Previous Issue

E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Table of Contents

Viruses, Volume 11, Issue 2 (February 2019)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
View options order results:
result details:
Displaying articles 1-79
Export citation of selected articles as:
Open AccessArticle A Single-Nucleotide Polymorphism of αVβ3 Integrin Is Associated with the Andes Virus Infection Susceptibility
Viruses 2019, 11(2), 169; https://doi.org/10.3390/v11020169 (registering DOI)
Received: 22 January 2019 / Revised: 11 February 2019 / Accepted: 15 February 2019 / Published: 20 February 2019
PDF Full-text (946 KB) | HTML Full-text | XML Full-text
Abstract
The Andes Orthohantavirus (ANDV), which causes the hantavirus cardiopulmonary syndrome, enters cells via integrins, and a change from leucine to proline at residue 33 in the PSI domain (L33P), impairs ANDV recognition. We assessed the association between this human polymorphism and ANDV infection. [...] Read more.
The Andes Orthohantavirus (ANDV), which causes the hantavirus cardiopulmonary syndrome, enters cells via integrins, and a change from leucine to proline at residue 33 in the PSI domain (L33P), impairs ANDV recognition. We assessed the association between this human polymorphism and ANDV infection. We defined susceptible and protective genotypes as “TT” (coding leucine) and “CC” (coding proline), respectively. TT was present at a rate of 89.2% (66/74) among the first cohort of ANDV cases and at 60% (63/105) among exposed close-household contacts, who remained uninfected (p < 0.05). The protective genotype (CC) was absent in all 85 ANDV cases, in both cohorts, and was present at 11.4% of the exposed close-household contacts who remained uninfected. Logistic regression modeling for risk of infection had an OR of 6.2–12.6 (p < 0.05) in the presence of TT and well-known ANDV risk activities. Moreover, an OR of 7.3 was obtained when the TT condition was analyzed for two groups exposed to the same environmental risk. Host genetic background was found to have an important role in ANDV infection susceptibility, in the studied population. Full article
Figures

Figure 1

Open AccessReview Myeloid Cells during Viral Infections and Inflammation
Viruses 2019, 11(2), 168; https://doi.org/10.3390/v11020168 (registering DOI)
Received: 1 February 2019 / Revised: 15 February 2019 / Accepted: 16 February 2019 / Published: 19 February 2019
PDF Full-text (666 KB)
Abstract
Myeloid cells represent a diverse range of innate leukocytes that are crucial for mounting successful immune responses against viruses. These cells are responsible for detecting pathogen-associated molecular patterns, thereby initiating a signaling cascade that results in the production of cytokines such as interferons [...] Read more.
Myeloid cells represent a diverse range of innate leukocytes that are crucial for mounting successful immune responses against viruses. These cells are responsible for detecting pathogen-associated molecular patterns, thereby initiating a signaling cascade that results in the production of cytokines such as interferons to mitigate infections. The aim of this review is to outline recent advances in our knowledge of the roles that neutrophils and inflammatory monocytes play in initiating and coordinating host responses against viral infections. A focus is placed on myeloid cell development, trafficking and antiviral mechanisms. Although known for promoting inflammation, there is a growing body of literature which demonstrates that myeloid cells can also play critical regulatory or immunosuppressive roles, especially following the elimination of viruses. Additionally, the ability of myeloid cells to control other innate and adaptive leukocytes during viral infections situates these cells as key, yet under-appreciated mediators of pathogenic inflammation that can sometimes trigger cytokine storms. The information presented here should assist researchers in integrating myeloid cell biology into the design of novel and more effective virus-targeted therapies. Full article
(This article belongs to the Special Issue Viruses and Inflammation)
Open AccessArticle Genetic Evolution and Molecular Selection of the HE Gene of Influenza C Virus
Viruses 2019, 11(2), 167; https://doi.org/10.3390/v11020167 (registering DOI)
Received: 3 December 2018 / Revised: 15 January 2019 / Accepted: 31 January 2019 / Published: 19 February 2019
PDF Full-text (2885 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Influenza C virus (ICV) was first identified in humans and swine, but recently also in cattle, indicating a wider host range and potential threat to both the livestock industry and public health than was originally anticipated. The ICV hemagglutinin-esterase (HE) glycoprotein has multiple [...] Read more.
Influenza C virus (ICV) was first identified in humans and swine, but recently also in cattle, indicating a wider host range and potential threat to both the livestock industry and public health than was originally anticipated. The ICV hemagglutinin-esterase (HE) glycoprotein has multiple functions in the viral replication cycle and is the major determinant of antigenicity. Here, we developed a comparative approach integrating genetics, molecular selection analysis, and structural biology to identify the codon usage and adaptive evolution of ICV. We show that ICV can be classified into six lineages, consistent with previous studies. The HE gene has a low codon usage bias, which may facilitate ICV replication by reducing competition during evolution. Natural selection, dinucleotide composition, and mutation pressure shape the codon usage patterns of the ICV HE gene, with natural selection being the most important factor. Codon adaptation index (CAI) and relative codon deoptimization index (RCDI) analysis revealed that the greatest adaption of ICV was to humans, followed by cattle and swine. Additionally, similarity index (SiD) analysis revealed that swine exerted a stronger evolutionary pressure on ICV than humans, which is considered the primary reservoir. Furthermore, a similar tendency was also observed in the M gene. Of note, we found HE residues 176, 194, and 198 to be under positive selection, which may be the result of escape from antibody responses. Our study provides useful information on the genetic evolution of ICV from a new perspective that can help devise prevention and control strategies. Full article
(This article belongs to the Special Issue Non-A Influenza)
Figures

Figure 1

Open AccessArticle Enhanced Ability of Oligomeric Nanobodies Targeting MERS Coronavirus Receptor-Binding Domain
Viruses 2019, 11(2), 166; https://doi.org/10.3390/v11020166 (registering DOI)
Received: 28 January 2019 / Revised: 14 February 2019 / Accepted: 15 February 2019 / Published: 19 February 2019
PDF Full-text (2237 KB) | HTML Full-text | XML Full-text
Abstract
Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV), an infectious coronavirus first reported in 2012, has a mortality rate greater than 35%. Therapeutic antibodies are key tools for preventing and treating MERS-CoV infection, but to date no such agents have been approved for treatment [...] Read more.
Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV), an infectious coronavirus first reported in 2012, has a mortality rate greater than 35%. Therapeutic antibodies are key tools for preventing and treating MERS-CoV infection, but to date no such agents have been approved for treatment of this virus. Nanobodies (Nbs) are camelid heavy chain variable domains with properties distinct from those of conventional antibodies and antibody fragments. We generated two oligomeric Nbs by linking two or three monomeric Nbs (Mono-Nbs) targeting the MERS-CoV receptor-binding domain (RBD), and compared their RBD-binding affinity, RBD–receptor binding inhibition, stability, and neutralizing and cross-neutralizing activity against MERS-CoV. Relative to Mono-Nb, dimeric Nb (Di-Nb) and trimeric Nb (Tri-Nb) had significantly greater ability to bind MERS-CoV RBD proteins with or without mutations in the RBD, thereby potently blocking RBD–MERS-CoV receptor binding. The engineered oligomeric Nbs were very stable under extreme conditions, including low or high pH, protease (pepsin), chaotropic denaturant (urea), and high temperature. Importantly, Di-Nb and Tri-Nb exerted significantly elevated broad-spectrum neutralizing activity against at least 19 human and camel MERS-CoV strains isolated in different countries and years. Overall, the engineered Nbs could be developed into effective therapeutic agents for prevention and treatment of MERS-CoV infection. Full article
(This article belongs to the Special Issue MERS-CoV)
Figures

