Genetic and Epigenetic Biomarkers for the Early Oral Cancerization Risk in Periodontitis Patients
Abstract
1. Introduction
2. Periodontal Inflammation and Risk Biomarkers for Oral Cancerization
| Periodontal Bacteria | Target | Activity Changes | Effects on Tumorigenesis |
|---|---|---|---|
| P. gingivalis | P53 | Reduced ↓ [46,47] | Increased proliferation of malignant cells, cellular senescence and DNA damage [48] |
| P. gingivalis/F. nucleatum | Cyclin D1 | Increased ↑ [47,49,50] | Increased cell proliferation [51] |
| Periodontal bacteria | Ki-67 | Increased ↑ [28,52,53] | Increased cell proliferation [54] |
| F. nucleatum | p16INK4A | Increased ↑ [55] | Increased cell proliferation and cellular senescence [56,57] |
| F. nucleatum/P. gingivalis | Histone H2A phosphorylation | Increased ↑ [6,58] | Increased cell proliferation [58] |
| P. gingivalis | Promoter hypermethylation | Increased ↑ [47] | Increased cell proliferation [59] |
| P. gingivalis | DNA hypomethylation | Increased ↑ [47,60] | Increased cell proliferation [47,60] |
| P. gingivalis | miR-125a | Reduced ↓ [61] | Increased cell proliferation [61] |
| P. gingivalis | miR-200a | Reduced ↓ [61] | Increased cell proliferation [61] |
| P. gingivalis | miR-21 | Increased ↑ [47] | Increased cell proliferation |
| Periodontal bacteria | hsa-miR-224 | Increased ↑ [62] | Increased cell proliferation [62] |
| Periodontal bacteria | hsa-miR-210 | Increased ↑ [62] | Increased cell proliferation [62] |
| Periodontal bacteria | hsa-miR-31 | Increased ↑ [62] | Increased cell proliferation [62] |
| Periodontal bacteria | hsa-miR-497 | Reduced ↓ [62] | Increased cell proliferation [62] |
| Periodontal bacteria | hsa-miR-29c | Reduced ↓ [62] | Increased cell proliferation [62] |
| Periodontal bacteria | hsa-miR-486 | Reduced ↓ [62] | Increased cell proliferation [62] |
| Periodontal bacteria | miR-19b-3b | Increased ↑ [58] | Increased cell proliferation [26] |
| Periodontal bacteria | miR-181b-2-3p | Controversial ↑ [63] | Increased cell proliferation [63] |
| Periodontal bacteria | miR-495-3p | Controversial ↑ [64] | Increased cell proliferation [64] |
| P. gingivalis | MMP-1 | Increased ↑ [65] | Extracellular matrix degradation, tumor cell invasion, and metastasis [65] |
| P. gingivalis | MMP-3 | Increased ↑ [65] | Increased cell proliferation, tumor cell invasion and metastasis [65] |
| Periodontal bacteria | MMP-8 | Increased ↑ [65] | Controversial role [65] |
| Periodontal bacteria | MMP-12 | Increased ↑ [58] | Increased cell proliferation, tumor cell invasion [65] |
| F. nucleatum | MMP-13 | Increased ↑ [58] | Increased cell proliferation, tumor cell invasion and metastasis [65] |
| Periodontal bacteria | NETs | Increased ↑ [58] | Extracellular matrix degradation, tumor cell adhesion, invasion, and metastasis [66] |
| Periodontal bacteria | IL-1β and IL-8 | Increased ↑ [58] | Increased cell proliferation and angiogenesis [19,67] |
| P. gingivalis | IL-6 | Increased ↑ [19,67] | Increased cell proliferation and angiogenesis [19,67] |
2.1. Molecular Biomarkers
2.2. Epigenetic Changes and Genetic Biomarkers
2.3. Emerging Biomarkers
| Target | Expression Pattern in Periodontitis | Expression Pattern in OSCC |
|---|---|---|
| miR-125a | Reduced ↓ | Reduced ↓ [61] |
| miR-200a | Reduced ↓ | Reduced ↓ [61] |
| miR-19b-3p | Increased ↑ | Increased ↑ [26] |
| miR-181b-2-3p | Reduced ↓ | Controversial [26,63] |
| miR-495-3p | Reduced ↓ | Controversial [86] |
| hsa-miR-224 | Increased ↑ | Increased ↑ [62] |
| hsa-miR-210 | Increased ↑ | Increased ↑ [62] |
| hsa-miR-31 | Increased ↑ | Increased ↑ [62] |
| hsa-miR-497 | Reduced ↓ | Reduced ↓ [62] |
| hsa-miR-29c | Reduced ↓ | Reduced ↓ [62] |
| hsa-miR-486 | Reduced ↓ | Reduced ↓ [62] |
| MMP-1, MMP-2, MMP-3 | Increased ↑ [97] | Increased ↑ [65] |
| MMP-12 | Increased ↑ | Increased ↑ [58] |
| MMP-13 | Increased ↑ | Increased ↑ [58] |
| MMP-8 | Increased ↑ | Increased ↑ [65] |
| NETs | Increased ↑ | Increased ↑ [96] |
| IL-1β | Increased ↑ | Increased ↑ [58] |
| IL-6 | Increased ↑ | Increased ↑ [19,67] |
| IL-8 | Increased ↑ | Increased ↑ [58] |
2.4. The Role of Periodontal Therapy in Biomarker Levels
3. Current Limitations
4. Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| OSCC | Oral squamous cell carcinoma |
