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Abstract: This work reports the method ClassiPhage to classify phage genomes using sequence
derived taxonomic features. ClassiPhage uses a set of phage specific Hidden Markov Models (HMMs)
generated from clusters of related proteins. The method was validated on all publicly available
genomes of phages that are known to infect Vibrionaceae. The phages belong to the well-described
phage families of Myoviridae, Podoviridae, Siphoviridae, and Inoviridae. The achieved classification is
consistent with the assignments of the International Committee on Taxonomy of Viruses (ICTV),
all tested phages were assigned to the corresponding group of the ICTV-database. In addition, 44 out
of 58 genomes of Vibrio phages not yet classified could be assigned to a phage family. The remaining
14 genomes may represent phages of new families or subfamilies. Comparative genomics indicates
that the ability of the approach to identify and classify phages is correlated to the conserved genomic
organization. ClassiPhage classifies phages exclusively based on genome sequence data and can be
applied on distinct phage genomes as well as on prophage regions within host genomes. Possible
applications include (a) classifying phages from assembled metagenomes; and (b) the identification
and classification of integrated prophages and the splitting of phage families into subfamilies.

Keywords: Hidden Markov Models; Vibrionaceae; vibriophages; Inoviridae; Myoviridae; Podoviridae;
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1. Introduction

Phages, defined as viruses that infect bacteria, are the most abundant biological entities known
so far [1,2]. The taxonomic classification of viruses and naming of virus taxa is maintained by
the International Committee on Taxonomy of Viruses (ICTV) [3] and the Bacterial and Archaeal
Subcommittee (BAVS) within the ICTV that focuses on phages. The system is based on the evaluation
of a variety of phage properties including the molecular composition of the virus genome (ss/ds,
DNA, or RNA), the structure of the virus capsid and whether or not it is enveloped, the host range,
pathogenicity, and sequence similarity [4,5]. Based upon these different properties the ICTV established
a highly valuable and widely accepted Virus taxonomy. Considering the complexity of features that
contribute to the taxonomy of a phage a comprehensive guideline has been published by Adriaenssens
and Brister [6]. However, due to the availability of Next Generation Sequencing (NGS)-technologies
an increasing amount of genomic and metagenomic sequence data is available that include complete
as well as fragments of so far unknown phage genomes [7,8]. Unfortunately, a systematic classification
of these genomes into the ICTV scheme is impossible due to the lack of corresponding biological
and experimental data [4,9,10]. So for that matter, a taxonomic characterization based on the phages
genome sequence information has become indispensable [5].
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Many attempts at creating viral phylogenetic trees have failed due to the lack of a universal marker
gene and the high mosaic structure of phages [11]. Sequence-based phylogenetic analysis procedures
like 16S and multi locus sequence typing (MLST) [12–14] are based on the existence of an orthologous
marker molecule shared among monophyletic entities. The finding that phages are a polyphyletic
group of biological entities results in the finding that orthologous markers are available only within
the monophyletic subgroups of phages [15]. Consequently, sequence alignment and similarities based
approaches using single selected marker molecules have been designed for phage classifications
restricted to closely related phage taxa [16]. Clustering techniques for viral classification have been
applied by several authors and confirmed that comparative sequence analysis is effective [11,17–19].
Deschavanne et al. [20] demonstrated that genomic signatures based on oligomer composition are
effective to determine the phylogenetic distance of closely-related phages and their hosts, as well as
within the phages preying on related hosts. The investigation revealed that in the case of temperate
phages, the amelioration process [21] interferes with the calculation of phylogenetic distances between
phages. Rohwer and Edwards used the presence and the similarity of shared proteins to generate a
phage proteomic tree using 105 complete sequenced genomes [22]. This approach is robust towards
dynamic changes in the nucleotide composition. However, proteomic trees are limited in cases where
the BLASTP based similarity determination is challenged by distantly related protein sequences.
Bolduc et al. [23] introduced vConTACT, a tool that uses protein clusters and bipartite network-based
distances to assign a given dsDNA phage genome to a taxon.Aiewsakun et al. [24] demonstrated
that the Genome Relationship Applied to Virus Taxonomy (GRAViTy) software platform, which is
designed for eukaryotic virus genomes, performs well on monophyletic subfamilies of viruses that
infect bacteria and archaea. GRAViTy uses composite generalized Jaccard (CGJ) distances based on
shared genomic features to determine the genetic relatedness of a given set of virus genomes.