Graphical abstract

Open AccessTechnical Note QuantIF: An ImageJ Macro to Automatically Determine the Percentage of Infected Cells after Immunofluorescence
Viruses 2019, 11(2), 165; https://doi.org/10.3390/v11020165 (registering DOI)
Received: 21 January 2019 / Revised: 12 February 2019 / Accepted: 17 February 2019 / Published: 19 February 2019
PDF Full-text (1520 KB) | XML Full-text | Supplementary Files
Abstract
Counting labeled cells, after immunofluorescence or expression of a genetically fluorescent reporter protein, is frequently used to quantify viral infection. However, this can be very tedious without a high content screening apparatus. For this reason, we have developed QuantIF, an ImageJ macro that [...] Read more.
Counting labeled cells, after immunofluorescence or expression of a genetically fluorescent reporter protein, is frequently used to quantify viral infection. However, this can be very tedious without a high content screening apparatus. For this reason, we have developed QuantIF, an ImageJ macro that automatically determines the total number of cells and the number of labeled cells from two images of the same field, using DAPI- and specific-stainings, respectively. QuantIF can automatically analyze hundreds of images, taking approximately one second for each field. It is freely available as supplementary data online at MDPI.com and has been developed using ImageJ, a free image processing program that can run on any computer with a Java virtual machine, which is distributed for Windows, Mac, and Linux. It is routinely used in our labs to quantify viral infections in vitro, but can easily be used for other applications that require quantification of labeled cells. Full article
(This article belongs to the Special Issue Virus Bioinformatics)
Open AccessReview Current Understanding of the Molecular Basis of Venezuelan Equine Encephalitis Virus Pathogenesis and Vaccine Development
Viruses 2019, 11(2), 164; https://doi.org/10.3390/v11020164
Received: 27 December 2018 / Revised: 30 January 2019 / Accepted: 7 February 2019 / Published: 18 February 2019
Viewed by 131 | PDF Full-text (1573 KB) | HTML Full-text | XML Full-text
Abstract
Venezuelan equine encephalitis virus (VEEV) is an alphavirus in the family Togaviridae. VEEV is highly infectious in aerosol form and a known bio-warfare agent that can cause severe encephalitis in humans. Periodic outbreaks of VEEV occur predominantly in Central and South America. Increased [...] Read more.
Venezuelan equine encephalitis virus (VEEV) is an alphavirus in the family Togaviridae. VEEV is highly infectious in aerosol form and a known bio-warfare agent that can cause severe encephalitis in humans. Periodic outbreaks of VEEV occur predominantly in Central and South America. Increased interest in VEEV has resulted in a more thorough understanding of the pathogenesis of this disease. Inflammation plays a paradoxical role of antiviral response as well as development of lethal encephalitis through an interplay between the host and viral factors that dictate virus replication. VEEV has efficient replication machinery that adapts to overcome deleterious mutations in the viral genome or improve interactions with host factors. In the last few decades there has been ongoing development of various VEEV vaccine candidates addressing the shortcomings of the current investigational new drugs or approved vaccines. We review the current understanding of the molecular basis of VEEV pathogenesis and discuss various types of vaccine candidates. Full article
(This article belongs to the Special Issue Viruses and Inflammation)
Figures

Figure 1

Open AccessArticle Pathogenicity and Transmissibility of North American H7 Low Pathogenic Avian Influenza Viruses in Chickens and Turkeys
Viruses 2019, 11(2), 163; https://doi.org/10.3390/v11020163
Received: 22 January 2019 / Revised: 11 February 2019 / Accepted: 13 February 2019 / Published: 16 February 2019
Viewed by 269 | PDF Full-text (1960 KB) | HTML Full-text | XML Full-text
Abstract
Low pathogenic avian influenza (LPAI) viruses can silently circulate in poultry and wild aquatic birds and potentially mutate into highly pathogenic avian influenza (HPAI) viruses. In the U.S., recent emergence and spread of H7N8 and H7N9 HPAI viruses not only caused devastating losses [...] Read more.
Low pathogenic avian influenza (LPAI) viruses can silently circulate in poultry and wild aquatic birds and potentially mutate into highly pathogenic avian influenza (HPAI) viruses. In the U.S., recent emergence and spread of H7N8 and H7N9 HPAI viruses not only caused devastating losses to domestic poultry but also underscored the capability of LPAI viruses to mutate into HPAI viruses. Therefore, in this study, we evaluated pathogenicity and transmissibility of H7N8 and H7N9 LPAI viruses (the progenitors of HPAI viruses) in chickens and turkeys. We also included H7N2 isolated from an outbreak of LPAI in commercial chickens. H7 viruses replicated more efficiently in the respiratory tract than in the gastrointestinal tract, suggesting that their replication is restricted to the upper respiratory tract. Specifically, H7N2 replicated most efficiently in two-week-old chickens and turkeys. In contrast, H7N8 replicated least efficiently in those birds. Further, replication of H7N2 and H7N9 was restricted in the upper respiratory tract of four-week-old specific-pathogen-free (SPF) and broiler chickens. Despite their restricted replication, the two viruses efficiently transmitted from infected to naïve birds by direct contact, leading to seroconversion of contacted chickens. Our findings suggest the importance of continuous monitoring and surveillance of LPAI viruses in the fields. Full article
(This article belongs to the Special Issue Avian Respiratory Viruses)
Figures

Figure 1

Open AccessArticle Integrated MicroRNA and mRNA Profiling in Zika Virus-Infected Neurons
Viruses 2019, 11(2), 162; https://doi.org/10.3390/v11020162
Received: 10 January 2019 / Revised: 8 February 2019 / Accepted: 14 February 2019 / Published: 16 February 2019
Viewed by 179 | PDF Full-text (3157 KB) | HTML Full-text | XML Full-text
Abstract
Zika virus (ZIKV) infections have caused a wide spectrum of neurological diseases, such as Guillain-Barré syndrome, myelitis, meningoencephalitis, and congenital microcephaly. No effective therapies currently exist for treating patients infected with ZIKV. MicroRNAs (miRNAs) are a group of small RNAs involved in the [...] Read more.
Zika virus (ZIKV) infections have caused a wide spectrum of neurological diseases, such as Guillain-Barré syndrome, myelitis, meningoencephalitis, and congenital microcephaly. No effective therapies currently exist for treating patients infected with ZIKV. MicroRNAs (miRNAs) are a group of small RNAs involved in the regulation of a wide variety of cellular and physiological processes. In this study, we analyzed digital miRNA and mRNA profiles in ZIKV-infected primary mouse neurons using the nCounter technology. A total of 599 miRNAs and 770 mRNAs were examined. We demonstrate that ZIKV infection causes global downregulation of miRNAs with only few upregulated miRNAs. ZIKV-modulated miRNAs including miR-155, miR-203, miR-29a, and miR-124-3p are known to play critical role in flavivirus infection, anti-viral immunity and brain injury. ZIKV infection also results in downregulation of miRNA processing enzymes. In contrast, ZIKV infection induces dramatic upregulation of anti-viral, inflammatory and apoptotic genes. Furthermore, our data demonstrate an inverse correlation between ZIKV-modulated miRNAs and target host mRNAs induced by ZIKV. Biofunctional analysis revealed that ZIKV-modulated miRNAs and mRNAs regulate the pathways related to neurological development and neuroinflammatory responses. Functional studies targeting specific miRNA are warranted to develop therapeutics for the management of ZIKV neurological disease. Full article
(This article belongs to the Special Issue New Advances on Zika Virus Research)
Figures

