Sympathetic Chain Ganglia in the Female Pig During Prenatal Development: Noradrenergic and Cholinergic Neurons
Abstract
1. Introduction
2. Materials and Methods
2.1. Tissue Preparation and Immunohistochemistry
2.2. Counting of Neurons
2.3. PCR, Sex Identification
3. Results
3.1. Five-Week-Old Foetus
3.2. Seven-Week-Old Foetuses
3.3. Ten-Week-Old Foetuses
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kuntz, A. The development of the sympathetic nervous system in man. Comp. Neurol. 1920, 32, 173–229. [Google Scholar] [CrossRef]
- Kuder, T. Autonomiczny Układ Nerwowy; Wydawnictwo Akademii Świętokrzyskiej im. Jana Kochanowskiego: Kielce, Poland, 2002; ISBN 83-7133-168-1. [Google Scholar]
- Le Douarin, N.M.; Kalcheim, C. The Neural Crest, 2nd ed.; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar] [CrossRef]
- Erickson, C.A.; Wenger, M.; Hutchins, E.D.; Nardini, D.; Trinh, K.; Langer, J.B.; Gross, J.M.; Southard-Smith, E.M.; Gould, T.W.; Dymecki, S.M.; et al. Motor innervation directs the correct development of the mouse sympathetic nervous system. Nat. Commun. 2024, 15, 7065. [Google Scholar] [CrossRef]
- Patten, B.M. Embryology of the Pig, 3rd ed.; Home Farm Books Publication: Clear Lake, IA, USA, 1948. [Google Scholar]
- Rickmann, M.; Fawcett, J.W.; Keynes, R.J. The migration of neural crest cells and the growth of motor axons through the rostral half of the chick somite. Development 1985, 90, 437–455. [Google Scholar] [CrossRef]
- Kyriakoudi, S.A.; Chatzi, D.; Dermitzakis, I.; Gargani, S.; Manthou, M.E.; Meditskou, S.; Theotokis, P. Genetic identity of neural crest cell differentiation in tissue and organ development. Front. Biosci. 2024, 29, 261. [Google Scholar] [CrossRef]
- Krull, C.E. Segmental organization of neural crest migration. Mech. Dev. 2001, 105, 37–45. [Google Scholar] [CrossRef]
- Gammill, L.S.; Gonzalez, C.; Bronner-Fraser, M. Neuropilin 2/semaphorin 3F signaling is essential for cranial neural crest migration and trigeminal ganglion condensation. Dev. Neurobiol. 2007, 67, 47–56. [Google Scholar] [CrossRef]
- Kulesa, P.M.; Lefcort, F.; Kasemeier-Kulesa, J.C. The migration of autonomic precursor cells in the embryo. Auton. Neurosci. 2009, 151, 3–9. [Google Scholar] [CrossRef]
- Kasemeier-Kulesa, J.C.; Kulesa, P.M.; Lefcort, F. Imaging neural crest cell dynamics during formation of dorsal root ganglia and sympathetic ganglia. Development 2005, 132, 235–245. [Google Scholar] [CrossRef]
- Young, H.M.; Cane, K.N.; Anderson, C.R. Development of the autonomic nervous system: A comparative view. Auton. Neurosci. Basic. Clin. 2011, 165, 10–27. [Google Scholar] [CrossRef]
- Schwarz, Q.; Maden, C.H.; Vieira, J.M.; Ruhrberg, C. Neuropilin 1 signaling guides neural crest cells to coordinate pathway choice with cell specification. Proc. Natl. Acad. Sci. USA 2009, 106, 6164–6169. [Google Scholar] [CrossRef]
- Moon, B.-S.; Yoon, J.-Y.; Kim, M.-Y.; Lee, S.-H.; Choi, T.; Choi, K.-Y. Bone morphogenetic protein 4 stimulates neuronal differentiation of neuronal stem cells through the ERK pathway. Exp. Mol. Med. 2009, 41, 123–130. [Google Scholar] [CrossRef]
- Kruepunga, N.; Hikspoors, J.; Hülsman, C.; Mommen, G.; Köhler, S.; Lamers, W. Development of the sympathetic trunk in human embryos. J. Anat. 2021, 239, 32–45. [Google Scholar] [CrossRef]