The development of bioinformatics methods to recognize and characterize genomics elements is
strongly supported if a well-described sample dataset is available. In the case of our project, we selected
vibriophages, i.e., phages that infect Vibrionaceae, as a training dataset. Vibriophages are known as
an important driving force of the evolution of Vibrionaceae, contributing to the emergence of virulence
and the ecological success of this genus [25]. In the case of Vibrio cholera, the causative of the pandemic
disease cholera (WHO newsletter 2018), the virulence of the bacterium is encoded by viral genes of the
phage. Due to its medical importance, it is a well investigated example of how phages contribute to
the evolution and the virulence of bacterial hosts [26–28]. Vibrionaceae include in addition a number of
important fish pathogens, where integrated prophages have been shown to contribute to the virulence
of the strains, and thus leading to great economic losses [29]. Inoviridae, which comprises the CTX-phage
of V. cholera [30], as well as the filamentous M13 phage [31], are among the best-investigated phages that
have been studied for more than VI decades [28]. Due to the medical and economic importance and
the in detail molecular biological knowledge on Inoviridae, a substantial amount of sequencing data on
Vibrionaceae and Vibriophages is available. Castillo et al. [21] have recently estimated that there exist 5674
prophage-like elements within 1874 published Vibrio genome sequences, and that 45% of the strains harbor
prophages of the family Inoviridae, that contribute by lysogenic conversion, with the Zonaoccludens toxin
(Zot), to the virulence of Vibrionaceae. Multiple studies have shown the presence of Caudovirales in addition
to Inoviridae phages in Vibrio species [32–34]. This makes this group an excellent test case for a sequence
based characterization method and a potential identification of phages.

Hidden Markov Model (HMM) based search and clustering methods proved to be efficient for
the characterization of protein families, as well for the taxonomic characterization of corresponding
genes [15,35]. Here, we present a case study that investigates profiles of combined HMMs derived
from related dsDNA and ssDNAphage genomes, and their efficiency characterize and potentially
identify members of four well-described families of vibriophages. We demonstrate that a method
based exclusively on genome sequences achieves a classification of phages that is consistent with the
ICTV standards. Furthermore, a genomic analysis of the profile HMM characterized genomes, reveals
details and relation of phages corresponding to their phylogenetic distance and their host range.



Viruses 2019, 11, 195 3 of 15

2. Materials and Methods

2.1. Data Sources

2.1.1. Phages

Various phage datasets have been used in this study. Firstly, publicly available Vibriophages
sequence datasets were downloaded from NCBI nucleotide database by keyword search; date of
accession 13 February 2018. In total numbers, 159 phage genomes out of which 58 were unclassified,
19 Inoviridae, 37 Myoviridae, 42 Podoviridae, and 15 Siphoviridae genomes infecting Vibrio genomes were
downloaded (Table S1). This dataset was split into a classified for the generation of HMM models and
an unclassified dataset to which the HMMs were applied for classification purposes.

Secondly, a set of 19 experimentally proven and sequenced Inoviridae phages derived from a
genome sequencing project on 9 V. alginolyticus strains and 1 V.typhli strain isolated from Pipefish [29],
was used for validation of the Inoviridae generated HMMs.

Lastly, in order to test the limitations of the method, sequence datasets of the four phage families
were downloaded from the Millard lab database (http://millardlab.org/bioinformatics/bacteriophage-
genomes/); date of accession March 2018. In total numbers, 119 Ino-, 1766 Myo-,1066 Podo- and 3466
Siphoviridae were downloaded (Table S2).