Figure 1

Open AccessArticle Ebola Virus Isolation Using Huh-7 Cells has Methodological Advantages and Similar Sensitivity to Isolation Using Other Cell Types and Suckling BALB/c Laboratory Mice
Viruses 2019, 11(2), 161; https://doi.org/10.3390/v11020161
Received: 14 January 2019 / Revised: 5 February 2019 / Accepted: 13 February 2019 / Published: 16 February 2019
Viewed by 209 | PDF Full-text (7522 KB) | HTML Full-text | XML Full-text
Abstract
Following the largest Ebola virus disease outbreak from 2013 to 2016, viral RNA has been detected in survivors from semen and breast milk long after disease recovery. However, as there have been few cases of sexual transmission, it is unclear whether every RNA [...] Read more.
Following the largest Ebola virus disease outbreak from 2013 to 2016, viral RNA has been detected in survivors from semen and breast milk long after disease recovery. However, as there have been few cases of sexual transmission, it is unclear whether every RNA positive fluid sample contains infectious virus. Virus isolation, typically using cell culture or animal models, can serve as a tool to determine the infectivity of patient samples. However, the sensitivity of these methods has not been assessed for the Ebola virus isolate, Makona. Described here is an efficiency comparison of Ebola virus Makona isolation using Vero E6, Huh-7, monocyte-derived macrophage cells, and suckling laboratory mice. Isolation sensitivity was similar in all methods tested. Laboratory mice and Huh-7 cells were less affected by toxicity from breast milk than Vero E6 and MDM cells. However, the advantages associated with isolation in Huh-7 cells over laboratory mice, including cost effectiveness, sample volume preservation, and a reduction in animal use, make Huh-7 cells the preferred substrate tested for Ebola virus Makona isolation. Full article
(This article belongs to the collection Advances in Ebolavirus, Marburgvirus, and Cuevavirus Research)
Figures

Figure 1

Open AccessArticle A Novel MVA-Based HIV Vaccine Candidate (MVA-gp145-GPN) Co-Expressing Clade C Membrane-Bound Trimeric gp145 Env and Gag-Induced Virus-Like Particles (VLPs) Triggered Broad and Multifunctional HIV-1-Specific T Cell and Antibody Responses
Viruses 2019, 11(2), 160; https://doi.org/10.3390/v11020160
Received: 22 January 2019 / Revised: 12 February 2019 / Accepted: 13 February 2019 / Published: 16 February 2019
Viewed by 147 | PDF Full-text (5394 KB) | HTML Full-text | XML Full-text
Abstract
The development of an effective Human Immunodeficiency Virus (HIV) vaccine that is able to stimulate both the humoral and cellular HIV-1-specific immune responses remains a major priority challenge. In this study, we described the generation and preclinical evaluation of single and double modified [...] Read more.
The development of an effective Human Immunodeficiency Virus (HIV) vaccine that is able to stimulate both the humoral and cellular HIV-1-specific immune responses remains a major priority challenge. In this study, we described the generation and preclinical evaluation of single and double modified vaccinia virus Ankara (MVA)-based candidates expressing the HIV-1 clade C membrane-bound gp145(ZM96) trimeric protein and/or the Gag(ZM96)-Pol-Nef(CN54) (GPN) polyprotein that was processed to form Gag-induced virus-like particles (VLPs). In vitro characterization of MVA recombinants revealed the stable integration of HIV-1 genes without affecting its replication capacity. In cells that were infected with Env-expressing viruses, the gp145 protein was inserted into the plasma membrane exposing critical epitopes that were recognized by broadly neutralizing antibodies (bNAbs), whereas Gag-induced VLPs were released from cells that were infected with GPN-expressing viruses. VLP particles as well as purified MVA virions contain Env and Gag visualized by immunoelectron microscopy and western-blot of fractions that were obtained after detergent treatments of purified virus particles. In BALB/c mice, homologous MVA-gp145-GPN prime/boost regimen induced broad and polyfunctional Env- and Gag-specific CD4 T cells and antigen-specific T follicular helper (Tfh) and Germinal Center (GC) B cells, which correlated with robust HIV-1-specific humoral responses. Overall, these results support the consideration of MVA-gp145-GPN vector as a potential vaccine candidate against HIV-1. Full article
(This article belongs to the Section Antivirals & Vaccines)
Figures

Figure 1

Open AccessArticle Induction of Tier 1 HIV Neutralizing Antibodies by Envelope Trimers Incorporated into a Replication Competent Vesicular Stomatitis Virus Vector
Viruses 2019, 11(2), 159; https://doi.org/10.3390/v11020159
Received: 10 January 2019 / Revised: 4 February 2019 / Accepted: 12 February 2019 / Published: 15 February 2019
Viewed by 220 | PDF Full-text (2519 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A chimeric vesicular stomatitis virus with the glycoprotein of the lymphocytic choriomeningitis virus, VSV-GP, is a potent viral vaccine vector that overcomes several of the limitations of wild-type VSV. Here, we evaluated the potential of VSV-GP as an HIV vaccine vector. We introduced [...] Read more.
A chimeric vesicular stomatitis virus with the glycoprotein of the lymphocytic choriomeningitis virus, VSV-GP, is a potent viral vaccine vector that overcomes several of the limitations of wild-type VSV. Here, we evaluated the potential of VSV-GP as an HIV vaccine vector. We introduced genes for different variants of the HIV-1 envelope protein Env, i.e., secreted or membrane-anchored, intact or mutated furin cleavage site or different C-termini, into the genome of VSV-GP. We found that the addition of the Env antigen did not attenuate VSV-GP replication. All HIV-1 Env variants were expressed in VSV-GP infected cells and some were incorporated very efficiently into VSV-GP particles. Crucial epitopes for binding of broadly neutralizing antibodies against HIV-1 such as MPER (membrane-proximal external region), CD4 binding site, V1V2 and V3 loop were present on the surface of VSV-GP-Env particles. Binding of quaternary antibodies indicated a trimeric structure of VSV-GP incorporated Env. We detected high HIV-1 antibody titers in mice and showed that vectors expressing membrane-anchored Env elicited higher antibody titers than vectors that secreted Envs. In rabbits, Tier 1A HIV-1 neutralizing antibodies were detectable after prime immunization and titers further increased after boosting with a second immunization. Taken together, VSV-GP-Env is a promising vector vaccine against HIV-1 infection since this vector permits incorporation of native monomeric and/or trimeric HIV-1 Env into a viral membrane. Full article
(This article belongs to the Special Issue HIV Vaccines)
Figures

