Genotype-Specific Rhizosphere Microbiome Assembly Mediates Biochar-Induced Salt Tolerance in Sorghum
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Experimental Design
2.3. Soil Physicochemical Analysis
2.4. Microbial Community Analysis
2.5. Statistical Analysis
3. Results
3.1. Biochar Differentially Improves the Rhizosphere Microenvironment in a Genotype-Dependent Manner
3.2. Temporal Dynamics of the Microbial Community in Response to Salt Stress and Biochar Amendment
3.3. Biochar Drives Genotype-Specific Recruitment of Stress-Resistant Microbial Taxa
3.4. Genotype-Specific Formation of Sorghum Rhizosphere Microbiome and Biochar Regulation Effects
3.5. Biochar Fosters Cooperative Microbial Networks with Enhanced Stability in a Genotype-Dependent Manner
3.6. Biochar-Driven Shifts in Soil Properties and the Rhizosphere Microbiome Are Linked to Enhanced Sorghum Biomass Under Salt Stress
4. Discussion
4.1. Plant Genotype as the Primary Driver of Rhizosphere Microbiome Assembly
4.2. Impact of Biochar on the Diversity and Structure of the Sorghum Rhizosphere Microbial Community
4.3. Effects of Biochar on the Microbial Community Under the Dual-Driven Influence of Environment and Genotype
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| HN16 | salt-sensitive cultivar Henong 16 |
| JZN | salt-tolerant cultivar Jizaonuo No. 1 |
| NaCl | sodium chloride |
| CK | Control check |
| T1 | Contains 5‰ NaCl and 2% biochar |
| T2 | Contains 5‰ NaCl |
| HCK | HN16 Control check |
| HT1 | HN16 Contains 5‰ NaCl and 2% biochar |
| HT2 | HN16 Contains 5‰ NaCl |
| JCK | JZN Control check |
| JT1 | JZN Contains 5‰ NaCl and 2% biochar |
| JT2 | JZN Contains 5‰ NaCl |
| EC | Soil electrical conductivity |
| pH | Potential of Hydrogen |
| SOM | Soil organic matter |
| SBD | Soil bulk density |
| SP | Soil porosity |
Appendix A
| Number | Name | Source |
|---|---|---|
| 1 | Zaoshu 1 | Baoding, China |
| 2 | Zaoshu 2 | Baoding, China |
| 3 | Zaoshu 5 | Baoding, China |
| 4 | Zaoshu 8 | Baoding, China |
| 5 | Zaoshu 12 | Baoding, China |
| 6 | Zaoshu 13 | Baoding, China |
| 7 | Zaoshu 16 | Baoding, China |
| 8 | Zaoshu 17 | Baoding, China |
| 9 | Zaoshu 18 | Baoding, China |
| 10 | Tianza 1 | Baoding, China |
| 11 | Tian 2 | Baoding, China |
| 12 | Tian 4 | Baoding, China |
| 13 | Tian 5 | Baoding, China |
| 14 | Tian 8 | Baoding, China |
| 15 | Tian 9 | Baoding, China |
| 16 | Tian 10 | Baoding, China |
| 17 | Tian 11 | Baoding, China |
| 18 | Tian 115 | Baoding, China |
| 19 | Tian 133 | Baoding, China |
| 20 | Tian 138 | Baoding, China |
| 21 | Tian 139 | Baoding, China |
| 22 | Tian 151 | Baoding, China |
| 23 | Tian 319 | Baoding, China |
| 24 | MY1 | Beijing, China |
| 25 | MY2 | Beijing, China |
| 26 | MY3 | Beijing, China |
| 27 | MY4 | Beijing, China |
| 28 | MY5 | Beijing, China |
| 29 | MY6 | Beijing, China |
| 30 | MY9 | Beijing, China |
| 31 | MY10 | Beijing, China |
| 32 | MY11 | Beijing, China |
| 33 | MY12 | Beijing, China |
| 34 | MY13 | Beijing, China |
| 35 | MY14 | Beijing, China |
| 36 | MY15 | Beijing, China |
| 37 | MY16 | Beijing, China |
| 38 | MY17 | Beijing, China |
| 39 | MY18 | Beijing, China |
| 40 | MY19 | Beijing, China |
| 41 | MY20 | Beijing, China |
| 42 | MY21 | Beijing, China |
| 43 | MY22 | Beijing, China |