- Huang, E.J.; Reichardt, L.F. Neurotrophins: Roles in neuronal development and function. Annu. Rev. Neurosci. 2001, 24, 677–736. [Google Scholar] [CrossRef]
- Pospieszny, N.; Brużewicz, S. Morphology and development of the post-diaphragmatic part of the sympathetic trunk in the pig (Sus scrofa L.) during its prenatal period. Ann. Anat. 1998, 180, 261–267. [Google Scholar] [CrossRef]
- Shakhova, O.; Sommer, L. Neural crest-derived stem cells. In StemBook [Internet]; Harvard Stem Cell Institute: Cambridge, MA, USA, 2008. [Google Scholar] [CrossRef]
- Waldo, K.; Zdanowicz, M.; Burch, J.; Kumiski, D.H.; Stadt, H.A.; Godt, R.E.; Creazzo, T.L.; Kirby, M.L. A novel role for cardiac neural crest in heart development. J. Clin. Investig. 1999, 103, 1499–1507. [Google Scholar] [CrossRef]
- An, M.; Luo, R.; Henion, P.D. Differentiation and maturation of zebrafish dorsal root and sympathetic ganglion neurons. J. Comp. Neurol. 2002, 466, 267–275. [Google Scholar] [CrossRef]
- Lee, H.Y.; Kleber, M.; Hair, L.; Brault, V.; Suter, U.; Taketo, M.M.; Kemler, R.; Sommer, L. Instructive role of Wnt/β-catenin in sensory fate specification in neural crest stem cells. Science 2004, 303, 1020–1023. [Google Scholar] [CrossRef]
- Li, H.Y.; Say, E.H.; Zhou, X.F. Isolation and characterization of neural crest progenitors from adult dorsal root ganglia. Stem Cells 2007, 25, 2053–2065. [Google Scholar] [CrossRef]
- Vaglia, J.; Hall, B.K. Regulation of neural crest cell populations: Occurrence, distribution and underlying mechanisms. Int. J. Dev. Biol. 1999, 43, 95–110. [Google Scholar] [CrossRef]
- Hamburger, V.; Hamilton, H.L. A series of normal stages in the development of the chick embryo. J. Morphol. 1992, 195, 231–272. [Google Scholar] [CrossRef]
- Martinez-Sanchez, N.; Sweeney, O.; Sidarta-Oliveira, D.; Caron, A.; Stanley, S.A.; Domingos, A.I. The sympathetic nervous system in the 21st century: Neuroimmune interactions in metabolic homeostasis and obesity. Neuron 2022, 110, 3597–3626. [Google Scholar] [CrossRef]
- Kozłowska, A.; Mikołajczyk, A.; Majewski, M. Detailed characterization of sympathetic chain ganglia (SChG) neurons supplying the skin of the porcine hindlimb. Int. J. Mol. Sci. 2017, 18, 1463. [Google Scholar] [CrossRef]
- Apostolova, G.; Dechant, G. Development of neurotransmitter phenotypes in sympathetic neurons. Auton. Neurosci. 2009, 151, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, M.; Lindh, B.; Uvnäs-Moberg, K.; Hökfelt, T. Distribution and origin of peptide-containing nerve fibres in the rat and human mammary gland. Neuroscience 1996, 70, 227–245. [Google Scholar] [CrossRef]
- Franke-Radowiecka, A. Vasoactive intestinal polypeptide (VIP)-immunoreactive nerve fibres in the mammary gland of the pig. Folia Morphol. 2003, 62, 267–270. [Google Scholar] [PubMed]
- Franke-Radowiecka, A.; Wąsowicz, K.; Klimczuk, M.; Podlasz, P.; Zalecki, M.; Sienkiewicz, W. Immunohistochemical characterization of sympathetic chain ganglia (SChG) neurons supplying the porcine mammary gland. Anat. Histol. Embryol. 2016, 45, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.; Stewart, A.; Young, H. Phenotypes of neural-crest-derived cells in vagal and sacral pathways. Cell Tissue Res. 2006, 323, 11–25. [Google Scholar] [CrossRef]
- Ernsberger, U.; Deller, T.; Rohrer, H. The diversity of neuronal phenotypes in rodent and human autonomic ganglia. Cell Tissue Res. 2020, 382, 201–231. [Google Scholar] [CrossRef]