Figure 1

Open AccessArticle THO Complex Subunit 7 Homolog Negatively Regulates Cellular Antiviral Response against RNA Viruses by Targeting TBK1
Viruses 2019, 11(2), 158; https://doi.org/10.3390/v11020158
Received: 7 December 2018 / Revised: 5 February 2019 / Accepted: 12 February 2019 / Published: 15 February 2019
Viewed by 177 | PDF Full-text (2319 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
RNA virus invasion induces a cytosolic RIG-I-like receptor (RLR) signaling pathway by promoting assembly of the Mitochondrial antiviral-signaling protein (MAVS) signalosome and triggers the rapid production of type I interferons (IFNs) and proinflammatory cytokines. During this process, the pivotal kinase TANK binding kinase [...] Read more.
RNA virus invasion induces a cytosolic RIG-I-like receptor (RLR) signaling pathway by promoting assembly of the Mitochondrial antiviral-signaling protein (MAVS) signalosome and triggers the rapid production of type I interferons (IFNs) and proinflammatory cytokines. During this process, the pivotal kinase TANK binding kinase 1 (TBK1) is recruited to the MAVS signalosome to transduce a robust innate antiviral immune response by phosphorylating transcription factors interferon regulatory factor 3 (IRF3) and nuclear factor (NF)-κB and promoting their nuclear translocation. However, the molecular mechanisms underlying the negative regulation of TBK1 are largely unknown. In the present study, we found that THO complex subunit 7 homolog (THOC7) negatively regulated the cellular antiviral response by promoting the proteasomal degradation of TBK1. THOC7 overexpression potently inhibited Sendai virus- or polyI:C-induced IRF3 dimerization and phosphorylation and IFN-β production. In contrast, THOC7 knockdown had the opposite effects. Moreover, we simulated a node-activated pathway to show that THOC7 regulated the RIG-I-like receptors (RLR)-/MAVS-dependent signaling cascade at the TBK1 level. Furthermore, THOC7 was involved in the MAVS signalosome and promoted TBK1 degradation by increasing its K48 ubiquitin-associated polyubiquitination. Together, these findings suggest that THOC7 negatively regulates type I IFN production by promoting TBK1 proteasomal degradation, thus improving our understanding of innate antiviral immune responses. Full article
Figures

Figure 1

Open AccessArticle The Roles of prM-E Proteins in Historical and Epidemic Zika Virus-mediated Infection and Neurocytotoxicity
Viruses 2019, 11(2), 157; https://doi.org/10.3390/v11020157
Received: 18 December 2018 / Revised: 3 February 2019 / Accepted: 9 February 2019 / Published: 14 February 2019
Viewed by 319 | PDF Full-text (3474 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The Zika virus (ZIKV) was first isolated in Africa in 1947. It was shown to be a mild virus that had limited threat to humans. However, the resurgence of the ZIKV in the most recent Brazil outbreak surprised us because it causes severe [...] Read more.
The Zika virus (ZIKV) was first isolated in Africa in 1947. It was shown to be a mild virus that had limited threat to humans. However, the resurgence of the ZIKV in the most recent Brazil outbreak surprised us because it causes severe human congenital and neurologic disorders including microcephaly in newborns and Guillain-Barré syndrome in adults. Studies showed that the epidemic ZIKV strains are phenotypically different from the historic strains, suggesting that the epidemic ZIKV has acquired mutations associated with the altered viral pathogenicity. However, what genetic changes are responsible for the changed viral pathogenicity remains largely unknown. One of our early studies suggested that the ZIKV structural proteins contribute in part to the observed virologic differences. The objectives of this study were to compare the historic African MR766 ZIKV strain with two epidemic Brazilian strains (BR15 and ICD) for their abilities to initiate viral infection and to confer neurocytopathic effects in the human brain’s SNB-19 glial cells, and further to determine which part of the ZIKV structural proteins are responsible for the observed differences. Our results show that the historic African (MR766) and epidemic Brazilian (BR15 and ICD) ZIKV strains are different in viral attachment to host neuronal cells, viral permissiveness and replication, as well as in the induction of cytopathic effects. The analysis of chimeric viruses, generated between the MR766 and BR15 molecular clones, suggests that the ZIKV E protein correlates with the viral attachment, and the C-prM region contributes to the permissiveness and ZIKV-induced cytopathic effects. The expression of adenoviruses, expressing prM and its processed protein products, shows that the prM protein and its cleaved Pr product, but not the mature M protein, induces apoptotic cell death in the SNB-19 cells. We found that the Pr region, which resides on the N-terminal side of prM protein, is responsible for prM-induced apoptotic cell death. Mutational analysis further identified four amino-acid residues that have an impact on the ability of prM to induce apoptosis. Together, the results of this study show that the difference of ZIKV-mediated viral pathogenicity, between the historic and epidemic strains, contributed in part the functions of the structural prM-E proteins. Full article
(This article belongs to the Special Issue New Advances on Zika Virus Research)
Figures

Graphical abstract

Open AccessReview Immune Exhaustion: Past Lessons and New Insights from Lymphocytic Choriomeningitis Virus
Viruses 2019, 11(2), 156; https://doi.org/10.3390/v11020156
Received: 15 January 2019 / Revised: 8 February 2019 / Accepted: 9 February 2019 / Published: 13 February 2019
Viewed by 202 | PDF Full-text (2478 KB) | HTML Full-text | XML Full-text
Abstract
Lymphocytic choriomeningitis virus (LCMV) is a paradigm-forming experimental system with a remarkable track record of contributing to the discovery of many of the fundamental concepts of modern immunology. The ability of LCMV to establish a chronic infection in immunocompetent adult mice was instrumental [...] Read more.
Lymphocytic choriomeningitis virus (LCMV) is a paradigm-forming experimental system with a remarkable track record of contributing to the discovery of many of the fundamental concepts of modern immunology. The ability of LCMV to establish a chronic infection in immunocompetent adult mice was instrumental for identifying T cell exhaustion and this system has been invaluable for uncovering the complexity, regulators, and consequences of this state. These findings have been directly relevant for understanding why ineffective T cell responses commonly arise during many chronic infections including HIV and HCV, as well as during tumor outgrowth. The principal feature of exhausted T cells is the inability to elaborate the array of effector functions necessary to contain the underlying infection or tumor. Using LCMV to determine how to prevent and reverse T cell exhaustion has highlighted the potential of checkpoint blockade therapies, most notably PD-1 inhibition strategies, for improving cellular immunity under conditions of antigen persistence. Here, we discuss the discovery, properties, and regulators of exhausted T cells and highlight how LCMV has been at the forefront of advancing our understanding of these ineffective responses. Full article
(This article belongs to the Special Issue LCMV – A Pillar for Immunology Research)
Figures