| OPMDs | Oral potentially malignant disorders |
| HNSCC | Head and neck squamous cell carcinoma |
| TME | Tumor microenvironment |
| PAMPs | Pathogen-associated molecular patterns |
| TLRs | Toll-like receptors |
| CtDNA | Circulating tumor DNA |
| HGFs | Human gingival fibroblasts |
| ROS | Reactive oxygen species |
| PDGF | Platelet-derived growth factor |
| NO | Nitric oxide |
| TGF-β | Transforming growth factor-beta |
| HGF | Hepatocyte growth factor |
| NF-κB | Nuclear factor kappa-light-chain-enhancer of activated B cells |
| pRb | Retinoblastoma protein |
| MiRNA | microRNA |
| TSG | Tumor suppressor gene |
| LOH | Loss of heterozygosity |
| MMP | Metalloproteinase |
| NETs | Neutrophil extracellular traps |
| AI | Artificial intelligence |
| ML | Machine learning |
| DL | Deep learning |
References
- Rattanaprukskul, K.; Xia, X.J.; Jiang, M.; Albuquerque-Souza, E.; Bandyopadhyay, D.; Sahingur, S.E. Molecular Signatures of Senescence in Periodontitis: Clinical Insights. J. Dent. Res. 2024, 103, 800–808. [Google Scholar] [CrossRef] [PubMed]
- Albahri, J.; Allison, H.; Whitehead, K.; Muhamadali, H. The role of salivary metabolomics in chronic periodontitis: Bridging oral and systemic diseases. Metabolomics 2025, 21, 24. [Google Scholar] [CrossRef]
- Tonetti, M.S.; Greenwell, H.; Kornman, K.S. Staging and grading of periodontitis: Framework and proposal of a new classification and case definition. J. Periodontol. 2018, 89 (Suppl. S1), S159–S172. [Google Scholar] [CrossRef]
- Zhu, G.; Yang, K.; Liu, T.; Chen, Y.; Li, R.; Dong, J.; Xing, L. Causal network between periodontitis and systemic inflammation: Triangulating evidence from Mendelian randomization and sequencing datasets. J. Periodontol. 2025; Epub ahead of print. [Google Scholar] [CrossRef]
- Polizzi, A.; Nibali, L.; Tartaglia, G.M.; Isola, G. Impact of nonsurgical periodontal treatment on arterial stiffness outcomes related to endothelial dysfunction: A systematic review and meta-analysis. J. Periodontol. 2025, 96, 330–345. [Google Scholar] [CrossRef]
- Baima, G.; Minoli, M.; Michaud, D.S.; Aimetti, M.; Sanz, M.; Loos, B.G.; Romandini, M. Periodontitis and risk of cancer: Mechanistic evidence. Periodontol. 2000 2024, 96, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Marruganti, C.; Suvan, J.E.; D’Aiuto, F. Periodontitis and metabolic diseases (diabetes and obesity): Tackling multimorbidity. Periodontol. 2000, 2023; Epub ahead of print. [Google Scholar] [CrossRef]
- Jungbauer, G.; Stähli, A.; Zhu, X.; Auber Alberi, L.; Sculean, A.; Eick, S. Periodontal microorganisms and Alzheimer disease—A causative relationship? Periodontol. 2000 2022, 89, 59–82. [Google Scholar] [CrossRef]
- Isola, G.; Polizzi, A.; Serra, S.; Boato, M.; Sculean, A. Relationship between periodontitis and systemic diseases: A bibliometric and visual study. Periodontol. 2000, 2025; Epub ahead of print. [Google Scholar] [CrossRef]
- Bonilla, M.; Peñalver, I.; Mesa-López, M.J.; Mesa, F. Association Between Periodontitis and Cancer: A Perspective Review of Mechanisms and Clinical Evidence. J. Clin. Med. 2025, 14, 6334. [Google Scholar] [CrossRef]
- Camañes-Gonzalvo, S.; Montiel-Company, J.M.; Lobo-de-Mena, M.; Safont-Aguilera, M.J.; Fernández-Diaz, A.; López-Roldán, A.; Paredes-Gallardo, V.; Bellot-Arcís, C. Relationship between oral microbiota and colorectal cancer: A systematic review. J. Periodontal Res. 2024, 59, 1071–1082. [Google Scholar] [CrossRef]
- Jagadeesan, D.; Sathasivam, K.V.; Fuloria, N.K.; Balakrishnan, V.; Khor, G.H.; Ravichandran, M.; Solyappan, M.; Fuloria, S.; Gupta, G.; Ahlawat, A.; et al. Comprehensive insights into oral squamous cell carcinoma: Diagnosis, pathogenesis, and therapeutic advances. Pathol.-Res. Pract. 2024, 261, 155489. [Google Scholar] [CrossRef]
- Alves-Costa, S.; Romandini, M.; Nascimento, G.G. Lip and Oral Cancer, Caries and Other Oral Conditions: Estimates From the 2021 Global Burden of Disease Study and Projections up to 2050. J. Periodontal Res. 2025, 60, 544–558. [Google Scholar] [CrossRef]
- Unlu, O.; Demirci, M.; Paksoy, T.; Eden, A.B.; Tansuker, H.D.; Dalmizrak, A.; Aktan, C.; Senel, F.; Sunter, A.V.; Yigit, O.; et al. Oral microbial dysbiosis in patients with oral cavity cancers. Clin. Oral Investig. 2024, 28, 377. [Google Scholar] [CrossRef]