- Swindle, M.M.; Makin, A.; Herron, A.J.; Clubb, F.J., Jr.; Frazier, K.S. Swine as models in biomedical research and toxicology testing. Vet. Pathol. 2012, 49, 344–356. [Google Scholar] [CrossRef]
- Franke-Radowiecka, A. Paracervical ganglion in the female pig during prenatal development: Morphology and immunohistochemical characteristics. Histol. Histopathol. 2020, 35, 1363–1377. [Google Scholar] [CrossRef]
- Franke-Radowiecka, A.; Demus, N.V.; Bossowska, A. Innervation of the female internal genital organs in 12-week-old porcine foetuses. Pol. J. Vet. Sci. 2024, 27, 645–649. [Google Scholar] [CrossRef]
- Franke-Radowiecka, A.; Prozorowska, E.; Zalecki, M.; Jackowiak, H.; Kaleczyc, J. Innervation of internal female genital organs in the pig during prenatal development. J. Anat. 2019, 235, 1007–1017. [Google Scholar] [CrossRef]
- Evans, H.E.; Sack, W.O. Prenatal development of domestic and laboratory mammals: Growth curves, external features and selected references. Anat. Histol. Embryol. 1973, 2, 11–45. [Google Scholar] [CrossRef]
- Dudek, A.; Sienkiewicz, W.; Lepiarczyk, E.; Kaleczyc, J. Immunohistochemical properties of motoneurons supplying the porcine trapezius muscle. Pol. J. Vet. Sci. 2024, 27, 75–84. [Google Scholar] [CrossRef]
- Franke-Radowiecka, A.; Bossowska, A. Histomorphological Changes in Lumbar Sympathetic Chain Ganglia of the Female Pig during Prenatal Development. Pol. J. Vet. Sci. 2025, 28, 679–682. [Google Scholar] [CrossRef]
- Lopez, M.E. A Quick, No Frills Approach to Mouse Genotyping. Bio Protoc. 2012, 2, e244. [Google Scholar] [CrossRef] [PubMed]
- Arciszewski, M.B.; Wasowicz, K. Neurochemical properties of the middle cervical ganglion in the sheep. Ann. Anat. 2006, 188, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Stanke, M.; Geissen, M.; Götz, R.; Ernsberger, U.; Rohrer, H. The early expression of VAChT and VIP in mouse sympathetic ganglia is not induced by cytokines acting through LIFRβ or CNTFRα. Mech. Dev. 2000, 91, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Ragionieri, L.; Botti, M.; Gazza, F.; Sorteni, C.; Chiocchetti, R.; Clavenzani, P.; Bo Minelli, L.; Panu, R. Localization of peripheral autonomic neurons innervating the boar urinary bladder trigone and neurochemical features of the sympathetic component. Eur. J. Histochem. 2013, 57, e16. [Google Scholar] [CrossRef]
- Gibbins, I.L.; Jobling, P.; Messenger, J.P.; Teo, E.H.; Morris, J.L. Neuronal morphology and the synaptic organisation of sympathetic ganglia. J. Auton. Nerv. Syst. 2000, 81, 104–109. [Google Scholar] [CrossRef]
- Gibbins, I.L.; Morris, J.L. Pathway specific expression of neuropeptides and autonomic control of the vasculature. Regul. Pept. 2000, 93, 93–107. [Google Scholar] [CrossRef]
- Purves, D. The trophic theory of neural concentrations. Trends Neurosci. 1986, 9, 486–489. [Google Scholar] [CrossRef]
- Landis, S.C. Target regulation of neurotransmitter phenotype. Trends Neurosci. 1990, 13, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Llewellyn-Smith, I.J. Neuropeptides and the microcircuitry of the enteric nervous system. Experientia 1987, 43, 813–821. [Google Scholar] [CrossRef]
- Maslyukov, P.M. Preganglionic inputs to the stellate ganglion of the cat during postnatal ontogenesis. Neurosci. Behav. Physiol. 2005, 35, 461–463. [Google Scholar] [CrossRef]