| 44 | Hongyin No.1 | Baoding, China |
| 45 | Hongyin No.2 | Baoding, China |
| 46 | Hong No.2 | Baoding, China |
| 47 | Hongyin No.3 | Baoding, China |
| 48 | Hongmaonuo No.6 | Baoding, China |
| 49 | Sorghum Sweet Stalk | Baoding, China |
| 50 | Sanchisan | Baoding, China |
| 51 | Sticky Sorghum | Baoding, China |
| 52 | Xiaobairen | Baoding, China |
| 53 | Chunlei | Baoding, China |
| 54 | Chunyuan | Baoding, China |
| 55 | Heike | Baoding, China |
| 56 | Silimei | Baoding, China |
| 57 | Jinfu No.1 | Baoding, China |
| 58 | Xingxiangliang No.2 | Baoding, China |
| 59 | Xin 52 | Baoding, China |
| 60 | Ying 654 | Baoding, China |
| 61 | Broom-use 2 | Baoding, China |
| 62 | Cangzhou Broom-use | Baoding, China |
| 63 | Henan Broom-use | Baoding, China |
| 64 | Tian 6 | Baoding, China |
| 65 | Hai 1 | Baoding, China |
| 66 | Hai 2 | Baoding, China |
| 67 | Hai 3 | Baoding, China |
| 68 | Hai 4 | Baoding, China |
| 69 | Hai 5 | Baoding, China |
| 70 | Sweet Stalk-1 | Baoding, China |
| 71 | Sweet Stalk-2 | Baoding, China |
| 72 | Zhang 2 | Baoding, China |
| 73 | 10B | Baoding, China |
| 74 | cp90107 | Baoding, China |
| 75 | cp90155 | Baoding, China |
| 76 | B45 | Baoding, China |
| 77 | K4 | Baoding, China |
| 78 | R19 | Baoding, China |
| 79 | H8B | Baoding, China |
| 80 | HM65 | Baoding, China |
| 81 | Sudan 1 Original | Baoding, China |
| 82 | Sudan 1-1 | Baoding, China |
| 83 | Sudan 1-2 | Baoding, China |
| 84 | 90111 | Baoding, China |
| 85 | Sudan Grass | Baoding, China |
| 86 | Sudan 3 Original | Baoding, China |
| 87 | Sudan 4-1 | Baoding, China |
| 88 | Sudan 4-2 | Baoding, China |
| 89 | Jizaonuo No.1 | Baoding, China |
| 90 | 4 (8) | Baoding, China |
| 91 | Kangya B | Baoding, China |
| 92 | 6 (4) | Baoding, China |
| 93 | Huangluosa | Bin County, China |
| 94 | Xin 4B | China |
| 95 | South Africa | South Africa |
| 96 | Sugarcane Seed Sorghum | Zhen’an, China |
| 97 | GLZ | Baoding, China |
| 98 | Qisiwu Sorghum | Qihe, China |
| 99 | Vespa | Germany |
| 100 | 94CW5045 | China |
| 101 | Heikufen Sorghum | Lingqiu, China |
| 102 | IS-3977 | India |
| 103 | Swaziland | Eswatini |
| 104 | Xiaohongke | Jiaocheng, China |
| 105 | Malawi | Malawi |
| 106 | South Africa | South Africa |
| 107 | Loose Panicle Sweet Sorghum | Jinzhou Academy of Agricultural Sciences, China |
| 108 | Daqingmi | Balin Left Banner, China |
| 109 | HQ1 | Baoding, China |
| 110 | HQ2 | Baoding, China |
| 111 | QN35 | Baoding, China |
| 112 | 407/Hongyingzi | Baoding, China |
| 113 | 407/Jiqing’aihong | Baoding, China |
| 114 | Jiqing’aihong | Baoding, China |
| 115 | Zimbabwe | Zimbabwe |
| 116 | Kangsi | Cangzhou Bureau of Agriculture, China |
| 117 | Qiansan | Baoding, China |
| 118 | Luoziji | Changle, China |
| 119 | Waibozhang | Tongliao, China |
| 120 | Dahongpao | Ziyang, China |
| 121 | Huangnian Sorghum | Qinhuangdao, China |
| 122 | Heitian Sorghum | Ningshan, China |
| 123 | Songgai | China |
| 124 | Hongyingzi | Baoding, China |
| 125 | IS-2248 | India |
| 126 | L407B | China |
| 127 | ICSV739 | India |
| 128 | MN-839 | USA |
| 129 | Nigeria | Nigeria |
| 130 | Changtingzi 9 | Heilongjiang, China |
| 131 | Hongliuzi | Cangshan, China |
| 132 | South Africa | South Africa |
| 133 | Ethiopia | Ethiopia |