- Pigossi, S.C.; Oliveira, J.A.; de Medeiros, M.C.; Soares, L.F.F.; D’Silva, N.J. Demystifying the link between periodontitis and oral cancer: A systematic review integrating clinical, pre-clinical, and in vitro data. Cancer Metastasis Rev. 2025, 44, 67. [Google Scholar] [CrossRef]
- Mehrnia, N.; Sonis, S. Periodontitis and Oral Cancer Risk. Dent. Clin. N. Am. 2025, 69, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Munzone, M.; Marmo, G.M.; Polizzi, A.; Marya, A.; Blasi, A.; Isola, G. Periodontal inflammation as a negative stimulus for oral cancerization: The hidden role of periodontitis in oral cancerization. Oncologie 2025, 27, 659–672. [Google Scholar] [CrossRef]
- Polizzi, A.; Tartaglia, G.M.; Santonocito, S.; Alibrandi, A.; Verzì, A.E.; Isola, G. Impact of Topical Fluocinonide on Oral Lichen Planus Evolution: Randomized Controlled Clinical Trial. Oral Dis. 2025, 31, 510–521. [Google Scholar] [CrossRef]
- Rani, N.A.J.; Vardhan, B.G.H.; Srinivasan, S.; Gopal, S.K. Evaluation of Salivary Interleukin-6 in Patients with Oral Squamous Cell Carcinoma, Oral Potentially Malignant Disorders, Chronic Periodontitis and in Healthy Controls—A Cross-Sectional Comparative Study. Ann. Maxillofac. Surg. 2023, 13, 70–75. [Google Scholar] [CrossRef]
- Balkwill, F.; Mantovani, A. Inflammation and cancer: Back to Virchow? Lancet 2001, 357, 539–545. [Google Scholar] [CrossRef]
- Geng, F.; Zhang, Y.; Lu, Z.; Zhang, S.; Pan, Y. Fusobacterium nucleatum Caused DNA Damage and Promoted Cell Proliferation by the Ku70/p53 Pathway in Oral Cancer Cells. DNA Cell Biol. 2020, 39, 144–151. [Google Scholar] [CrossRef]
- Farhad, S.Z.; Karbalaeihasanesfahani, A.; Dadgar, E.; Nasiri, K.; Esfahaniani, M.; Nabi Afjadi, M. The role of periodontitis in cancer development, with a focus on oral cancers. Mol. Biol. Rep. 2024, 51, 814. [Google Scholar] [CrossRef]
- Li, R.; Hou, M.; Yu, L.; Luo, W.; Liu, R.; Wang, H. Association between periodontal disease and oral squamous cell carcinoma: A systematic review and meta-analysis. Br. J. Oral Maxillofac. Surg. 2023, 61, 394–402. [Google Scholar] [CrossRef]
- Zhou, X.; Cai, X.; Tang, Q.; Zhang, J.; Bai, J.; Jing, F.; Gao, L.; Zhang, H.; Li, T. Differences in the landscape of colonized microorganisms in different oral potentially malignant disorders and squamous cell carcinoma: A multi-group comparative study. BMC Microbiol. 2024, 24, 318. [Google Scholar] [CrossRef]
- Dopico, J.; Botelho, J.; Ouro, A.; Domínguez, C.; Machado, V.; Aramburu-Nuñez, M.; Custodia, A.; Blanco, T.; Vázquez-Reza, M.; Romaus-Sanjurjo, D.; et al. Association between periodontitis and peripheral markers of innate immunity activation and inflammation. J. Periodontol. 2023, 94, 11–19. [Google Scholar] [CrossRef]
- Chen, X.; Lei, H.; Cheng, Y.; Fang, S.; Sun, W.; Zhang, X.; Jin, Z. CXCL8, MMP12, and MMP13 are common biomarkers of periodontitis and oral squamous cell carcinoma. Oral Dis. 2024, 30, 390–407. [Google Scholar] [CrossRef]
- Chew, R.J.J.; Tan, K.S.; Chen, T.; Al-Hebshi, N.N.; Goh, C.E. Quantifying periodontitis-associated oral dysbiosis in tongue and saliva microbiomes—An integrated data analysis. J. Periodontol. 2025, 96, 55–66. [Google Scholar] [CrossRef]
- Lafuente Ibáñez de Mendoza, I.; Maritxalar Mendia, X.; García de la Fuente, A.M.; Quindós Andrés, G.; Aguirre Urizar, J.M. Role of Porphyromonas gingivalis in oral squamous cell carcinoma development: A systematic review. J. Periodontal Res. 2020, 55, 13–22. [Google Scholar] [CrossRef]
- Ciani, L.; Libonati, A.; Dri, M.; Pomella, S.; Campanella, V.; Barillari, G. About a Possible Impact of Endodontic Infections by Fusobacterium nucleatum or Porphyromonas gingivalis on Oral Carcinogenesis: A Literature Overview. Int. J. Mol. Sci. 2024, 25, 5083. [Google Scholar] [CrossRef]
- Pignatelli, P.; Curia, M.C.; Tenore, G.; Bondi, D.; Piattelli, A.; Romeo, U. Oral bacteriome and oral potentially malignant disorders: A systematic review of the associations. Arch. Oral Biol. 2024, 160, 105891. [Google Scholar] [CrossRef]
- Smędra, A.; Berent, J. The Influence of the Oral Microbiome on Oral Cancer: A Literature Review and a New Approach. Biomolecules 2023, 13, 815. [Google Scholar] [CrossRef]