- McLachlan, R.S. Vagus nerve stimulation for intractable epilepsy: A review. J. Clin. Neurophysiol. 1997, 14, 358–368. [Google Scholar] [CrossRef] [PubMed]
- Ernsberger, U.; Rohrer, H. Sympathetic tales: Subdivisons of the autonomic nervous system and the impact of developmental studies. Neural Dev. 2018, 13, 20. [Google Scholar] [CrossRef] [PubMed]
- Ernsberger, U. The development of postganglionic sympathetic neurons: Coordinating neuronal differentiation and diversification. Auton. Neurosci. 2001, 94, 1–13. [Google Scholar] [CrossRef]
- Huber, K. The sympathoadrenal cell lineage: Specification, diversification, and new perspectives. Dev. Biol. 2006, 298, 335–343. [Google Scholar] [CrossRef]
- Levi-Montalcini, R. The nerve growth factor: 35 years later. Science 1987, 237, 1154–1162. [Google Scholar] [CrossRef]
- Goridis, C.; Rohrer, H. Specification of catecholaminergic and cholinergic neurons. Nat. Rev. Neurosci. 2002, 3, 531–541. [Google Scholar] [CrossRef]
- Furlan, A.; Dyachuk, V.; Kastriti, M.E.; Calvo-Enrique, L.; Abdo, H.; Hadjab, S.; Chontorotzea, T.; Akkuratova, N.; Usoskin, D.; Kamenev, D.; et al. Multipotent peripheral glial cells generate neuroendocrine cells of the adrenal medulla. Science 2017, 357, eaal3753. [Google Scholar] [CrossRef] [PubMed]
- Landis, S.C. Development of sympathetic neurons. In Development of the Autonomic Nervous System; McLachlan, E.M., Ed.; Cambridge University Press: Cambridge, UK, 1995; pp. 96–128. [Google Scholar]
- Schütz, B.; von Engelhardt, J.; Gördes, M.; Schäfer, M.-H.; Eiden, L.; Monyer, H.; Weihe, E. Sweat gland innervation is pioneered by sympathetic neurons expressing a cholinergic/noradrenergic co-phenotype in the mouse. J. Neurosci. 2008, 156, 310–318. [Google Scholar] [CrossRef]
- Wiese, C.; Deal, K.; Ireland, S.; Cantrell, V.; Southard-Smith, E. Migration pathways of sacral neural crest during development of lower urogenital tract innervation. Dev. Biol. 2017, 429, 356–369. [Google Scholar] [CrossRef]
- Lichtman, J.W.; Colman, H. Synapse elimination and indelible memory. Neuron 2000, 25, 269–278. [Google Scholar] [CrossRef]
- Dotti, C.G.; Sullivan, C.A.; Banker, G.A. The establishment of polarity by hippocampal neurons in culture. J. Neurosci. 1988, 8, 1454–1468. [Google Scholar] [CrossRef] [PubMed]
- Masliukov, P.M.; Timmermans, J.P. Immunocytochemical properties of stellate ganglion neurons during early postnatal development. Histochem. Cell Biol. 2004, 122, 201–209. [Google Scholar] [CrossRef]
- Ernsberger, U.; Patzke, H.; Rohrer, H. The developmental expression of choline acetyltransferase (ChAT) and the neuropeptide VIP in chick sympathetic neurons: Evidence for different regulatory events in cholinergic differentiation. Mech. Dev. 1997, 68, 115–126. [Google Scholar] [CrossRef]
- Huber, K.; Ernsberger, U. Cholinergic differentiation occurs early in mouse sympathetic neurons and requires Phox2b. Gene Expr. 2006, 13, 133–139. [Google Scholar] [CrossRef]
- Müller, F.; Rohrer, H. Molecular control of ciliary neuron development: BMPs and downstream transcriptional control in the parasympathetic lineage. Development 2002, 129, 5707–5717. [Google Scholar] [CrossRef]