2.1.2. Host Genomes

In order to test the generated HMMs for phage identification, 154 closed Vibrio genomes publicly
available (Table S3) were downloaded from NCBI by keyword search; date of accession 18.06.2018.
In total numbers, 154 Vibrio genomes out of which 39 were V. cholerae, 22 V. parahaemolyticus,
15 V. vulnificus, 13 V. alginolyticus, 13 V. anguillarum, 9 V. campbellii, 5 V. natriegens, 4 V. harveyi,
4 V. coralliilyticus, and other Vibrio species were downloaded.

2.2. Data Preparation

For each genbank file, a multi-FASTA file containing all annotated coding sequences was created.
The collected protein sequences were concatenated and clustered with the Markov clustering algorithm
(MCL) [36]. CD-hit [37] (V4.5.4) was used to remove redundant proteins. In addition, information on
classification, host, phage size, isolation source was extracted from each genbank file.

2.3. Profile HMM Construction

Produced multi-sequence alignment files were used to build profile HMMs [38], using the
“hmmbuild” command available as part of the HMMER (v3.1b1) package. Subsequently, sensitive
profile HMMs were created out of a minimum of five clustered proteins. Removed proteins were
stored for later refinement steps. The command “hmmpress” was used to create binary compressed
data files (.h3m, .h3i, .h3f, and .h3p) from a profile HMM. These binary files were used to look for
orthologous protein hits in the scanned dataset. The scanned input dataset was used to map hit to
the phage family proteins they were derived from. The function “hmmemit” was used to create a
consensus sequence from a generated profile HMM. This consensus sequence is closest in similarity to
the majority of sequences used to create the respective HMM.

2.4. Profile HMM Refinement

Using “BLASTP” to align each protein of a cluster against the consensus sequence, and by
specifying the output table to feature the coverage of each sequence compared to the consensus,
the coverage was compared with the user-specified threshold(standard <50%). Proteins not reaching
the threshold were removed. Created profile HMMs were used to scan the original master-FASTA.
Proteins were refined according to hits of (a) proteins removed due to redundancies, (b) proteins used
to create the HMMs themselves, and (c) not yet assigned proteins. Proteins which are hit and have not

http://millardlab.org/ bioinformatics /bacteriophage-genomes/
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yet been assigned were added to the profile HMM. Proteins that were used to create the HMM and
were not hit were removed from the profile HMM. Proteins that are hit but were removed previously
due to redundancies were not added. Whenever multiple HMMs hit the same sets of proteins as well
as their inputs, they were merged. Otherwise, HMMs were not merged. Refined HMMs were used
to rescan the input master-FASTA and if needed refinement steps of merging were repeated until no
changes occured.

2.5. CDS Prediction and Additional HMM Refinement

Nucleotide sequences between predicted coding sequences (CDS) were extracted from each
genbank file and were translated into an amino acid sequence. Generated refined HMMs were used
to scan the translated regions. A 50% alignment coverage, a negative bit-score value and an E-value
over 1.5 × 10−8 were used as cut-offs to filter the generated hmmscan output. Hits passing the filtered
cut-offs were integrated in the multiple sequence alignment (MSA) input per HMM and HMMs
were rebuilt with the updated MSA. The regenerated HMMs were used to rescan the input phage
master-FASTA files in order to compare HMMs performance when generated based on the original
genbank files and the HMMs generated based on improved genomes. The generated HMMs can be
downloaded at http://appmibio.uni-goettingen.de/index.php?sec=sw.

2.6. Software Tools

PHASTER was used to scan all 154 Vibrio gbk files (Table S3) for the identification of integrated
phages. Visualization was performed using R version 3.2.3 in Rstudio version 1.1.383 and using the R
package “ggplot2” version 3.0.0 unless stated otherwise.

3. Results and Discussion

3.1. Phage Protein Families and Profile HMMs

To generate the initial set of HMMs, the protein sequences of all 110 available genomes known to
infect Vibrionaceae were extracted. The data consists of the proteins from 19 Ino-, 35 Myo-, 42 Podo-, and
14 Siphoviridae phages. To ensure the internal model diversity, redundant sequences were removed and
the remaining protein sequences were clustered with the Markov cluster algorithm (MCL) [37]. Models
generated from clusters of five or more diverse sequences per protein family were evaluated for their
taxonomic specificity (Table 1). In cases where models generated significant better hits against proteins
of the phage taxon from which they have been encoded, the HMMs were considered as taxonomic
indicators of the phage family.