Figure 1

Open AccessArticle Protein Disulfide Isomerase Inhibitor Suppresses Viral Replication and Production during Antibody-Dependent Enhancement of Dengue Virus Infection in Human Monocytic Cells
Viruses 2019, 11(2), 155; https://doi.org/10.3390/v11020155
Received: 29 November 2018 / Revised: 11 February 2019 / Accepted: 12 February 2019 / Published: 13 February 2019
Viewed by 187 | PDF Full-text (1126 KB) | Supplementary Files
Abstract
One of several mechanisms that leads to the development of dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) is called antibody-dependent enhancement (ADE). Monocytes can be infected by the ADE phenomenon, which occurs in dengue secondary infection. This study aimed to investigate [...] Read more.
One of several mechanisms that leads to the development of dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) is called antibody-dependent enhancement (ADE). Monocytes can be infected by the ADE phenomenon, which occurs in dengue secondary infection. This study aimed to investigate the proteins involved in ADE of DENV infection in the human monocytic cell line U937. The phosphoproteins were used to perform and analyze for protein expression using mass spectrometry (GeLC-MS/MS). The differential phosphoproteins revealed 1131 altered proteins compared between isotype- and DENV-specific antibody-treated monocytes. The altered proteins revealed 558 upregulated proteins and 573 downregulated proteins. Protein disulfide isomerase (PDI), which is an enzyme that had a high-ranking fold change and that catalyzes the formation, breakage, and rearrangement of disulfide bonds within a protein molecule, was selected for further study. PDI was found to be important for dengue virus infectivity during the ADE model. The effect of PDI inhibition was also shown to be involved in the early stage of life cycle by time-of-drug-addition assay. These results suggest that PDI is important for protein translation and virion assembly of dengue virus during infection in human monocytes, and it may play a significant role as a chaperone to stabilize dengue protein synthesis. Full article
(This article belongs to the Section Animal Viruses)
Open AccessArticle Preexisting Virus-Specific T Lymphocytes-Mediated Enhancement of Adenovirus Infections to Human Blood CD14+ Cells
Viruses 2019, 11(2), 154; https://doi.org/10.3390/v11020154
Received: 12 January 2019 / Revised: 6 February 2019 / Accepted: 11 February 2019 / Published: 13 February 2019
Viewed by 162 | PDF Full-text (4213 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Antigen-specific T lymphocytes play a critical role in controlling viral infections. However, we report here that preexisting virus-specific T cell responses also contribute to promoting adenovirus (Ad) infection. Previously, we found that CD14+ monocytes from Ad-seropositive individuals exhibited an increased susceptibility to Ad [...] Read more.
Antigen-specific T lymphocytes play a critical role in controlling viral infections. However, we report here that preexisting virus-specific T cell responses also contribute to promoting adenovirus (Ad) infection. Previously, we found that CD14+ monocytes from Ad-seropositive individuals exhibited an increased susceptibility to Ad infection, when compared with that of Ad-seronegative individuals. But the underlying mechanisms for this enhancement of viral infection are not completely clarified. In this study, we found that the efficacy of Ad infection into CD14+ monocytes was significantly decreased after CD3+ T lymphocytes depletion from PBMC samples of Ad-seropositive individuals. In contrast, adding virus-specific CD3+ T lymphocytes into PBMC samples of Ad-seronegative individuals resulted in a significant increase of infection efficacy. CD3+ T lymphocytes in PBMC samples from Ad-seropositive individuals were more sensitive to be activated by adenovirus stimulus, characterized by upregulation of multiple cytokines and activation markers and also enhancement of cell proliferation. Further studies demonstrated that GM-CSF and IL-4 can promote Ad infection by up-regulating the expression of scavenger receptor 1 (SR-A) and integrins αVβ5 receptor of CD14+ cells. And taken together, these results suggest a novel role of virus-specific T cells in mediating enhancement of viral infection, and provide insights to understand the pathogenesis and complicated interactions between viruses and host immune cells. Full article
(This article belongs to the Section Animal Viruses)
Figures

Graphical abstract

Open AccessArticle Glycosylation of HIV Env Impacts IgG Subtype Responses to Vaccination
Viruses 2019, 11(2), 153; https://doi.org/10.3390/v11020153
Received: 22 January 2019 / Revised: 6 February 2019 / Accepted: 10 February 2019 / Published: 13 February 2019
Viewed by 182 | PDF Full-text (3143 KB) | HTML Full-text | XML Full-text
Abstract
The envelope protein (Env) is the only surface protein of the human immunodeficiency virus (HIV) and as such the exclusive target for protective antibody responses. Experimental evidences from mouse models suggest a modulating property of Env to steer antibody class switching towards the [...] Read more.
The envelope protein (Env) is the only surface protein of the human immunodeficiency virus (HIV) and as such the exclusive target for protective antibody responses. Experimental evidences from mouse models suggest a modulating property of Env to steer antibody class switching towards the less effective antibody subclass IgG1 accompanied with strong TH2 helper responses. By simple physical linkage we were able to imprint this bias, exemplified by a low IgG2a/IgG1 ratio of antigen-specific antibodies, onto an unrelated antigen, namely the HIV capsid protein p24. Here, our results indicate the glycan moiety of Env as the responsible immune modulating activity. Firstly, in Card9−/− mice lacking specific C-Type lectin responsiveness, DNA immunization significantly increased the IgG2a/IgG1 ratio for the Env-specific antibodies while the antibody response against the F-protein of the respiratory syncytial virus (RSV) serving as control antigen remained unchanged. Secondly, sequential shortening of the Env encoding sequence revealed the C2V3 domain as responsible for the strong IgG1 responses and TH2 cytokine production. Removing all potential N-glycosylation sites from the C2V3 domain by site-specific mutagenesis reversed the vaccine-induced immune response towards a Th1-dominated T-cell response and a balanced IgG2a/IgG1 ratio. Accordingly, the stretch of oligomannose glycans in the C2V3 domain of Env might mediate a specific uptake and/or signaling modus in antigen presenting cells by involving interaction with an as yet unknown C-type lectin receptor. Our results contribute to a deeper understanding of the impact of Env glycosylation on HIV antigen-specific immune responses, which will further support HIV vaccine development. Full article
(This article belongs to the Special Issue The Glycobiology of Viral Infections)
Figures

Figure 1

Open AccessArticle Interferon Regulatory Factor 3-Mediated Signaling Limits Middle-East Respiratory Syndrome (MERS) Coronavirus Propagation in Cells from an Insectivorous Bat
Viruses 2019, 11(2), 152; https://doi.org/10.3390/v11020152
Received: 10 December 2018 / Revised: 8 February 2019 / Accepted: 11 February 2019 / Published: 13 February 2019
Viewed by 244 | PDF Full-text (4574 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Insectivorous bats are speculated to be ancestral hosts of Middle-East respiratory syndrome (MERS) coronavirus (CoV). MERS-CoV causes disease in humans with thirty-five percent fatality, and has evolved proteins that counteract human antiviral responses. Since bats experimentally infected with MERS-CoV do not develop signs [...] Read more.
Insectivorous bats are speculated to be ancestral hosts of Middle-East respiratory syndrome (MERS) coronavirus (CoV). MERS-CoV causes disease in humans with thirty-five percent fatality, and has evolved proteins that counteract human antiviral responses. Since bats experimentally infected with MERS-CoV do not develop signs of disease, we tested the hypothesis that MERS-CoV would replicate less efficiently in bat cells than in human cells because of its inability to subvert antiviral responses in bat cells. We infected human and bat (Eptesicus fuscus) cells with MERS-CoV and observed that the virus grew to higher titers in human cells. MERS-CoV also effectively suppressed the antiviral interferon beta (IFNβ) response in human cells, unlike in bat cells. To determine if IRF3, a critical mediator of the interferon response, also regulated the response in bats, we examined the response of IRF3 to poly(I:C), a synthetic analogue of viral double-stranded RNA. We observed that bat IRF3 responded to poly(I:C) by nuclear translocation and post-translational modifications, hallmarks of IRF3 activation. Suppression of IRF3 by small-interfering RNA (siRNA) demonstrated that IRF3 was critical for poly(I:C) and MERS-CoV induced induction of IFNβ in bat cells. Our study demonstrates that innate antiviral signaling in E. fuscus bat cells is resistant to MERS-CoV-mediated subversion. Full article
(This article belongs to the Special Issue Viruses and Bats 2019)
Figures