- Keinänen, A.; Uittamo, J.; Snäll, J. Do we recognize oral cancer? Primary professional delay in diagnosis of oral squamous cell carcinoma. Clin. Oral Investig. 2024, 28, 131. [Google Scholar] [CrossRef]
- Antonoglou, G.N.; Romandini, M.; Meurman, J.H.; Surakka, M.; Janket, S.J.; Sanz, M. Periodontitis and edentulism as risk indicators for mortality: Results from a prospective cohort study with 20 years of follow-up. J. Periodontal Res. 2023, 58, 12–21. [Google Scholar] [CrossRef]
- Campagna, R.; Pozzi, V.; Salvucci, A.; Togni, L.; Mascitti, M.; Sartini, D.; Salvolini, E.; Santarelli, A.; Lo Muzio, L.; Emanuelli, M. Paraoxonase-2 expression in oral squamous cell carcinoma. Hum. Cell 2023, 36, 1211–1213. [Google Scholar] [CrossRef]
- Carreras-Torras, C.; Gay-Escoda, C. Techniques for early diagnosis of oral squamous cell carcinoma: Systematic review. Med. Oral Patol. Oral Cir. Bucal 2015, 20, e305–e315. [Google Scholar] [CrossRef]
- Grafton-Clarke, C.; Chen, K.W.; Wilcock, J. Diagnosis and referral delays in primary care for oral squamous cell cancer: A systematic review. Br. J. Gen. Pract. 2019, 69, e112–e126. [Google Scholar] [CrossRef] [PubMed]
- Anjum, A.; Sheikh, N. Oral Potentially Malignant Disorders: A Comprehensive Review of Diagnostic Approaches and Management Strategies. J. Bahria Univ. Med. Dent. Coll. 2024, 14, 83–89. [Google Scholar] [CrossRef]
- Cai, L.; Zhu, H.; Mou, Q.; Wong, P.Y.; Lan, L.; Ng, C.W.K.; Lei, P.; Cheung, M.K.; Wang, D.; Wong, E.W.Y.; et al. Integrative analysis reveals associations between oral microbiota dysbiosis and host genetic and epigenetic aberrations in oral cavity squamous cell carcinoma. NPJ Biofilms Microbiomes 2024, 10, 39. [Google Scholar] [CrossRef]
- You, J.R.; Chen, Y.T.; Hsieh, C.Y.; Chen, S.Y.; Lin, T.Y.; Shih, J.S.; Chen, G.T.; Feng, S.W.; Peng, T.Y.; Wu, C.Y.; et al. Exploring Possible Diagnostic Precancerous Biomarkers for Oral Submucous Fibrosis: A Narrative Review. Cancers 2023, 15, 4812. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, E.; Pezzi, M.E.; Cassi, D.; Pertinhez, T.A.; Spisni, A.; Meleti, M. Salivary Cytokines as Biomarkers for Oral Squamous Cell Carcinoma: A Systematic Review. Int. J. Mol. Sci. 2021, 22, 6795. [Google Scholar] [CrossRef]
- Hu, C.C.; Wang, S.G.; Gao, Z.; Qing, M.F.; Pan, S.; Liu, Y.Y.; Li, F. Emerging salivary biomarkers for early detection of oral squamous cell carcinoma. World J. Clin. Oncol. 2025, 16, 103803. [Google Scholar] [CrossRef]
- Safari, Z.; Firouzi, A.; Rezaeikalantari, N.; Mohammadi, S.; Ranjbar, N.; Shahpori, H.; Khaleghi, P.; Bagherianlemraski, M.; Zandi, S.; Rafieyan, S. The salivary exosomal microRNA as a potential biomarker in patients with periodontitis and oral cancers. Chem. Biol. Drug Des. 2023, 101, 1204–1215. [Google Scholar] [CrossRef]
- Cheng, Y.L.; Jordan, L.; Chen, H.S.; Kang, D.; Oxford, L.; Plemons, J.; Parks, H.; Rees, T. Chronic periodontitis can affect the levels of potential oral cancer salivary mRNA biomarkers. J. Periodontal Res. 2017, 52, 428–437. [Google Scholar] [CrossRef]
- Radaic, A.; Kamarajan, P.; Cho, A.; Wang, S.; Hung, G.-C.; Najarzadegan, F.; Wong, D.T.; Ton-That, H.; Wang, C.-Y.; Kapila, Y.L. Biological biomarkers of oral cancer. Periodontol. 2000 2024, 96, 250–280. [Google Scholar] [CrossRef] [PubMed]
- Badwelan, M.; Muaddi, H.; Ahmed, A.; Lee, K.T.; Tran, S.D. Oral Squamous Cell Carcinoma and Concomitant Primary Tumors, What Do We Know? A Review of the Literature. Curr. Oncol. 2023, 30, 3721–3734. [Google Scholar] [CrossRef]
- Karmakar, S.; Modak, B.; Solomon, M.C. Exploring the causal relationship between chronic periodontitis and oral cancer: An insight. Oral Oncol. Rep. 2024, 11, 100468. [Google Scholar] [CrossRef]
- Zhou, Y.; Meyle, J.; Groeger, S. Periodontal pathogens and cancer development. Periodontol. 2000 2024, 96, 112–149. [Google Scholar] [CrossRef]
- Pekarek, L.; Garrido-Gil, M.J.; Sánchez-Cendra, A.; Cassinello, J.; Pekarek, T.; Fraile-Martinez, O.; García-Montero, C.; Lopez-Gonzalez, L.; Rios-Parra, A.; Álvarez-Mon, M.; et al. Emerging histological and serological biomarkers in oral squamous cell carcinoma: Applications in diagnosis, prognosis evaluation and personalized therapeutics (Review). Oncol. Rep. 2023, 50, 213. [Google Scholar] [CrossRef]