Table 1. Phage family specific HMMs *.

No of Genomes
(Size in Kbp)

No of
Proteins

Proteins
after MCL

HMMS with
>5 Proteins

Positive Evaluated
HMMs

Siphoviridae 14 (37.3–128.6) 1497 414 94 54
Podoviridae 42 (38.4–112.1) 2641 490 233 96
Myoviridae 35 (33.1–250) 5915 921 634 242
Inoviridae 19 (6.3–21) 241 39 12 9

Total 110 10,294 1864 973 401

* Details on the complete calculation of the models are in supplementary Table S1.

The procedure resulted in 401 HMMs representing taxonomic indicative profile HMMs. In total
9 HMMs specific for Ino-, 242 for Myo-, 96 for Podo-, and 54 for Siphoviridae were identified as taxonomic
indicators. The proteins used to generate refined HMMs per phage family are summarized in
Supplemental Tables S5–S8. Note that, due to the lack of a sufficient number of diverse protein
sequences, for some protein families no profile HMMs has been generated.

http://appmibio.uni-goettingen.de/index.php?sec=sw
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3.2. Taxon Specificity of the Protein Family Models

To evaluate the discriminative power of a protein family based taxonomy, the profile HMMs were
applied on three different data sets. (I) HMM scan to classify genomes of bacteriophages, known to
prey on Vibrionaceae, into taxonomic groups consistent to the rules defined by the ICTV. (II) A scan of
all proteins encoded by host genomes to investigate the, performance of the method to classify as well
as potentially identify integrated prophages. In this test, host genomes with known biologically active
vibriophages were used as proof of principle. (III) Scan of proteins of all known phage genomes from
the taxa Ino-, Myo-, Podo-, and Siphoviridae.

3.3. Consistency of Taxon-Specific HMMs

The refined profile HMMs, derived out of the four phages families, were used in scans against all
4630 proteins encoded by the 110 phage genomes (Figure 1).
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Figure 1. Markov Models (HMM) scan of phage family derived models own input “CDS” and coding
sequences of other families. The scan of the protein sequences derived from Ino-, Myo-, Podo-, and
Siphoviridae, was conducted by the profile HMMs. The names of all phages grouped into phage-families
are marked at the bottom of heatmap. The bit-score of the HMM matches was normalized by the size
(in bp) of the HMM’s consensus sequence (data see Table S9). The results are color-coded from blue
(low-score) to red (high-score).

An application of the HMM profiles on the input phage proteome sequences revealed that the vast
majority of the proteins (83.45%) match exclusively the taxon specific HMMs from the corresponding
phage family. However, there was a number of 16.37% cross matches between the different families
within the Caudovirales models, which indicates that the investigated phage genomes might represent
a monophyletic group within the Caudovirales [39]. In contrast, 0.17% cross-matches occurred between
Caudovirales and Inoviridae and thus support the hypothesis that there is gene exchange between these
not monophyletic taxa [39].
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3.3.1. Inoviridae

In the case of the Inoviridae HMMs scanning Caudovirales proteomes, all HMMs match exclusively
proteins encoded in Inoviridae genomes, except of one case which has an e-value of 2.9 × 10−6 to a
protein annotated as “putative streptomycin biosynthesis operon regulatory protein (YP_009021749.1)”.
While Caudovirales HMMs scanning Inoviridae proteomes, all HMMs match exclusively proteins
encoded in Caudovirales except in seven cases where the e-value ranged between 1.5 × 10−8 and
7.8 × 10−5 to proteins annotated as ”hypothetical protein” and “RstR” (Table S10). The low number
of cross matches between Inoviridae and Caudoviridae is due to the phenotypical unique features of
filamentous phages in contrast to tailed phages [40,41]. However, cross match hits may as well reflect
genes that have been exchanged between Inoviridae and Caudovirales by a horizontal gene transfer
(HGT) event [11]. Under this condition, the lower quality of the match score would reflect the time
that the proteins evolved after the HGT-event within their separate viral host genomes.