Figure 1

Open AccessReview Human Norovirus: Experimental Models of Infection
Viruses 2019, 11(2), 151; https://doi.org/10.3390/v11020151
Received: 18 January 2019 / Revised: 6 February 2019 / Accepted: 7 February 2019 / Published: 12 February 2019
Viewed by 227 | PDF Full-text (937 KB) | HTML Full-text | XML Full-text
Abstract
Human noroviruses (HuNoVs) are a leading cause of acute gastroenteritis worldwide. HuNoV infections lead to substantial societal and economic burdens. There are currently no licensed vaccines or therapeutics for the prevention or treatment of HuNoVs. A lack of well-characterized in vitro and in [...] Read more.
Human noroviruses (HuNoVs) are a leading cause of acute gastroenteritis worldwide. HuNoV infections lead to substantial societal and economic burdens. There are currently no licensed vaccines or therapeutics for the prevention or treatment of HuNoVs. A lack of well-characterized in vitro and in vivo infection models has limited the development of HuNoV countermeasures. Experimental infection of human volunteers and the use of related viruses such as murine NoV have provided helpful insights into HuNoV biology and vaccine and therapeutic development. There remains a need for robust animal models and reverse genetic systems to further HuNoV research. This review summarizes available HuNoV animal models and reverse genetic systems, while providing insight into their usefulness for vaccine and therapeutic development. Full article
(This article belongs to the Special Issue Noroviruses)
Figures

Figure 1

Open AccessReview Genetic Determinants of the Re-Emergence of Arboviral Diseases
Viruses 2019, 11(2), 150; https://doi.org/10.3390/v11020150
Received: 14 December 2018 / Revised: 3 February 2019 / Accepted: 6 February 2019 / Published: 12 February 2019
Viewed by 334 | PDF Full-text (409 KB) | HTML Full-text | XML Full-text
Abstract
Mosquito-borne diseases constitute a large portion of infectious diseases, causing more than 700,000 deaths annually. Mosquito-transmitted viruses, such as yellow fever, dengue, West Nile, chikungunya, and Zika viruses, have re-emerged recently and remain a public health threat worldwide. Global climate change, rapid urbanization, [...] Read more.
Mosquito-borne diseases constitute a large portion of infectious diseases, causing more than 700,000 deaths annually. Mosquito-transmitted viruses, such as yellow fever, dengue, West Nile, chikungunya, and Zika viruses, have re-emerged recently and remain a public health threat worldwide. Global climate change, rapid urbanization, burgeoning international travel, expansion of mosquito populations, vector competence, and host and viral genetics may all together contribute to the re-emergence of arboviruses. In this brief review, we summarize the host and viral genetic determinants that may enhance infectivity in the host, viral fitness in mosquitoes and viral transmission by mosquitoes. Full article
(This article belongs to the Special Issue Chikungunya Virus and (Re-) Emerging Alphaviruses)
Figures

Figure 1

Open AccessArticle Characterization of Mouse Monoclonal Antibodies Against the HA of A(H7N9) Influenza Virus
Viruses 2019, 11(2), 149; https://doi.org/10.3390/v11020149
Received: 22 January 2019 / Revised: 8 February 2019 / Accepted: 8 February 2019 / Published: 11 February 2019
Viewed by 267 | PDF Full-text (1352 KB) | HTML Full-text | XML Full-text
Abstract
Many cases of human infection with the H7N9 virus have been detected in China since 2013. H7N9 viruses are maintained in chickens and are transmitted to humans at live bird markets. During circulation in birds, H7N9 viruses have accumulated amino acid substitutions in [...] Read more.
Many cases of human infection with the H7N9 virus have been detected in China since 2013. H7N9 viruses are maintained in chickens and are transmitted to humans at live bird markets. During circulation in birds, H7N9 viruses have accumulated amino acid substitutions in their hemagglutinin (HA), which resulted in an antigenically change in the recent H7N9 viruses. Here, we characterized 46 mouse monoclonal antibodies against the HA of the prototype strain. 16 H7-HA-specific monoclonal antibodies (mAbs) possessed hemagglutination inhibition (HI) and neutralization activities by recognizing the major antigenic site A; four other H7-HA-specific clones also showed HI and neutralizing activities via recognition of the major antigenic sites A and D; seven mAbs that reacted with several HA subtypes and possibly recognized the HA stem partially protected mice from lethal infection with prototype H7N9 virus; and the remaining 19 mAbs had neither HI nor neutralization activity. All human H7N9 viruses tested showed a similar neutralization sensitivity to the first group of 16 mAbs, whereas human H7N9 viruses isolated in 2016–2017 were not neutralized by a second group of 4 mAbs. These results suggest that amino acid substitutions at the epitope of the second mAb group appear to be involved in the antigenic drift of the H7N9 viruses. Further analysis is required to fully understand the antigenic change in H7N9 viruses. Full article
(This article belongs to the Section Animal Viruses)
Figures

Figure 1

Open AccessArticle Geographic Distribution of HCV-GT3 Subtypes and Naturally Occurring Resistance Associated Substitutions
Viruses 2019, 11(2), 148; https://doi.org/10.3390/v11020148
Received: 28 December 2018 / Revised: 5 February 2019 / Accepted: 7 February 2019 / Published: 11 February 2019
Viewed by 174 | PDF Full-text (3805 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Background: Little is known about the frequency or geographic distributions of naturally occurring resistance-associated substitutions (RASs) in the nonstructural protein 5A (NS5A) domain of hepatitis-C virus (HCV) genotype-3 (GT-3) different subtypes. We investigated naturally occurring GT-3 RASs that confer resistance to NS5A inhibitors. [...] Read more.
Background: Little is known about the frequency or geographic distributions of naturally occurring resistance-associated substitutions (RASs) in the nonstructural protein 5A (NS5A) domain of hepatitis-C virus (HCV) genotype-3 (GT-3) different subtypes. We investigated naturally occurring GT-3 RASs that confer resistance to NS5A inhibitors. Methods: From a publicly accessible database, we retrieved 58 complete GT-3 genomes and an additional 731 worldwide NS5A sequences from patients infected with GT-3 that were naive to direct-acting antiviral treatment. Results: We performed a phylogenetic analysis of NS5A domains in complete HCV genomes to determine more precisely HCV-GT-3 subtypes, based on commonly used target regions (e.g., 5′untranslated region and NS5B partial domain). Among 789 NS5A sequences, GT-3nonA subtypes were more prevalent in Asia than in other geographic regions (p < 0.0001). The A30K RAS was detected more frequently in HCV GT-3nonA (84.6%) than in GT-3A subtypes (0.8%), and the amino acid change was polymorphic in isolates from Asia. Conclusions: These results provided information on the accuracy of HCV-3 subtyping with a phylogenetic analysis of the NS5A domain with data from the Los Alamos HCV genome database. This information and the worldwide geographic distribution of RASs according to HCV GT-3 subtypes are crucial steps in meeting the challenges of treating HCV GT-3. Full article
Figures