- Richter, M.; Doll, C.; Mrosk, F.; Hofmann, E.; Koerdt, S.; Heiland, M.; Neumann, K.; Beck, M.; Dommerich, S.; Jöhrens, K.; et al. The combined assessment of p16(INK4a) and Mib/Ki-67 in oral squamous cell carcinoma. Front. Oncol. 2024, 14, 1493281. [Google Scholar] [CrossRef]
- Acharya, S.; Hegde, U.; Acharya, A.B.; Nitin, P. Dysbiosis linking periodontal disease and oral squamous cell carcinoma-A brief narrative review. Heliyon 2024, 10, e32259. [Google Scholar] [CrossRef]
- Akbari, E.; Epstein, J.B.; Samim, F. Unveiling the Hidden Links: Periodontal Disease, Fusobacterium Nucleatum, and Cancers. Curr. Oncol. Rep. 2024, 26, 1388–1397. [Google Scholar] [CrossRef]
- Peng, R.T.; Sun, Y.; Zhou, X.D.; Liu, S.Y.; Han, Q.; Cheng, L.; Peng, X. Treponema denticola Promotes OSCC Development via the TGF-β Signaling Pathway. J. Dent. Res. 2022, 101, 704–713. [Google Scholar] [CrossRef]
- Wei, W.; Li, J.; Shen, X.; Lyu, J.; Yan, C.; Tang, B.; Ma, W.; Xie, H.; Zhao, L.; Cheng, L.; et al. Oral Microbiota from Periodontitis Promote Oral Squamous Cell Carcinoma Development via γδ T Cell Activation. mSystems 2022, 7, e0046922. [Google Scholar] [CrossRef]
- de Villalaín, L.; Álvarez-Teijeiro, S.; Rodríguez-Santamarta, T.; Fernández Del Valle, Á.; Allonca, E.; Rodrigo, J.P.; de Vicente, J.C.; García-Pedrero, J.M. Emerging Role of Decoy Receptor-2 as a Cancer Risk Predictor in Oral Potentially Malignant Disorders. Int. J. Mol. Sci. 2023, 24, 14382. [Google Scholar] [CrossRef]
- Albuquerque-Souza, E.; Shelling, B.; Jiang, M.; Xia, X.J.; Rattanaprukskul, K.; Sahingur, S.E. Fusobacterium nucleatum triggers senescence phenotype in gingival epithelial cells. Mol. Oral Microbiol. 2024, 39, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Kandhaya-Pillai, R.; Miro-Mur, F.; Alijotas-Reig, J.; Tchkonia, T.; Schwartz, S.; Kirkland, J.L.; Oshima, J. Key elements of cellular senescence involve transcriptional repression of mitotic and DNA repair genes through the p53-p16/RB-E2F-DREAM complex. Aging 2023, 15, 4012–4034. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Nakajima, R.; Shirasawa, M.; Fikriyanti, M.; Zhao, L.; Iwanaga, R.; Bradford, A.P.; Kurayoshi, K.; Araki, K.; Ohtani, K. Expanding Roles of the E2F-RB-p53 Pathway in Tumor Suppression. Biology 2023, 12, 1511. [Google Scholar] [CrossRef]
- Khijmatgar, S.; Yong, J.; Rübsamen, N.; Lorusso, F.; Rai, P.; Cenzato, N.; Gaffuri, F.; Del Fabbro, M.; Tartaglia, G.M. Salivary biomarkers for early detection of oral squamous cell carcinoma (OSCC) and head/neck squamous cell carcinoma (HNSCC): A systematic review and network meta-analysis. Jpn. Dent. Sci. Rev. 2024, 60, 32–39. [Google Scholar] [CrossRef]
- Chattopadhyay, I.; Panda, M. Recent trends of saliva omics biomarkers for the diagnosis and treatment of oral cancer. J. Oral Biosci. 2019, 61, 84–94. [Google Scholar] [CrossRef]
- Chiang, C.-Y.; Hsu, C.-C.; Chen, Y.-W.; Fu, E. Hypomethylation of the interleukin-6 promoter in gingival tissue of patients with periodontitis. J. Periodontol. 2025; Epub ahead of print. [Google Scholar] [CrossRef]
- Rapado-González, Ó.; Salta, S.; Lopez, R.; Henrique, R.; Suarez-Cunqueiro, M.; Jeronimo, C. DNA methylation markers for oral cancer detection in non- and minimally invasive samples: A systematic review. Clin. Epigenetics 2024, 16, 105. [Google Scholar] [CrossRef]
- Li, Z.; Fu, R.; Wen, X.; Zhang, L. Network analysis reveals miRNA crosstalk between periodontitis and oral squamous cell carcinoma. BMC Oral Health 2023, 23, 19. [Google Scholar] [CrossRef]
- Liu, K.; Zhu, S.; Brooks, D.; Bowlby, R.; Durham, J.; Ma, Y.; Moore, R.; Mungall, A.; Jones, S.; Poh, C. Tumor microRNA profile and prognostic value for lymph node metastasis in oral squamous cell carcinoma patients. Oncotarget 2020, 11, 2204–2215. [Google Scholar] [CrossRef]
- Lv, L.; Wang, Q.; Yang, Y.; Ji, H. MicroRNA-495 targets Notch1 to prohibit cell proliferation and invasion in oral squamous cell carcinoma. Mol. Med. Rep. 2019, 19, 693–702. [Google Scholar] [CrossRef]
- Monea, M.; Pop, A.M. The Use of Salivary Levels of Matrix Metalloproteinases as an Adjuvant Method in the Early Diagnosis of Oral Squamous Cell Carcinoma: A Narrative Literature Review. Curr. Issues Mol. Biol. 2022, 44, 6306–6322. [Google Scholar] [CrossRef]