| 134 | Pingdingxiang | Bayan, China |
| 135 | Muhui 54-2 | Mudanjiang, China |
| 136 | Huangniuwe | Lan County, China |
| 137 | Sheyan | China |
| 138 | Changtingganz | huanghe, China |
| 139 | Tieshamao | Xiangyuan, China |
| 140 | L407B | China |
| 141 | R71,30241 | China |
| 142 | Tieshamao | Mexico |
| 143 | Tieshamao | China |
| 144 | 936815-16 | China |
| 145 | A-3194 | India |
| 146 | Sweet Sorghum | Qichun, China |
| 147 | Dawaitou | Anze, China |
| 148 | Dawaitou | Anze, China |
| 149 | Hong Sorghum | Lufeng, China |
| 150 | Huangkeben | Funing, China |
| 151 | Huangniangao | Ba County, China |
| 152 | K131 | China |
| 153 | LR62 | China |
| 154 | Yidu Rice Sorghum | Changwei Academy of Agricultural Sciences, China |
| 155 | 91CC515 | China |
| 156 | Liantang’ai | Guiyang, China |
| 157 | United States of America | USA |
| 158 | Lesotho | Lesotho |
| 159 | 0-5 | India |
| 160 | United States of America | USA |
| 161 | Swaziland | Eswatini |
| 162 | M20 | Baoding, China |
| 163 | M201 | Baoding, China |
| 164 | M648 | Baoding, China |
| 165 | A504(80R) | India |
| 166 | Henong 16 | Baoding, China |
| 167 | Ping 41B | China |
| 168 | ICSH10 | India |
| 169 | 30278 | China |
| 170 | EMS | Baoding, China |
| 171 | 407B | Baoding, China |
| 172 | Dasheyan | Laoting, China |
| 173 | 6-5A | Baoding, China |
| 174 | Guandongqing | Laoting, China |
| 175 | Tiehui 154 | China |
| 176 | Lesotho | Lesotho |
| 177 | 8.5222B | India |
| 178 | 6-5B | Baoding, China |
| 179 | M27 | Baoding, China |
| 180 | M37 | Baoding, China |
| 181 | M26 | Baoding, China |
| 182 | M44 | Baoding, China |
| 183 | M45 | Baoding, China |
| 184 | M50 | Baoding, China |
| 185 | M614 | Baoding, China |
References
- Bartels, D.; Sunkar, R. Drought and Salt Tolerance in Plants. Crit. Rev. Plant Sci. 2005, 24, 23–58. [Google Scholar] [CrossRef]
- Flowers, T.J.; Flowers, S.A. Why Does Salinity Pose Such a Difficult Problem for Plant Breeders? Agric. Water Manag. 2005, 78, 15–24. [Google Scholar] [CrossRef]
- Hasegawa, P.M.; Bressan, R.A.; Zhu, J.K.; Bohnert, H.J. Plant Cellular and Molecular Responses to High Salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2000, 51, 463–499. [Google Scholar] [CrossRef]
- Zhu, Z.X.; Zhang, L.X.; Li, J.H.; Bai, C.M.; Lu, X.C. Progress and Prospects of Sorghum Bio-breeding. China Basic Sci. 2022, 24, 42–52. (In Chinese) [Google Scholar]
- Zou, J.Q. New Advances in Sorghum Breeding and Cultivation Technology. Sci. Agric. Sin. 2020, 53, 2769–2773. (In Chinese) [Google Scholar]
- Zheng, H.-X.; Dang, Y.-Y.; Diao, X.-M.; Sui, N. Molecular Mechanisms of Stress Resistance in Sorghum: Implications for Crop Improvement Strategies. J. Integr. Agric. 2024, 23, 741–768. [Google Scholar] [CrossRef]
- Xiang, W.; Zhang, X.Y.; Chen, J.J.; Zou, W.; He, F.; Hu, X.; Tsang, D.C.W.; Ok, Y.S.; Gao, B. Biochar Technology in Wastewater Treatment: A Critical Review. Chemosphere 2020, 252, 126539. [Google Scholar] [CrossRef]
- Patel, M.R.; Panwar, N.L. Evaluating the Agronomic and Economic Viability of Biochar in Sustainable Crop Production. Biomass Bioenergy 2024, 188, 107328. [Google Scholar] [CrossRef]
- Chen, W.F.; Zhang, W.M.; Meng, J. Research Progress and Prospects of Agricultural Biochar. Sci. Agric. Sin. 2013, 46, 3324–3333. (In Chinese) [Google Scholar]