Figure 1

Open AccessArticle Detection of RNA-Dependent RNA Polymerase of Hubei Reo-Like Virus 7 by Next-Generation Sequencing in Aedes aegypti and Culex quinquefasciatus Mosquitoes from Brazil
Viruses 2019, 11(2), 147; https://doi.org/10.3390/v11020147
Received: 18 January 2019 / Revised: 5 February 2019 / Accepted: 8 February 2019 / Published: 10 February 2019
Viewed by 267 | PDF Full-text (972 KB) | Supplementary Files
Abstract
Advancements in next-generation sequencing and bioinformatics have expanded our knowledge of the diversity of viruses (pathogens and non-pathogens) harbored by mosquitoes. Hubei reo-like virus 7 (HRLV 7) was recently detected by the virome analysis of fecal samples from migratory birds in Australia. We [...] Read more.
Advancements in next-generation sequencing and bioinformatics have expanded our knowledge of the diversity of viruses (pathogens and non-pathogens) harbored by mosquitoes. Hubei reo-like virus 7 (HRLV 7) was recently detected by the virome analysis of fecal samples from migratory birds in Australia. We now report the detection of RNA-dependent RNA polymerase sequences of HRLV 7 in pools of Aedes aegypti and Culex quinquefasciatus mosquitoes species from the Brazilian Amazon forest. Phylogenetic inferences indicated that all HRLV 7 strains fall within the same independent clade. In addition, HRLV 7 shared a close ancestral lineage with the Dinovernavirus genus of the Reoviridae family. Our findings indicate that HRLV 7 is present in two species of mosquitoes. Full article
(This article belongs to the Special Issue Transmission Dynamics of Insect Viruses)
Open AccessArticle A New Genotype of Feline Morbillivirus Infects Primary Cells of the Lung, Kidney, Brain and Peripheral Blood
Viruses 2019, 11(2), 146; https://doi.org/10.3390/v11020146
Received: 7 January 2019 / Revised: 5 February 2019 / Accepted: 7 February 2019 / Published: 9 February 2019
Viewed by 300 | PDF Full-text (10825 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Paramyxoviruses comprise a large number of diverse viruses which in part give rise to severe diseases in affected hosts. A new genotype of feline morbillivirus, tentatively named feline morbillivirus genotype 2 (FeMV-GT2), was isolated from urine of cats with urinary tract diseases. Whole [...] Read more.
Paramyxoviruses comprise a large number of diverse viruses which in part give rise to severe diseases in affected hosts. A new genotype of feline morbillivirus, tentatively named feline morbillivirus genotype 2 (FeMV-GT2), was isolated from urine of cats with urinary tract diseases. Whole genome sequencing showed about 78% nucleotide homology to known feline morbilliviruses. The virus was isolated in permanent cell lines of feline and simian origin. To investigate the cell tropism of FeMV-GT2 feline primary epithelial cells from the kidney, the urinary bladder and the lung, peripheral blood mononuclear cells (PBMC), as well as organotypic brain slice cultures were used for infection experiments. We demonstrate that FeMV-GT2 is able to infect renal and pulmonary epithelial cells, primary cells from the cerebrum and cerebellum, as well as immune cells in the blood, especially CD4+ T cells, CD20+ B cells and monocytes. The cats used for virus isolation shed FeMV-GT2 continuously for several months despite the presence of neutralizing antibodies in the blood. Our results point towards the necessity of increased awareness for this virus when clinical signs of the aforementioned organs are encountered in cats which cannot be explained by other etiologies. Full article
(This article belongs to the Special Issue Morbilliviruses)
Figures

Figure 1

Open AccessArticle Fcγ Receptor Type I (CD64)-Mediated Impairment of the Capacity of Dendritic Cells to Activate Specific CD8 T Cells by IgG-opsonized Friend Virus
Viruses 2019, 11(2), 145; https://doi.org/10.3390/v11020145
Received: 16 November 2018 / Revised: 31 January 2019 / Accepted: 1 February 2019 / Published: 8 February 2019
Viewed by 246 | PDF Full-text (2239 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Dendritic cells (DCs) express Fcγ receptors (FcγRs) for the binding immune complexes (ICs) consisting of IgG and antigens (Ags). IC–FcγR interactions have been demonstrated to enhance activation and antigen-presenting functions of DCs. Utilizing Friend virus (FV), an oncogenic mouse retrovirus, we investigated the [...] Read more.
Dendritic cells (DCs) express Fcγ receptors (FcγRs) for the binding immune complexes (ICs) consisting of IgG and antigens (Ags). IC–FcγR interactions have been demonstrated to enhance activation and antigen-presenting functions of DCs. Utilizing Friend virus (FV), an oncogenic mouse retrovirus, we investigated the effect of IgG-opsonization of retroviral particles on the infection of DCs and the subsequent presentation of viral antigens by DCs to virus-specific CD8 T cells. We found that opsonization by virus-specific non-neutralizing IgG abrogated DC infection and as a consequence significantly reduced the capacity of DCs to activate virus-specific CD8 T cells. Effects of IgG-opsonization were mediated by the high-affinity FcγR type I, CD64, expressed on DCs. Our results suggest that different opsonization patterns on the retroviral surface modulate infection and antigen-presenting functions of DCs, whereby, in contrast to complement, IgG reduces the capacity of DCs to activate cytotoxic T cell (CTL) responses. Full article
(This article belongs to the Special Issue Breakthroughs in Viral Replication)
Figures

Graphical abstract

Open AccessArticle Human Sapovirus among Outpatients with Acute Gastroenteritis in Spain: A One-Year Study
Viruses 2019, 11(2), 144; https://doi.org/10.3390/v11020144
Received: 17 January 2019 / Revised: 6 February 2019 / Accepted: 7 February 2019 / Published: 8 February 2019
Viewed by 367 | PDF Full-text (2148 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Viral agents of human gastroenteritis affect people of all ages across the globe. As a mainly self-limiting disease, it is difficult to evaluate the real prevalence of etiological agents circulating in each region. Many of the analyzed outbreaks are caused by viruses of [...] Read more.
Viral agents of human gastroenteritis affect people of all ages across the globe. As a mainly self-limiting disease, it is difficult to evaluate the real prevalence of etiological agents circulating in each region. Many of the analyzed outbreaks are caused by viruses of the family Caliciviridae, especially the genus Norovirus (NoV). Most studies have focused on other enteric viruses, leaving sapovirus (SaV) underestimated as an important emerging human threat. This one-year study analyzed clinical samples from hospital outpatients with acute gastroenteritis in Spain, with the aim of revealing the importance of human SaV as an emerging viral pathogen. A total of 2667 stools were tested using reverse transcription (RT)-qPCR to detect and quantify SaV. Sapovirus was detected in all age groups, especially in infants, children, and the elderly. The prevalence was 15.64% (417/2667), and was slightly higher in 0–2- and 3–5-year-olds (19.53% and 17.95%, respectively) and much lower in 13–18-year-olds (9.86%). Positive samples were detected throughout the year, with peaks of detection during autumn and the late winter to early spring months. The mean value for the quantified samples was 6.5 × 105 genome copies per gram of stool (GC/g) (range 2.4 × 103–6.6 × 1011 GC/g). RT-nested PCR and sequencing were used for further genotyping. Genetic characterization showed a predominance of genogroup I (GI), followed by GII and GIV. The detection of multiple genotypes suggests the circulation of different strains without any clear tendency. The results obtained suggest SaV as the second major gastroenteritis agent after NoV in the region. Full article
(This article belongs to the Section Animal Viruses)
Figures