- Zhai, R.; Gong, Z.; Wang, M.; Ni, Z.; Zhang, J.; Wang, M.; Zhang, Y.; Zeng, F.; Gu, Z.; Chen, X.; et al. Neutrophil extracellular traps promote invasion and metastasis via NLRP3-mediated oral squamous cell carcinoma pyroptosis inhibition. Cell Death Discov. 2024, 10, 214. [Google Scholar] [CrossRef]
- Dikova, V.; Jantus-Lewintre, E.; Bagan, J. Potential Non-Invasive Biomarkers for Early Diagnosis of Oral Squamous Cell Carcinoma. J. Clin. Med. 2021, 10, 1658. [Google Scholar] [CrossRef]
- Starska-Kowarska, K. Salivaomic Biomarkers—An Innovative Approach to the Diagnosis, Treatment, and Prognosis of Oral Cancer. Biology 2025, 14, 852. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.E.; Burtness, B.; Leemans, C.R.; Lui, V.W.Y.; Bauman, J.E.; Grandis, J.R. Head and neck squamous cell carcinoma. Nat. Rev. Dis. Primers 2020, 6, 92. [Google Scholar] [CrossRef]
- Shi, J.; Hao, X.Y.; Tong, Y.; Qian, W.B.; Sun, Y. SIRT6 alleviates senescence induced by Porphyromonas gingivalis in human gingival fibroblasts. Mol. Biol. Rep. 2024, 51, 976. [Google Scholar] [CrossRef]
- Memmert, S.; Gölz, L.; Pütz, P.; Jäger, A.; Deschner, J.; Appel, T.; Baumgarten, G.; Rath-Deschner, B.; Frede, S.; Götz, W. Regulation of p53 under hypoxic and inflammatory conditions in periodontium. Clin. Oral Investig. 2016, 20, 1781–1789. [Google Scholar] [CrossRef]
- Yilmaz, Ö. The chronicles of Porphyromonas gingivalis: The microbium, the human oral epithelium and their interplay. Microbiology 2008, 154, 2897–2903. [Google Scholar] [CrossRef]
- Amano, Y.; Hasegawa, M.; Kihara, A.; Matsubara, D.; Fukushima, N.; Nishino, H.; Mori, Y.; Inamura, K.; Niki, T. Clinicopathological and prognostic significance of stromal p16 and p53 expression in oral squamous cell carcinoma. Ann. Diagn. Pathol. 2025, 75, 152439. [Google Scholar] [CrossRef] [PubMed]
- Mesgari, H.; Esmaelian, S.; Nasiri, K.; Ghasemzadeh, S.; Doroudgar, P.; Payandeh, Z. Epigenetic Regulation in Oral Squamous Cell Carcinoma Microenvironment: A Comprehensive Review. Cancers 2023, 15, 5600. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, W.; Hua, R.; Wang, Y.; Li, Y.; Zhang, H. Promising dawn in tumor microenvironment therapy: Engineering oral bacteria. Int. J. Oral Sci. 2024, 16, 24. [Google Scholar] [CrossRef]
- Ali Ahmed, M.A.; Shetty, S.; Rahman, B.; Gopalakrishnan, A.R.K.; Ismail, A.A.; Acharya, A.B. Evaluation of salivary Ki-67 in health and periodontitis. BMC Oral Health 2025, 25, 366. [Google Scholar] [CrossRef]
- Rubinstein, M.R.; Baik, J.E.; Lagana, S.M.; Han, R.P.; Raab, W.J.; Sahoo, D.; Dalerba, P.; Wang, T.C.; Han, Y.W. Fusobacterium nucleatum promotes colorectal cancer by inducing Wnt/β-catenin modulator Annexin A1. EMBO Rep. 2019, 20, e47638. [Google Scholar] [CrossRef]
- Wang, X.; Li, Z.; Zhou, H.; Liu, Q.; Zhang, X.; Hu, F. Periodontitis Exacerbates Colorectal Cancer by Altering Gut Microbiota-Derived Metabolomics in Mice. J. Periodontal Res. 2025; Epub ahead of print. [Google Scholar] [CrossRef]
- Niklander, S.E.; Aránguiz, P.; Faunes, F.; Martínez-Flores, R. Aging and oral squamous cell carcinoma development: The role of cellular senescence. Front. Oral Health 2023, 4, 1285276. [Google Scholar] [CrossRef]
- López-Ansio, M.; Ramos-García, P.; González-Moles, M.Á. Predictive Value of the Loss of pRb Expression in the Malignant Transformation Risk of Oral Potentially Malignant Disorders: A Systematic Review and Meta-Analysis. Cancers 2025, 17, 329. [Google Scholar] [CrossRef]
- Lavu, V.; Venkatesan, V.; Rao, S.R. The epigenetic paradigm in periodontitis pathogenesis. J. Indian Soc. Periodontol. 2015, 19, 142–149. [Google Scholar] [CrossRef]
- Liaw, A.; Liu, C.; Ivanovski, S.; Han, P. The Relevance of DNA Methylation and Histone Modification in Periodontitis: A Scoping Review. Cells 2022, 11, 3211. [Google Scholar] [CrossRef]
- Arslan Bozdag, L.; Inan, S.; Elif Gultekin, S. Microsatellite Instability and Loss of Heterozygosity as Prognostic Markers in Oral Squamous Cell Carcinoma: Molecular Mechanisms, Detection Techniques, and Therapeutic Strategies. Genes Chromosomes Cancer 2024, 63, e70002. [Google Scholar] [CrossRef]
