Open AccessArticle
Generation and Characterization of HDV-Specific Antisera with Respect to Their Application as Specific and Sensitive Research and Diagnostic Tools
by
Keerthihan Thiyagarajah, Sascha Hein, Jan Raupach, Nirmal Adeel, Johannes Miller, Maximilian Knapp, Christoph Welsch, Mirco Glitscher, Esra Görgülü, Philipp Stoffers, Pia Lembeck, Jonel Trebicka, Sandra Ciesek, Kai-Henrik Peiffer and Eberhard Hildt
Viruses 2025, 17(9), 1220; https://doi.org/10.3390/v17091220 (registering DOI) - 7 Sep 2025
Abstract
The hepatitis D virus (HDV) is a small, defective RNA virus that induces the most severe form of viral hepatitis. Despite its severity, HDV infections are under-diagnosed due to non-standardized and costly diagnostic screening methods. However, limited research has been conducted on characterizing
[...] Read more.
The hepatitis D virus (HDV) is a small, defective RNA virus that induces the most severe form of viral hepatitis. Despite its severity, HDV infections are under-diagnosed due to non-standardized and costly diagnostic screening methods. However, limited research has been conducted on characterizing HDV-specific antibodies as alternative tools for diagnosis. Thus, we generated HDV-specific, polyclonal antibodies by immunizing rabbits with the HDV protein, small hepatitis delta antigen (SHDAg), in its oligomeric or denatured form. We identified SHDAg-specific linear epitopes by peptide array analysis and compared them to epitopes identified in HDV-infected patients. Using in silico structural analysis, we show that certain highly immunogenic domains in SHDAg, such as the coiled-coil domain, are masked in the oligomeric conformation of the protein; others, such as the second arginine-rich motif, are exposed. The nuclear localization signal is presumably exposed only by specific interaction of oligomeric HDAg with the HDV-RNA genome. Through surface plasmon resonance analysis, we identified two polyclonal antibodies derived from rabbit antisera with affinities in the lower nanomolar range. These antibodies were used to establish an ELISA that can quantitatively detect HDV virions in vitro and upon further optimization could be used as a promising alternative diagnostic screening method.
Full article
►▼
Show Figures