- Zhalnina, K.; Louie, K.B.; Hao, Z.; Mansoori, N.; da Rocha, U.N.; Shi, S.; Cho, H.; Karaoz, U.; Loqué, D.; Bowen, B.P.; et al. Dynamic Root Exudate Chemistry and Microbial Substrate Preferences Drive Patterns in Rhizosphere Microbial Community Assembly. Nat. Microbiol. 2018, 3, 470–480. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.Q.; Li, T.X.; Zheng, Z.C.; Chen, H.Y. Soil Aggregate-Associated Bacterial Metabolic Activity and Community Structure in Different Aged Tea Plantations. Sci. Total Environ. 2019, 654, 1023–1032. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Liu, Y.X.; Zhang, N.; Hu, B.; Jin, T.; Xu, H.; Qin, Y.; Yan, P.; Zhang, X.; Guo, X.; et al. NRT1.1B Is Associated with Root Microbiota Composition and Nitrogen Use in Field-Grown Rice. Nat. Biotechnol. 2019, 37, 676–684. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, C.; Reich, P.B.; Maestre, F.T.; Hu, H.-W.; Singh, B.K.; Delgado-Baquerizo, M. Plant-Driven Niche Differentiation of Ammonia-Oxidizing Bacteria and Archaea in Global Drylands. ISME J. 2019, 13, 2727–2736. [Google Scholar] [CrossRef]
- Edwards, J.; Santos-Medellín, C.; Nguyen, B.; Kilmer, J.; Liechty, Z.; Veliz, E.; Ni, J.; Phillips, G.; Sundaresan, V. Soil domestication by rice cultivation results in plant-soil feedback through shifts in soil microbiota. Genome Biol. 2019, 20, 603–616. [Google Scholar] [CrossRef]
- Schreiter, S.; Ding, G.-C.; Heuer, H.; Neumann, G.; Sandmann, M.; Grosch, R.; Kropf, S.; Smalla, K. Effect of the soil type on the microbiome in the rhizosphere of field-grown lettuce. Front. Microbiol. 2014, 5, 144. [Google Scholar] [CrossRef]
- Negre Rodríguez, M.; Pioppi, A.; Kovács, Á.T. The Role of Plant Host Genetics in Shaping the Composition and Functionality of Rhizosphere Microbiomes. mSystems 2025, 10, e00041-24. [Google Scholar] [CrossRef] [PubMed]
- Bouwmeester, H.; Dong, L.; Wippel, K.; Hofland, T.; Smilde, A. The Chemical Interaction Between Plants and the Rhizosphere Microbiome. Trends Plant Sci. 2025, 30, 1002–1019. [Google Scholar] [CrossRef]
- Shi, X.; Zhao, Y.; Xu, M.; Ma, L.; Adams, J.M.; Shi, Y. Insights into Plant–Microbe Interactions in the Rhizosphere to Promote Sustainable Agriculture in the New Crops Era. New Crops 2024, 1, 100004. [Google Scholar] [CrossRef]
- Ruan, Y.; Xiang, Z.; Yang, Z.; Yang, Z.; Zhang, M.; Wong, M.H.; Shan, S.; Liu, W. Linking Bacterial Community Shifts to Biochar-Induced Improvements in Soil Fertility and Multifunctionality. Agric. Ecosyst. Environ. 2026, 399, 110142. [Google Scholar] [CrossRef]
- Lin, N.; Jiao, R.; Li, X.; Lin, S.; Wei, L.; Wu, B. Surface-Engineered Biochars Enhance Soil Fertility by Modulating Microbial Assembly and Ecological Network Stability. J. Environ. Manag. 2025, 395, 127776. [Google Scholar] [CrossRef]
- Pei, J.M.; Li, J.Q.; Fang, C.M.; Zhao, J.; Nie, M.; Wu, J. Different Responses of Root Exudates to Biochar Application Under Elevated CO2. Agric. Ecosyst. Environ. 2020, 301, 107061. [Google Scholar] [CrossRef]
- Lundberg, D.S.; Lebeis, S.L.; Paredes, S.H.; Yourstone, S.; Gehring, J.; Malfatti, S.; Tremblay, J.; Engelbrektson, A.; Kunin, V.; Del Rio, T.G.; et al. Defining the Core Arabidopsis thaliana Root Microbiome. Nature 2012, 488, 86–90. [Google Scholar] [CrossRef]