3.3.2. Caudovirales

In case of Caudovirales, scans of HMMs against their encoded proteins lead to a considerable
number of cross matches (16.37%, 758 out of 4630). The proteins are related to basic phage functionality
that are expected to be encoded by genomes of tailed phage like DNA polymerase, DNA replication
initiation protein, ribonucleases, helicases, endonucleases, ligases, terminase, and phage tail proteins,
as well as hypothetical proteins (Table S10). However, the taxon derived models scored better against
taxon encoded proteins. The type of the proteins and the correlation of HMM scores indicate that the
matches are due to the shared genes with a common phylogenetic history of the tailed phages [11] and
not to false positive recognition event of the HMMs.

To further explore vibriophages of the three Caudovirales groups, genome alignments were
performed revealing that the virus genomes have a host specific diversity (Figure 2).

Figure 2. Alignment of Caudovirales genomes. (A) Myoviridae, (B) Podoviridae, and (C) Siphoviridae.
Genomes of phages that have not yet been assigned by ICTV are marked in pink. Four phages JSF9,
JSF10, JSF12, and JSF15 are boxed in red. JSF12 has been assigned to Podoviridae based on transmission
electron micrographs (TEM) the complete genome alignment indicates a close relation to the Siphoviridae
phage JSF10. The data has been visualized with Easyfig.
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Genome alignments of the three Caudovirales in most of the cases revealed extended sequence
similarities according to the BLAST algorithm within members of the taxonomic groups. Note that the
BLAST algorithm is considerably less sensitive to identify distant similar sequences in comparison
to the profile HMM [15]. This reduced sensitivity is the reason why BLAST based algorithms miss
the taxonomic proximity of the Myoviridae phages 54-7, I1895-B1, and helene 12B3 as well as between
the Myoviridae Eugene 12A10, RYC, and ICP1_2004_A (Figure 2). However, in most of the cases of
Myo- and Siphoviridae, all members exhibit different degrees of similarities over the complete genome
sequences and thus support the statement that the families are monophyletic [24,42]. However, within
the Podoviridae, the comparison revealed four subgroups that did not show pronounced sequence.

3.4. Classification of Unclassified Phages

To examine the generated profile HMMs with regard to their application as a means of
genome sequence based classification of bacteriophages, HMMs derived out of the four different
bacteriophage families were used on to scan the proteomes of 58 published but taxonomically
unclassified Vibrio-phages (Figure 3, Table S1). The details of the HMM scan are summarized in
Table S11.
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Taxonomic Assignments of Tailed Phages

For some of the investigated phage genomes, a taxonomic assignment based on experimental data
is available. Zahid et al. [43] classified the vibriophages JSF9, JSF12 and JSF15 as Podo- and vibriophage
JSF10 as Siphoviridae. Our data supports the assignment of phages JSF9, JSF15, and JSF 10. However,
JSF12 according to the profile HMM hits should be classified as Siphoviridae (Figure 2A,B).

Whole genome alignments revealed that all phages that have been assigned by the ClassiPhage
method to an ICTV taxon comprise large genome regions that can be aligned to corresponding classified
reference genomes. However, in some cases, the overall coverage of the alignable parts of the phage
genomes to reference genomes is sparse. In the case of phage JSF12, experimental data indicates an
assignment to Podoviridae while the alignment reveals a higher similarity to reference genomes from
the Siphoviridae. The latter result is in accordance with the results of the profile HMM scan. Both
sequences have been aligned and closely inspected using ACT where no missing ORF was observed.

The application of the method on the unclassified vibriophages dataset explored the capabilities
of ClassiPhage, where transmission electron micrographs (TEM) images confirm the generated
classification. The HMMs of the different families demonstrated a high specificity, meaning that
when a phage genome is specifically targeted by HMMs of one family, the HMMs of other families
show only insignificant numbers of HMM/protein matches. This specificity further supports the idea
that it is possible to use the generated HMMs as a means of classification as discussed by [15].

