclear factor κB ligand (RANKL). The pre-osteoclast cultured with MC3T3inh21 cells was characterized by lowered expression of several markers associated with osteoclasts’ differentiation, foremost tartrate-resistant acid phosphatase (Trap) but also receptor activator of nuclear factor-κB ligand (Rank), cathepsin K (Ctsk), carbonic anhydrase II (CaII), and matrix metalloproteinase (Mmp-9). Collectively, our data indicate that the inhibition of miR-21 in MC3T3 cells impairs the differentiation and ECM mineralization as well as influences paracrine signaling leading to decreased viability of pre-osteoclasts. Full article
(This article belongs to the collection Regulatory Functions of microRNAs)
Show Figures

Figure 1

Open AccessFeature PaperReview
Extra Virgin Olive Oil Polyphenols: Modulation of Cellular Pathways Related to Oxidant Species and Inflammation in Aging
Cells 2020, 9(2), 478; https://doi.org/10.3390/cells9020478 (registering DOI) - 19 Feb 2020
Viewed by 132
Abstract
The olive-oil-centered Mediterranean diet has been associated with extended life expectancy and a reduction in the risk of age-related degenerative diseases. Extra virgin olive oil (EVOO) itself has been proposed to promote a “successful aging”, being able to virtually modulate all the features [...] Read more.
The olive-oil-centered Mediterranean diet has been associated with extended life expectancy and a reduction in the risk of age-related degenerative diseases. Extra virgin olive oil (EVOO) itself has been proposed to promote a “successful aging”, being able to virtually modulate all the features of the aging process, because of its great monounsaturated fatty acids content and its minor bioactive compounds, the polyphenols above all. Polyphenols are mostly antioxidant and anti-inflammatory compounds, able to modulate abnormal cellular signaling induced by pro-inflammatory stimuli and oxidative stress, as that related to NF-E2-related factor 2 (Nrf-2) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), which have been identified as important modulators of age-related disorders and aging itself. This review summarizes existing literature about the interaction between EVOO polyphenols and NF-κB and Nrf-2 signaling pathways. Reported studies show the ability of EVOO phenolics, mainly hydroxytyrosol and tyrosol, to activate Nrf-2 signaling, inducing a cellular defense response and to prevent NF-κB activation, thus suppressing the induction of a pro-inflammatory phenotype. Literature data, although not exhaustive, indicate as a whole that EVOO polyphenols may significantly help to modulate the aging process, so tightly connected to oxidative stress and chronic inflammation. Full article
Show Figures

Graphical abstract

Open AccessReview
Succinic Semialdehyde Dehydrogenase Deficiency: An Update
Cells 2020, 9(2), 477; https://doi.org/10.3390/cells9020477 (registering DOI) - 19 Feb 2020
Viewed by 109
Abstract
Succinic semialdehyde dehydrogenase deficiency (SSADH-D) is a genetic disorder that results from the aberrant metabolism of the neurotransmitter γ-amino butyric acid (GABA). The disease is caused by impaired activity of the mitochondrial enzyme succinic semialdehyde dehydrogenase. SSADH-D manifests as varying degrees of mental [...] Read more.
Succinic semialdehyde dehydrogenase deficiency (SSADH-D) is a genetic disorder that results from the aberrant metabolism of the neurotransmitter γ-amino butyric acid (GABA). The disease is caused by impaired activity of the mitochondrial enzyme succinic semialdehyde dehydrogenase. SSADH-D manifests as varying degrees of mental retardation, autism, ataxia, and epileptic seizures, but the clinical picture is highly heterogeneous. So far, there is no approved curative therapy for this disease. In this review, we briefly summarize the molecular genetics of SSADH-D, the past and ongoing clinical trials, and the emerging features of the molecular pathogenesis, including redox imbalance and mitochondrial dysfunction. The main aim of this review is to discuss the potential of further therapy approaches that have so far not been tested in SSADH-D, such as pharmacological chaperones, read-through drugs, and gene therapy. Special attention will also be paid to elucidating the role of patient advocacy organizations in facilitating research and in the communication between researchers and patients. Full article
(This article belongs to the Special Issue Metabolomics in Physiology and Diseases)
Show Figures

Graphical abstract

Open AccessReview
Oocyte Maturation in Starfish
Cells 2020, 9(2), 476; https://doi.org/10.3390/cells9020476 (registering DOI) - 19 Feb 2020
Viewed by 116
Abstract
Oocyte maturation is a process that occurs in the ovaries, where an immature oocyte resumes meiosis to attain competence for normal fertilization after ovulation/spawning. In starfish, the hormone 1-methyladenine binds to an unidentified receptor on the plasma membrane of oocytes, inducing a conformational [...] Read more.
Oocyte maturation is a process that occurs in the ovaries, where an immature oocyte resumes meiosis to attain competence for normal fertilization after ovulation/spawning. In starfish, the hormone 1-methyladenine binds to an unidentified receptor on the plasma membrane of oocytes, inducing a conformational change in the heterotrimeric GTP-binding protein α-subunit (Gα), so that the α-subunit binds GTP in exchange of GDP on the plasma membrane. The GTP-binding protein βγ-subunit (Gβγ) is released from Gα, and the released Gβγ activates phosphatidylinositol-3 kinase (PI3K), followed by the target of rapamycin kinase complex2 (TORC2) and 3-phosphoinositide-dependent protein kinase 1 (PDK1)-dependent phosphorylation of serum- and glucocorticoid-regulated kinase (SGK) of ovarian oocytes. Thereafter, SGK activates Na+/H+ exchanger (NHE) to increase the intracellular pH (pHi) from ~6.7 to ~6.9. Moreover, SGK phosphorylates Cdc25 and Myt1, thereby inducing the de-phosphorylation and activation of cyclin B–Cdk1, causing germinal vesicle breakdown (GVBD). Both pHi increase and GVBD are required for spindle assembly at metaphase I, followed by MI arrest at pHi 6.9 until spawning. Due to MI arrest or SGK-dependent pHi control, spawned oocytes can be fertilized normally Full article
(This article belongs to the Special Issue Manufacturing a Female Gamete: An Oocyte Story)
Show Figures