- Li, S.; Liu, X.; Zhou, Y.; Acharya, A.; Savkovic, V.; Xu, C.; Wu, N.; Deng, Y.; Hu, X.; Li, H.; et al. Shared genetic and epigenetic mechanisms between chronic periodontitis and oral squamous cell carcinoma. Oral Oncol. 2018, 86, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Yao, M.; Lu, Y.; Liu, T.; Shang, H.; Lu, H.; Dong, B.; Xu, Y. Genetic and therapeutic for oral lichen planus and diabetes mellitus: A comprehensive study. BMC Oral Health 2024, 24, 1226. [Google Scholar] [CrossRef] [PubMed]
- Aghiorghiesei, A.I.; Nutu, A.; Mehterov, N.; Kontos, C.K.; Vladimirov, B.; Buduru, R.; Braicu, C.; Berindan-Neagoe, I. Roles of miR-181 Family Members in OSCC: Implications for Therapy and Diagnostics. Cancer Med. 2025, 14, e71266. [Google Scholar] [CrossRef]
- You, X.; Zhou, Z.; Chen, W.; Wei, X.; Zhou, H.; Luo, W. MicroRNA-495 confers inhibitory effects on cancer stem cells in oral squamous cell carcinoma through the HOXC6-mediated TGF-β signaling pathway. Stem Cell Res. Ther. 2020, 11, 117. [Google Scholar] [CrossRef]
- Schiavoni, V.; Emanuelli, M.; Sartini, D.; Salvolini, E.; Pozzi, V.; Campagna, R. Curcumin and its Analogues in Oral Squamous Cell Carcinoma: State-of-the-art and Therapeutic Potential. Anticancer. Agents Med. Chem. 2025, 25, 313–329. [Google Scholar] [CrossRef]
- Belloni, A.; Campagna, R.; Notarstefano, V.; Pozzi, V.; Orilisi, G.; Pompei, V.; Togni, L.; Mascitti, M.; Sartini, D.; Giorgini, E.; et al. Deepening Cisplatin sensitivity on Oral Squamous cell Carcinoma cell lines after PON2 knockdown: A FTIRM investigation. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2025, 330, 125726. [Google Scholar] [CrossRef]
- Pomella, S.; Melaiu, O.; Cifaldi, L.; Bei, R.; Gargari, M.; Campanella, V.; Barillari, G. Biomarkers Identification in the Microenvironment of Oral Squamous Cell Carcinoma: A Systematic Review of Proteomic Studies. Int. J. Mol. Sci. 2024, 25, 8929. [Google Scholar] [CrossRef]
- Girod, S.C.; Pfeiffer, P.; Ries, J.; Pape, H.D. Proliferative activity and loss of function of tumour suppressor genes as ‘biomarkers’ in diagnosis and prognosis of benign and preneoplastic oral lesions and oral squamous cell carcinoma. Br. J. Oral Maxillofac. Surg. 1998, 36, 252–260. [Google Scholar] [CrossRef]
- Nizar Jawad, Z. Epigenetic and genetic events of oral squamous cell carcinoma: Perspective on DNA methylation, silencing of tumor suppressor gene, and activating oncogenes. Cell. Mol. Biol. 2025, 71, 96–104. [Google Scholar] [CrossRef]
- Dixit, S.; Kumar, A.; Srinivasan, K. A Current Review of Machine Learning and Deep Learning Models in Oral Cancer Diagnosis: Recent Technologies, Open Challenges, and Future Research Directions. Diagnostics 2023, 13, 1353. [Google Scholar] [CrossRef]
- Rigotti, P.; Polizzi, A.; Quinzi, V.; Blasi, A.; Lombardi, T.; Lo Muzio, E.; Isola, G. Cell-Free DNA as a Prognostic Biomarker in Oral Carcinogenesis and Oral Squamous Cell Carcinoma: A Translational Perspective. Cancers 2025, 17, 2366. [Google Scholar] [CrossRef]
- Ma, Y.; Wei, J.; He, W.; Ren, J. Neutrophil extracellular traps in cancer. MedComm 2024, 5, e647. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zhu, J.J. Expression Levels of miR-181 Family Members in Oral Biofluids as Biomarkers for Periodontitis Severity. Tohoku J. Exp. Med. 2024, 264, 121–130. [Google Scholar] [CrossRef]
- Jansson, L.; Lundmark, A.; Modin, C.; Gustafsson, A.; Yucel-Lindberg, T. Levels of matrix metalloproteinase-1 (MMP-1), MMP-2, MMP-3, osteopontin, pentraxin-3, and thymic stromal lymphopoietin in crevicular fluid samples from peri-implantitis, periodontitis, and healthy sites. J. Periodontal Res. 2025, 60, 473–483. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, W.; Lu, Y.; Li, H.; Yang, Y.; Geng, F.; Liu, J.; Lin, L.; Pan, Y.; Li, C. Association between periodontitis and inflammatory comorbidities: The common role of innate immune cells, underlying mechanisms and therapeutic targets. Int. Immunopharmacol. 2024, 128, 111558. [Google Scholar] [CrossRef]
- Isola, G.; Pesce, P.; Polizzi, A.; Lo Giudice, A.; Cicciù, M.; Scannapieco, F.A. Effects of minimally invasive non-surgical therapy on C-reactive protein, lipoprotein-associated phospholipase A2, and clinical outcomes in periodontitis patients: A 1-year randomized, controlled clinical trial. J. Periodontol. 2024, 95, 949–962. [Google Scholar] [CrossRef] [PubMed]