- De Pascale, S.; Maggio, A.; Barbieri, G. Soil Salinization Affects Growth, Yield and Mineral Composition of Cauliflower and Broccoli. Eur. J. Agron. 2005, 23, 254–264. [Google Scholar] [CrossRef]
- Pan, X.Y.; Yang, X.X.; Ding, X.Y.; Liu, Z.X.; Chen, L.Y.; Qi, G.H. Effects of Biochar on Soil Physicochemical Properties and Enzyme Activities in Walnut Orchards. North. Hortic. 2025, 1, 61–70. (In Chinese) [Google Scholar]
- Adeli, A.; Brooks, J.P.; Miles, D.; Mlsna, T.; Quentin, R.; Jenkins, J.N. Effectiveness of Combined Biochar and Lignite with Poultry Litter on Soil Carbon Sequestration and Soil Health. Open J. Soil Sci. 2023, 13, 124–149. [Google Scholar] [CrossRef]
- Jeffery, S.; Verheijen, F.G.A.; Van der Velde, M.; Bastos, A.C. A Quantitative Review of the Effects of Biochar Application to Soils on Crop Productivity Using Meta-Analysis. Agric. Ecosyst. Environ. 2011, 144, 175–187. [Google Scholar] [CrossRef]
- Tang, K.; Zhu, W.W.; Zhou, W.X.; Yi, Z.X.; Tu, N.M. Research Progress on the Effect of Soil pH on Plant Growth and Development. Crop Res. 2013, 27, 207–212. (In Chinese) [Google Scholar]
- Tan, Z.P.; Gao, X.P. Comparative Advantage and Spatial Distribution of Wheat Planting Areas in China from 1997 to 2016. J. Henan Agric. Univ. 2018, 52, 825–838. (In Chinese) [Google Scholar]
- Wei, Y.X.; Zhu, T.Y.; Liu, H. Effects of Continuous Biochar Application on Soil Improvement and Maize Yield in Black Soil Region. Trans. Chin. Soc. Agric. Mach. 2022, 53, 291–301. (In Chinese) [Google Scholar]
- Ding, F.; Van Zwieten, L.; Zhang, W.D.; Weng, Z.; Shi, W.; Wang, J.; Meng, J. A Meta-Analysis and Critical Evaluation of Influencing Factors on Soil Carbon Priming Following Biochar Amendment. J. Soils Sediments 2018, 18, 1507–1517. [Google Scholar] [CrossRef]
- Dai, L.X.; Xu, Y.; Zhang, G.C.; Shi, X.-L.; Qin, F.-F.; Ding, H.; Zhang, Z.-M. Response of rhizosphere bacterial community diversity to salt stress in peanut. Acta Agron. Sin. 2021, 47, 1581–1592. (In Chinese) [Google Scholar] [CrossRef]
- Hou, Y.; Zeng, W.; Hou, M.; Wang, Z.; Luo, Y.; Lei, G.; Zhou, B.; Huang, J. Responses of the Soil Microbial Community to Salinity Stress in Maize Fields. Biology 2021, 10, 1114. [Google Scholar] [CrossRef]
- Chen, Z.; Jin, Z.X.; Zeng, C.Y.; Zhang, Y.H.; He, C.Y. Effects of Microbial Inoculant Application on Growth of Codonopsis pilosula and Rhizosphere Soil Microbial Community Structure. Soil Fertil. Sci. China 2025, 108–116. (In Chinese) [Google Scholar]
- Bolan, S.; Hou, D.Y.; Wang, L.W.; Hale, L.; Egamberdieva, D.; Tammeorg, P.; Li, R.; Wang, B.; Xu, J.; Wang, T.; et al. The Potential of Biochar as a Microbial Carrier for Agricultural and Environmental Applications. Sci. Total Environ. 2023, 886, 163968. [Google Scholar] [CrossRef]
- Wang, X.Y. Study on the Synergistic Effect of Biochar and Microbial Agents on Soil Carbon Sequestration and Quality Improvement. Master’s Thesis, Hebei University, Baoding, China, 2024. [Google Scholar]
- Bai, Y.; Su, X.F.; Gu, X. Research Progress on the Effects of Biochar on Farmland Soil Microorganisms. Environ. Sci. 2025, 46, 2600–2610. (In Chinese) [Google Scholar]
