- Article
Advancing Drug Repurposing for Rheumatoid Arthritis: Integrating Protein–Protein Interaction, Molecular Docking, and Dynamics Simulations for Targeted Therapeutic Approaches
- Krishna Swaroop Akey,
- Bharat Kumar Reddy Sanapalli and
- Dilep Kumar Sigalapalli
- + 2 authors
Background: Rheumatoid arthritis (RA) is a systemic chronic inflammatory autoimmune disease causing progressive joint destruction, resulting in significant morbidity and increased mortality. Despite advances in treatment, current pharmacological options, including NSAIDs, DMARDs, and biological agents, have limitations in tissue repair and can lead to severe side effects. Objectives: This study aims to explore drug repurposing as a viable approach to identify novel therapeutic agents for RA by utilizing existing FDA-approved drugs. Methods: We applied an integrated computational strategy that uniquely combines network pharmacology with molecular docking and dynamics simulations. The process began with the construction of a protein–protein interaction (PPI) network from 2723 RA-associated genes, which identified five central targets: TNF-α, IL-6, IL-1β, STAT3, and AKT1. We then built protein–drug interaction (PDI) networks by screening 2637 FDA-approved drugs against these targets. Critically, the top candidates from this network analysis were not just docked but were further validated using 100 ns molecular dynamics simulations to thoroughly evaluate binding affinity, complex stability, and interaction dynamics. Results: This multi-tiered computational workflow identified Rifampicin, Telmisartan, Danazol, and Pimozide as the most promising repurposing candidates. They demonstrated strong binding affinities and, importantly, formed stable complexes with TNF-α, IL-6, IL-1β, and STAT3, respectively, in dynamic simulations. The key innovation of this study is this sequential funnel approach, which integrates large-scale network data with atomic-level simulation to prioritize high-confidence drug candidates for RA. Conclusions: In conclusion, this study highlights the potential of repurposing FDA-approved drugs to target key proteins involved in RA, offering a cost-effective and time-efficient strategy to discover new therapies.
12 December 2025