The generated Vibrio derived profiles scanning the proteomes of the phages of the four families
gave us the unique opportunity for a Markov based classification, and sometimes subclassification of
distantly related phages, independently of shared molecular markers or pairwise alignment, but still
in accordance with the ICTV classification scheme.

3.5. Inoviridae Taxonomy Phages and Profile HMMs

The nine HMMs specific for Inoviridae infecting Vibrionaceae were used to scan proteins encoded
by all known Inoviridae. Profile HMMs scan resulted in a number of positive matches (Table S12)
reflecting that the Inoviridae phages infecting Ralstonia, Enterobacteria, Pseudomonas, Xanthomonas, and
Stenotrophomonas encode proteins of the same families as the Inoviridae infecting Vibrionaceae (Figure 4).

Four out of the nine vibriophage generated HMMs had hits only to Inoviridae infecting Vibrio
hosts proteomes. The rest matched to proteins from non-VibrioInoviridae. Although all investigated
Inoviridae genome encodes more than one vibrio Inoviridae like protein, not a single protein family was
present in all phages. The most commonly shared protein family members are zot-like proteins, which
have been found in 95% of all phages [28]. According to Mai-Prochnow et al. [28] the genomes of
Inoviridae range within a size of 4 Kbp to 12 Kbp which gives spaces to encode up to 11 genes. The
Inoviridae profile HMMs generated within this work contain 19 protein families which explains why
not each HMM finds a protein in each Inoviridae genome supporting the contribution to virulence of
the phage class [44]. However, what is indicative for a member of Inoviridae is the set of proteins that
are found exclusively in members of this phage family [28].

The generated Inoviridae Vibrio derived profiles scanning the proteomes of all Inoviridae phages
gave us the unique opportunity to explore the extent to which proteins are shared between Inoviridae
infecting different bacterial hosts.
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3.6. Taxonomy of Podoviridae

To elucidate the taxonomic relation of Podoviridae identified by profile HMMs, an extended scan
with the Vibrio Podoviridae models were performed against a set of Podoviridae that infect other bacterial
hosts (Figure 5).
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Figure 5. Profile HMM scan of Podoviridae HMMs from Vibrionaceae versus genomes from Podoviridae
phages infecting non-vibrio hosts. This heatmap shows a profile HMM scan on the proteome of 1066
Podoviridae genomes. Sufficient hits were generated to discriminate four groupings of Podoviridae.
The HMMs have been integrated in the heatmap (y-axis). The HMMs are grouped (on the x-axis)
into general Podoviridae subclassifications. The indicator for the quality of a hit is color coded to
thenormalized bit-score assigned for the respective match by hmmscan. The generated hmmscan
output was visualized using matplotlib library in Python 3.5.
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The Podoviridae profile HMMs from vibriophages exhibited, as in the case of the Inoviridae, hits
to multiple proteins out of all published Podoviridae phages (Table S13). Podoviridae represent a much
more complex and diverse class of phages compared to Inoviridae. The genomes of Podoviridae from
Vibrionaceae comprise 96 distinct protein families. However, when grouped by shared HMM hits
and hosts the results of the scan display a degree of specificity and sensitivity that may be useful
to subclassify the taxon. It is no surprise that phages that prey on the same host share proteins.
However, the scores of the HMM hits reflect the degree of similarity shared by the single proteins.
Thus, the heatmap shows the diversity of the different protein classes and thus gives us an idea of the
phylogenetic history of the proteins.

3.7. CDS Prediction and Additional HMM Refinement

The genome annotation of public available phages is the product of gene prediction programs
with different sensitivity [45–48]. This results in genomes where some CDS have not been annotated.
To examine the value of HMMs to identify such missing phage CDS, the intergenic regions of each
phage genbank file used in this study was scanned using the profile HMMs. In total, 234 nucleotide
regions were identified encoding gene products that align to one of the protein families modelled by
the HHMs (Table S14). Indeed, profile HMMs can be used to identify missing CDS.