- Zheng, J.; Chen, J.; Pan, G.; Liu, X.; Zhang, X.; Li, L.; Bian, R.; Cheng, K.; Zheng, J. Biochar Decreased Microbial Metabolic Quotient and Shifted Community Composition Four Years After a Single Incorporation in a Slightly Acid Rice Paddy from Southwest China. Sci. Total Environ. 2016, 571, 206–217. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, C.; Chen, G.; Zhou, J.; Chen, Z.; Li, Z.; Zhu, J.; Feng, T.; Chen, Y. Response of Soil Microbial Communities to Additions of Straw Biochar, Iron Oxide, and Iron Oxide-Modified Straw Biochar in an Arsenic-Contaminated Soil. Environ. Sci. Pollut. Res. 2020, 27, 23761–23768. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Gao, H.J.; Yuan, R.; Zhang, J.X.; Yang, S.Y.; Liu, W. Application of Modified Biochar in Saline-Alkali Soil Remediation. Soil. Sci. 2023, 11, 73–78. (In Chinese) [Google Scholar]
- Mondal, S.; Pramanik, K.; Pal, P.; Mitra, S.; Ghosh, S.K.; Mondal, T.; Soren, T.; Maiti, T.K. Multifaceted Roles of Root Exudates in Light of Plant-Microbe Interaction. In Unravelling Plant-Microbe Synergy; Chandra, D., Bhatt, P., Eds.; Academic Press: Amsterdam, The Netherlands, 2023; pp. 49–76. [Google Scholar]
- Wang, Z.; Jia, X.; Sun, W.; Wang, J.; Li, C.; Zhao, Q.; Li, Y.; Tian, S. Biochar enhances plant growth and reshapes the structure of rhizosphere bacterial community in salt-stressed soil via mediating root exudates. Sci. Total Environ. 2023, 905, 167177. [Google Scholar] [CrossRef] [PubMed]
- Fierer, N.; Jackson, R.B. The Diversity and Biogeography of Soil Bacterial Communities. Proc. Natl. Acad. Sci. USA 2006, 103, 626–631. [Google Scholar] [CrossRef]
- Cao, M.; Lu, Q.; Cui, L.; Wang, G.; Zheng, X.; Wang, D.; Kong, Y.; Tian, Y.; Tang, L.; Zhang, H. Biochar Reduces Microbial Fertilizer-Induced Microbial Community Stability by Weakening Heterogeneous Selection in Poplar Plantation Soil. For. Ecol. Manag. 2025, 594, 122956. [Google Scholar] [CrossRef]







| Treatment | Description | Biochar Content (g kg−1) | NaCl Content (g kg−1) | Growth Period |
|---|---|---|---|---|
| CK | Control (no stress, no biochar) | 0 | 0 | S0, S1, S2, S3, S4 |
| T1 | Salt stress with biochar amendment | 20 | 5 | S0, S1, S2, S3, S4 |
| T2 | Salt stress only (no biochar) | 0 | 5 | S0, S1, S2, S3, S4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Xu, Y.; Zhang, L.; Gao, Z.; Shi, Z.; Li, P.; Xu, R.; Cui, J. Genotype-Specific Rhizosphere Microbiome Assembly Mediates Biochar-Induced Salt Tolerance in Sorghum. Curr. Issues Mol. Biol. 2026, 48, 186. https://doi.org/10.3390/cimb48020186
Xu Y, Zhang L, Gao Z, Shi Z, Li P, Xu R, Cui J. Genotype-Specific Rhizosphere Microbiome Assembly Mediates Biochar-Induced Salt Tolerance in Sorghum. Current Issues in Molecular Biology. 2026; 48(2):186. https://doi.org/10.3390/cimb48020186
Chicago/Turabian StyleXu, Yingying, Lingyu Zhang, Zhichang Gao, Zhijian Shi, Peng Li, Ruitao Xu, and Jianghui Cui. 2026. "Genotype-Specific Rhizosphere Microbiome Assembly Mediates Biochar-Induced Salt Tolerance in Sorghum" Current Issues in Molecular Biology 48, no. 2: 186. https://doi.org/10.3390/cimb48020186
APA StyleXu, Y., Zhang, L., Gao, Z., Shi, Z., Li, P., Xu, R., & Cui, J. (2026). Genotype-Specific Rhizosphere Microbiome Assembly Mediates Biochar-Induced Salt Tolerance in Sorghum. Current Issues in Molecular Biology, 48(2), 186. https://doi.org/10.3390/cimb48020186