- Neurath, N.; Kesting, M. Cytokines in gingivitis and periodontitis: From pathogenesis to therapeutic targets. Front. Immunol. 2024, 15, 1435054. [Google Scholar] [CrossRef]
- Teles, F.; Martin, L.; Patel, M.; Hu, W.; Bittinger, K.; Kallan, M.J.; Chandrasekaran, G.; Cucchiara, A.J.; Giannobile, W.V.; Stephens, D.; et al. Gingival Crevicular Fluid Biomarkers During Periodontitis Progression and After Periodontal Treatment. J. Clin. Periodontol. 2025, 52, 40–55. [Google Scholar] [CrossRef]
- Guzeldemir-Akcakanat, E.; Sunnetci-Akkoyunlu, D.; Balta-Uysal, V.M.; Özer, T.; Işik, E.B.; Cine, N. Differentially expressed miRNAs associated with generalized aggressive periodontitis. Clin. Oral Investig. 2023, 28, 7. [Google Scholar] [CrossRef]
- Magdum, D.B.; Kulkarni, N.A.; Kavle, P.G.; Paraye, S.; Pohankar, P.S.; Giram, A.V. Salivary Neutrophil-to-Lymphocyte Ratio as a Prognostic Predictor of Oral Premalignant and Malignant Disorders: A Prospective Study. Cureus 2024, 16, e56273. [Google Scholar] [CrossRef]
- Walther, K.A.; Gröger, S.; Vogler, J.A.H.; Wöstmann, B.; Meyle, J. Inflammation indices in association with periodontitis and cancer. Periodontol. 2000 2024, 96, 281–315. [Google Scholar] [CrossRef] [PubMed]
- Isola, G.; Polizzi, A.; Santonocito, S.; Alibrandi, A.; Pesce, P.; Kocher, T. Effect of quadrantwise versus full-mouth subgingival instrumentation on clinical and microbiological parameters in periodontitis patients: A randomized clinical trial. J. Periodontal Res. 2024, 59, 647–656. [Google Scholar] [CrossRef]
- Nocini, R.; Vianini, M.; Girolami, I.; Calabrese, L.; Scarpa, A.; Martini, M.; Morbini, P.; Marletta, S.; Brunelli, M.; Molteni, G.; et al. PD-L1 in oral squamous cell carcinoma: A key biomarker from the laboratory to the bedside. Clin. Exp. Dent. Res. 2022, 8, 690–698. [Google Scholar] [CrossRef]
- Irani, S.; Barati, I.; Badiei, M. Periodontitis and oral cancer—current concepts of the etiopathogenesis. Oncol. Rev. 2020, 14, 465. [Google Scholar] [CrossRef]
- Li, T.-J.; Hao, Y.-h.; Tang, Y.-l.; Liang, X.-h. Periodontal Pathogens: A Crucial Link Between Periodontal Diseases and Oral Cancer. Front. Microbiol. 2022, 13, 919633. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.; Xiao, T.; Wang, B.; Wang, L.; Liu, G.; Wang, R.; Xie, C.; Tang, Z. Mechanisms and markers of malignant transformation of oral submucous fibrosis. Heliyon 2024, 10, e23314. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.Q.; Li, Z.T.; Zhou, G. Developmental synergism in the management of oral potentially malignant disorders. Photodiagnosis Photodyn. Ther. 2023, 42, 103563. [Google Scholar] [CrossRef]
- Viet, C.T.; Zhang, M.; Dharmaraj, N.; Li, G.Y.; Pearson, A.T.; Manon, V.A.; Grandhi, A.; Xu, K.; Aouizerat, B.E.; Young, S. Artificial Intelligence Applications in Oral Cancer and Oral Dysplasia. Tissue Eng. Part. A 2024, 30, 640–651. [Google Scholar] [CrossRef]
- Soghli, N.; Khormali, A.; Mahboubi, D.; Peng, A.; Miguez, P.A. Recent advancements in artificial intelligence-powered cancer prediction from oral microbiome. Periodontol. 2000, 2025; Epub ahead of print. [Google Scholar] [CrossRef]


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marmo, G.M.; Munzone, M.; Polizzi, A.; Campagna, R.; Mascitti, M.; Isola, G. Genetic and Epigenetic Biomarkers for the Early Oral Cancerization Risk in Periodontitis Patients. Curr. Issues Mol. Biol. 2025, 47, 933. https://doi.org/10.3390/cimb47110933
Marmo GM, Munzone M, Polizzi A, Campagna R, Mascitti M, Isola G. Genetic and Epigenetic Biomarkers for the Early Oral Cancerization Risk in Periodontitis Patients. Current Issues in Molecular Biology. 2025; 47(11):933. https://doi.org/10.3390/cimb47110933
Chicago/Turabian StyleMarmo, Giorgia M., Morena Munzone, Alessandro Polizzi, Roberto Campagna, Marco Mascitti, and Gaetano Isola. 2025. "Genetic and Epigenetic Biomarkers for the Early Oral Cancerization Risk in Periodontitis Patients" Current Issues in Molecular Biology 47, no. 11: 933. https://doi.org/10.3390/cimb47110933
APA StyleMarmo, G. M., Munzone, M., Polizzi, A., Campagna, R., Mascitti, M., & Isola, G. (2025). Genetic and Epigenetic Biomarkers for the Early Oral Cancerization Risk in Periodontitis Patients. Current Issues in Molecular Biology, 47(11), 933. https://doi.org/10.3390/cimb47110933