To investigate whether these new proteins may improve the profile HMMs, we generated refined
HMMs using the original proteins plus the new identified CDS as described in the material and
methods section. An evaluation of the refined HMMs identified exactly the same proteins per HMM
with slightly moderated hit scores. The test revealed that the refinement of the HMMs did not yield
better performing HMMs. The sensitivity of HMMs is correlated much stronger to the diversity than
to the number of the proteins used in the initial alignment step. We concluded that our original profile
HMMs already contain sufficient diverse proteins to model the protein families and thus the model’s
predictive power is already close to saturation.

3.8. Identification and Classification of Prophages within Bacterial Genomes

Scan of Positive Dataset of Vibrio Genomes

Apart from phage genomes generated from phage particles that have been experimentally
confirmed to infect bacteria, host genomes themselves contain in many cases integrated prophages
derived from old infection events [49]. To examine the reliability of the profile HMMs with regards
to their ability to identify and support the classification of bacteriophages integrated within a
bacterial genome, a scan of 10 sequenced Vibrio strains with experimentally proven active Inoviridae
prophages [29] was performed. The bacteriophage family specific HMMs were used to search for
matches within the complete protein sets of nine Vibrio alginolyticus and one Vibrio typhli genome.
The same strains have been scanned using PHASTER for phage identification. Whenever HMM hits
co-localized and matched a prophage region predicted by PHASTER, they were represented in a
separate facet (Figure 6).

In each of the genomes, the profile HMMs hits indicate the presence of genes encoding putative
phage proteins. In the case of the strains V. alginolyticus K04M1 and K05K4 two complete replicons
are present as extra-chromosomal phages [29] where the nine refined HMMs had matches. In all nine
V. alginolyticus strains, Inoviridae derived profile HMMs match to a single locus on chromosome 2 of
eight strains, and two other loci on the K09K1 strain.In some instances we could identify two distinct
prophages that integrated in close proximity within the host chromosome [29] and was reflected by
multiple hits of the same HMM in the same region. While strains K06K5 and K10K4 had an additional
Inoviridae integrated at the same locus on chromosome 1. For the V. alginolyticus strains it has been
shown by the Phage-seq method [50] that the corresponding genome regions express biological active
Inoviridae particles encoding the protein sequences that match the profile HMM.
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The scan of a positive data set of 9 V. alginolyticus and 1 V. typhli genome confirmed several hits
for Inoviridae proteins, where the integrated prophages were located and experimentally confirmed as
well as on three extra-chromosomal Inoviridae phages supporting the reliability of the method.
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Figure 6. HMM search for prophages in Vibrio genomes with proven phage activities.Family specific
HMMs constructed for Ino-, Myo-, Podo-, andSiphoviridae (grouped on x-axis) were used to scan all
proteins derived from the genome of nine V. alginolyticus and one V. typhli genomes (x-axis per phage
family grouping). In all of the V. alginolyticus genomes, regions encoding proteins matching to the
profile HMMs were found (plotted per position and grouped per replicon on the y-axis). In cases where
a region with consecutive HMM hits predicted as well by PHASTER was separately faceted.

3.9. PHASTER and ClassiPhage Scan of Published VibrioGenomes, Commonly and Additional Identified
Phage Regions

PHASTER scan of 158 published closed Vibrio genomes resulted in the prediction of 458 prophages,
out of which 143 were confirmed by the ClassiPhage scan (Table S15). Additionally, 64 regions where
more than three consecutive HMM hits have been predicted by ClassiPhage that indicate protein genes
of phage origin (Table S16). In addition to locus identification, ClassiPhage enabled us to taxonomically
classify the prophages into Ino-, Myo-, Podo-, or Siphoviridae (Table S16, Figure S2). Most phages (>90%)
could be classified into Inoviridae and some as Podoviridae. Our results further support the findings that
Inoviridae are the most frequent phages infecting Vibrio species [21]. For Myoviridae and Siphoviridae
HMM hits of one hypothetical protein it is not enough to classify.