Figure 1

Open AccessReview
The Impact of Cigarette Smoking on Risk of Rheumatoid Arthritis: A Narrative Review
Cells 2020, 9(2), 475; https://doi.org/10.3390/cells9020475 (registering DOI) - 19 Feb 2020
Viewed by 126
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation and subsequent proliferation of synovial tissues, which eventually leads to cartilage and bone destruction without effective treatments. Anti-citrullinated cyclic peptide/protein antibody (ACPA) and rheumatoid factor (RF) are two main characteristic autoantibodies found [...] Read more.
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation and subsequent proliferation of synovial tissues, which eventually leads to cartilage and bone destruction without effective treatments. Anti-citrullinated cyclic peptide/protein antibody (ACPA) and rheumatoid factor (RF) are two main characteristic autoantibodies found in RA patients and are associated with unfavorable disease outcomes. Although etiologies and causes of the disease have not been fully clarified yet, it is likely that interactive contributions of genetic and environmental factors play a main role in RA pathology. Previous works have demonstrated several genetic and environmental factors as risks of RA development and/or autoantibody productions. Among these, cigarette smoking and HLA-DRB1 are the well-established environmental and genetic risks, respectively. In this narrative review, we provide a recent update on genetic contributions to RA and the environmental risks of RA with a special focus on cigarette smoking and its impacts on RA pathology. We also describe gene–environmental interaction in RA pathogenesis with an emphasis on cigarette smoking and HLA-DRB1. Full article
(This article belongs to the Special Issue The Molecular and Cellular Basis for Rheumatoid Arthritis)
Show Figures

Figure 1

Open AccessArticle
RNA-Guided Genomic Localization of H2A.L.2 Histone Variant
Cells 2020, 9(2), 474; https://doi.org/10.3390/cells9020474 (registering DOI) - 18 Feb 2020
Viewed by 205
Abstract
The molecular basis of residual histone retention after the nearly genome-wide histone-to-protamine replacement during late spermatogenesis is a critical and open question. Our previous investigations showed that in postmeiotic male germ cells, the genome-scale incorporation of histone variants TH2B-H2A.L.2 allows a controlled replacement [...] Read more.
The molecular basis of residual histone retention after the nearly genome-wide histone-to-protamine replacement during late spermatogenesis is a critical and open question. Our previous investigations showed that in postmeiotic male germ cells, the genome-scale incorporation of histone variants TH2B-H2A.L.2 allows a controlled replacement of histones by protamines to occur. Here, we highlight the intrinsic ability of H2A.L.2 to specifically target the pericentric regions of the genome and discuss why pericentric heterochromatin is a privileged site of histone retention in mature spermatozoa. We observed that the intranuclear localization of H2A.L.2 is controlled by its ability to bind RNA, as well as by an interplay between its RNA-binding activity and its tropism for pericentric heterochromatin. We identify the H2A.L.2 RNA-binding domain and demonstrate that in somatic cells, the replacement of H2A.L.2 RNA-binding motif enhances and stabilizes its pericentric localization, while the forced expression of RNA increases its homogenous nuclear distribution. Based on these data, we propose that the specific accumulation of RNA on pericentric regions combined with H2A.L.2 tropism for these regions are responsible for stabilizing H2A.L.2 on these regions in mature spermatozoa. This situation would favor histone retention on pericentric heterochromatin. Full article
(This article belongs to the Special Issue Histone Variants from Structure to Molecular Function)
Open AccessArticle
Metabolic Reprogramming of Host Cells in Response to Enteroviral Infection
Cells 2020, 9(2), 473; https://doi.org/10.3390/cells9020473 (registering DOI) - 18 Feb 2020
Viewed by 181
Abstract
Enterovirus 71 (EV71) infection is an endemic disease in Southeast Asia and China. We have previously shown that EV71 virus causes functional changes in mitochondria. It is speculative whether EV71 virus alters the host cell metabolism to its own benefit. Using a metabolomics [...] Read more.
Enterovirus 71 (EV71) infection is an endemic disease in Southeast Asia and China. We have previously shown that EV71 virus causes functional changes in mitochondria. It is speculative whether EV71 virus alters the host cell metabolism to its own benefit. Using a metabolomics approach, we demonstrate that EV71-infected Vero cells had significant changes in metabolism. Glutathione and its related metabolites, and several amino acids, such as glutamate and aspartate, changed significantly with the infectious dose of virus. Other pathways, including glycolysis and tricarboxylic acid cycle, were also altered. A change in glutamine/glutamate metabolism is critical to the viral infection. The presence of glutamine in culture medium was associated with an increase in viral replication. Dimethyl α-ketoglutarate treatment partially mimicked the effect of glutamine supplementation. In addition, the immunoblot analysis revealed that the expression of glutamate dehydrogenase (GDH) and trifunctional carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD) increased during infection. Knockdown of expression of glutaminase (GLS), GDH and CAD drastically reduced the cytopathic effect (CPE) and viral replication. Furthermore, we found that CAD bound VP1 to promote the de novo pyrimidine synthesis. Our findings suggest that virus may induce metabolic reprogramming of host cells to promote its replication through interactions between viral and host cell proteins. Full article
(This article belongs to the Section Cellular Pathology)
Previous Issue
Back to TopTop