Graphical abstract

Open AccessArticle Divergent Evolution of E1A CR3 in Human Adenovirus Species D
Viruses 2019, 11(2), 143; https://doi.org/10.3390/v11020143
Received: 16 January 2019 / Revised: 2 February 2019 / Accepted: 3 February 2019 / Published: 8 February 2019
Viewed by 254 | PDF Full-text (4661 KB) | HTML Full-text | XML Full-text
Abstract
Adenovirus E1A is the first viral protein expressed during infection. E1A controls critical aspects of downstream viral gene expression and cell cycle deregulation, and its function is thought to be highly conserved among adenoviruses. Various bioinformatics analyses of E1A from 38 human adenoviruses [...] Read more.
Adenovirus E1A is the first viral protein expressed during infection. E1A controls critical aspects of downstream viral gene expression and cell cycle deregulation, and its function is thought to be highly conserved among adenoviruses. Various bioinformatics analyses of E1A from 38 human adenoviruses of species D (HAdV-D), including likelihood clade model partitioning, provided highly significant evidence of divergence of HAdV-Ds into two distinct groups for the conserved region 3 (CR3), present only in the E1A 13S isoform. This variance within E1A 13S of HAdV-Ds was not found in any other human adenovirus (HAdV) species. By protein sequence and structural analysis, the zinc finger motif of E1A CR3, previously shown as critical for transcriptional activation, showed the greatest differences. Subsequent codon usage bias analysis revealed substantial divergence in E1A 13S between the two groups of HAdV-Ds, suggesting that these two sub-groups of HAdV-D evolved under different cellular conditions. Hence, HAdV-D E1A embodies a previously unappreciated evolutionary divergence among HAdVs. Full article
(This article belongs to the Section Animal Viruses)
Figures

Figure 1

Open AccessArticle Staufen1 Protein Participates Positively in the Viral RNA Replication of Enterovirus 71
Viruses 2019, 11(2), 142; https://doi.org/10.3390/v11020142
Received: 29 December 2018 / Revised: 29 January 2019 / Accepted: 6 February 2019 / Published: 8 February 2019
Viewed by 457 | PDF Full-text (3489 KB) | HTML Full-text | XML Full-text
Abstract
The double-stranded RNA-binding protein Staufen1 (Stau1) has multiple functions during RNA virus infection. In this study, we investigated the role of Stau1 in viral translation by using a combination of enterovirus 71 (EV-A71) infection, RNA reporter transfection, and in vitro functional and biochemical [...] Read more.
The double-stranded RNA-binding protein Staufen1 (Stau1) has multiple functions during RNA virus infection. In this study, we investigated the role of Stau1 in viral translation by using a combination of enterovirus 71 (EV-A71) infection, RNA reporter transfection, and in vitro functional and biochemical assays. We demonstrated that Stau1 specifically binds to the 5′-untranslated region of EV-A71 viral RNA. The RNA-binding domain 2-3 of Stau1 is responsible for this binding ability. Subsequently, we created a Stau1 knockout cell line using the CRISPR/Cas9 approach to further characterize the functional role of Stau1’s interaction with viral RNA in the EV-A71-infected cells. Both the viral RNA accumulation and viral protein expression were downregulated in the Stau1 knockout cells compared with the wild-type naïve cells. Moreover, dysregulation of viral RNA translation was observed in the Stau1 knockout cells using ribosome fractionation assay, and a reduced RNA stability of 5′-UTR of the EV-A71 was also identified using an RNA stability assay, which indicated that Stau1 has a role in facilitating viral translation during EV-A71 infection. In conclusion, we determined the functional relevance of Stau1 in the EV-A71 infection cycle and herein describe the mechanism of Stau1 participation in viral RNA translation through its interaction with viral RNA. Our results suggest that Stau1 is an important host factor involved in viral translation and influential early in the EV-A71 replication cycle. Full article
(This article belongs to the Special Issue Enteroviruses)
Figures

Figure 1

Open AccessReview Metabolic Reprogramming of the Host Cell by Human Adenovirus Infection
Viruses 2019, 11(2), 141; https://doi.org/10.3390/v11020141
Received: 11 January 2019 / Revised: 2 February 2019 / Accepted: 3 February 2019 / Published: 8 February 2019
Viewed by 407 | PDF Full-text (3645 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Viruses are obligate intracellular parasites that alter many cellular processes to create an environment optimal for viral replication. Reprogramming of cellular metabolism is an important, yet underappreciated feature of many viral infections, as this ensures that the energy and substrates required for viral [...] Read more.
Viruses are obligate intracellular parasites that alter many cellular processes to create an environment optimal for viral replication. Reprogramming of cellular metabolism is an important, yet underappreciated feature of many viral infections, as this ensures that the energy and substrates required for viral replication are available in abundance. Human adenovirus (HAdV), which is the focus of this review, is a small DNA tumor virus that reprograms cellular metabolism in a variety of ways. It is well known that HAdV infection increases glucose uptake and fermentation to lactate in a manner resembling the Warburg effect observed in many cancer cells. However, HAdV infection induces many other metabolic changes. In this review, we integrate the findings from a variety of proteomic and transcriptomic studies to understand the subtleties of metabolite and metabolic pathway control during HAdV infection. We review how the E4ORF1 protein of HAdV enacts some of these changes and summarize evidence for reprogramming of cellular metabolism by the viral E1A protein. Therapies targeting altered metabolism are emerging as cancer treatments, and similar targeting of aberrant components of virally reprogrammed metabolism could have clinical antiviral applications. Full article
(This article belongs to the Special Issue Viruses and Cellular Metabolism)
Figures

Figure 1

Open AccessArticle Rift Valley Fever Virus Exposure amongst Farmers, Farm Workers, and Veterinary Professionals in Central South Africa
Viruses 2019, 11(2), 140; https://doi.org/10.3390/v11020140
Received: 21 December 2018 / Revised: 1 February 2019 / Accepted: 5 February 2019 / Published: 7 February 2019
Viewed by 465 | PDF Full-text (1071 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Rift Valley fever (RVF) is a re-emerging arboviral disease of public health and veterinary importance in Africa and the Arabian Peninsula. Major RVF epidemics were documented in South Africa in 1950–1951, 1974–1975, and 2010–2011. The number of individuals infected during these outbreaks has, [...] Read more.
Rift Valley fever (RVF) is a re-emerging arboviral disease of public health and veterinary importance in Africa and the Arabian Peninsula. Major RVF epidemics were documented in South Africa in 1950–1951, 1974–1975, and 2010–2011. The number of individuals infected during these outbreaks has, however, not been accurately estimated. A total of 823 people in close occupational contact with livestock were interviewed and sampled over a six-month period in 2015–2016 within a 40,000 km2 study area encompassing parts of the Free State and Northern Cape provinces that were affected during the 2010–2011 outbreak. Seroprevalence of RVF virus (RVFV) was 9.1% (95% Confidence Interval (CI95%): 7.2–11.5%) in people working or residing on livestock or game farms and 8.0% in veterinary professionals. The highest seroprevalence (SP = 15.4%; CI95%: 11.4–20.3%) was detected in older age groups (≥40 years old) that had experienced more than one known large epidemic compared to the younger participants (SP = 4.3%; CI95%: 2.6–7.3%). The highest seroprevalence was in addition found in people who injected animals, collected blood samples (Odds ratio (OR) = 2.3; CI95%: 1.0–5.3), slaughtered animals (OR = 3.9; CI95%: 1.2–12.9) and consumed meat from an animal found dead (OR = 3.1; CI95%: 1.5–6.6), or worked on farms with dams for water storage (OR = 2.7; CI95%: 1.0–6.9). We estimated the number of historical RVFV infections of farm staff in the study area to be most likely 3849 and 95% credible interval between 2635 and 5374 based on seroprevalence of 9.1% and national census data. We conclude that human RVF cases were highly underdiagnosed and heterogeneously distributed. Improving precautions during injection, sample collection, slaughtering, and meat processing for consumption, and using personal protective equipment during outbreaks, could lower the risk of RVFV infection. Full article
Figures

Figure 1

Viruses EISSN 1999-4915 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top