On the other hand, the ClassiPhage method failed in identifying a set of 315 regions predicted
by PHASTER. This set of genome regions encode proteins that match to proteins of phages infecting
Salmonella, E. coli, Bacilli (Table S15, Figure S1) such as integrases, recombinase as well as proteins of
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unknown functions. Note that phages share these kinds of proteins with other types of mobile genetic
elements and that PHASTER characterized the vast majority of these loci as incomplete. However,
in the case of a vibriophage reference in 61 cases, no HMM generation was possible due to the low
number of proteins clustered during the HMM generation steps (vibriophage 12A4, vibriophage 12B12,
Vibrio 8, Vibrio K139, Vibrio kappa, Vibrio N4, Vibrio pYD38, VfO3K6, Vf33, VfO4K68, VHML, VP4,
VP882, VvAW1, X29).

Future developments, to overcome this limitation, would include using starting data sets not
limited to vibriophages, rather using all available phages, generating HMMs and scanning diverse
bacterial genomes. The possibility to generate more diverse and inclusive HMMs increases when more
clusters generated out of closely related yet diverse phages are used, which reinforces the need to
develop a method including more phage sequences, not limited to a host.

Additionally, the HMM scan resulted in hits that could not be assigned to a reference phage family.
This might be evidence for vibriophages of so far unknown phage taxa or indicate false positive hits
of the ClassiPhage method reflected by a low bit-score value, or due to HGT whenever the bit-score
value was high. The scan of published Vibrio genomes generates much more hits than to a phage
region, the reason why the combination of consecutive hits located in a certain region, size of the
identified ORFs, annotation, E-value and bit scores are key to identify which hits belong to a phage
and which do not. Hits not belonging to a prophage generally have low scores. In the case of a high
score, proteins are annotated as “polymerases” or “flagellum” or “Transposon area”, whereas phage
related annotations are explained by being remnants of phages or by HGT.

The use of a combination of profile HMM hits for phage classification is a relatively new approach
for the characterization of bacteriophages and thus further steps must be considered to better exploit
the method [15].

4. Conclusions

In this work, we describe ClassiPhage, a method for phage classification independent of a shared
molecular marker, based on combination of multiple profile HMM hits generated from a set of classified
phage proteomes, and thus generating a Markov-based classification fitting the ICTV classification.
We discussed the generation and refinement of profile HMMs, their validation across four different viral
taxa and their application for viral taxonomic classification, focusing on vibriophages. Additionally,
we used the generated HMMs to scan whole genomes and benchmarked the identified regions to
PHASTER predicted prophage regions, to attempt viral identification prior to classification using the
ClassiPhage method. We were able to show that the ClassiPhage method was able to reliably classify,
by scanning the protein coding sequences of (i) a set of unclassified vibriophages; (ii) experimentally
proven Inoviridae; and (iii) integrated phages in a set of closed and published Vibrio genomes, into one
of the four phage families. We were also able to show that the method is not limited to vibriophages but
the potential of the method extends towards phage subclassification, especially in the case of Podoviridae.
This analysis supports the correlation of the generated HMMs per vibriophage family to the bacterial
host. Lastly, we were able to show the potential of the method to be used as a phage identification and
classification tool by scanning bacterial genomes using the refined HMMs and analyzing the protein
sequence hits with regards to their consecutive location in the host genome. This method showed
limitations for the case when scanned unclassified phages had one ambiguous hit to the refined HMMs
and when phages identified by PHASTER which were missed by the ClassiPhage method. Phage
identification must be coupled with sequence features for correct phage boundary identification. This
limitation is a consequence of the quality and the constraints of the HMMs generation step, which
makes it clear that fundamental steps must be considered to generate better and more comprehensive
viral derived refined HMMs. We foresee that, with an ever-increasing amount of viral sequences and
with the generation of robust and comprehensive viral HMMs, this method has the ability to classify
phages into their taxonomic family in accordance with the ICTV scheme. The generated scans can
subsequently be used in machine learning approaches to automatically classify viral sequences.
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