- Kruepunga, N.; Hikspoors, J.P.J.M.; Hülsman, C.J.M.; Mommen, G.M.C.; Köhler, S.E.; Lamers, W.H. Extrinsic innervation of the pelvic organs in the lesser pelvis of human embryos. J. Anat. 2020, 237, 672–688. [Google Scholar] [CrossRef]
- Uesaka, T.; Jain, S.; Yonemura, S.; Uchiyama, Y.; Milbrandt, J.; Enomoto, H. Conditional ablation of GFRα1 in postmigratory enteric neurons triggers unconventional neuronal death in the colon and causes a Hirschsprung’s disease phenotype. Development 2007, 134, 2171–2181. [Google Scholar] [CrossRef] [PubMed]
- Schütz, B.; Schäfer, M.K.; Eiden, L.E.; Weihe, E. Vesicular amine transporter expression and isoform selection in developing brain, peripheral nervous system and gut. Dev. Brain Res. 1998, 106, 181–204. [Google Scholar] [CrossRef]
- Habecker, B.A.; Klein, M.G.; Sundgren, N.C.; Li, W.; Woodward, W.R. Developmental regulation of neurotransmitter phenotype through tetrahydrobiopterin. J. Neurosci. 2002, 22, 9445–9452. [Google Scholar] [CrossRef]
- Nagashimada, M.; Ohta, H.; Li, C.; Nakao, K.; Uesaka, T.; Brunet, J.-F.; Amiel, J.; Trochet, D.; Wakayama, T.; Enomoto, H. Autonomic neurocristopathy-associated mutations in PHOX2B dysregulate Sox10 expression. J. Clin. Investig. 2012, 122, 3145–3158. [Google Scholar] [CrossRef]
- Reissmann, E.; Ernsberger, U.; Francis-West, P.H.; Rueger, D.; Brickell, P.M.; Rohrer, H. Involvement of bone morphogenetic protein-4 and bone morphogenetic protein-7 in the differentiation of the adrenergic phenotype in developing sympathetic neurons. Development 1996, 122, 2079–2088. [Google Scholar] [CrossRef]
- Heanue, T.A.; Pachnis, V. Enteric nervous system development and Hirschsprung’s disease: Advances in genetic and stem cell studies. Nat. Rev. Neurosci. 2007, 8, 466–479. [Google Scholar] [CrossRef]
- Keck, S.; Galati-Fournier, V.; Kym, U.; Moesch, M.; Usemann, J.; Müller, I.; Subotic, U.; Tharakan, S.J.; Krebs, T.; Stathopoulos, E.; et al. Lack of Mucosal Cholinergic Innervation Is Associated with Increased Risk of Enterocolitis in Hirschsprung’s Disease. Cell Mol. Gastroenterol. Hepatol. 2021, 12, 507–545. [Google Scholar] [CrossRef]
- Weese-Mayer, D.E.; Rand, C.M.; Zhou, A.; Carroll, M.S.; Hunt, C.E. Congenital Central Hypoventilation Syndrome: A Bedside-to-Bench Success Story for Advancing Early Diagnosis and Treatment and Improved Survival and Quality of Life. Pediatr. Res. 2017, 81, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Moreira, T.S.; Takakura, A.C.; Czeisler, C.; Otero, J.J. Respiratory and autonomic dysfunction in congenital central hypoventilation syndrome. J. Neurophysiol. 2016, 116, 742–752. [Google Scholar] [CrossRef] [PubMed]
- Brodeur, G.M. Neuroblastoma: Biological insights and clinical implications. Nat. Rev. Cancer 2003, 3, 203–216. [Google Scholar] [CrossRef] [PubMed]





| Primary Antibodies | |||||
| Antigen | Clonality | Host | Dilution | Company | Catalog No |
| Protein gene Product 9.5 | monoclonal | mouse | 1:400 | Biorad (Hercules, CA, USA) | 7863-2004 |
| Dopamine beta hydroxylase | monoclonal | mouse | 1:500 | Millipore (Billerica, MA, USA) | MAB308 |
| Dopamine beta hydroxylase | polyclonal | rabbit | 1:500 | Enzo (Farmingdale, NY, USA) | BML-DZ1020-0050 |
| Vesicular Acetylcholine Transporter | polyclonal | rabbit | 1:5000 | Sigma (St. Louis, MO, USA) | V5387 |
| Secondary Reagents | |||||
| Antigen | Fluorophore | Host | Dilution | Company | Catalog No |
| Mouse IgG | Alexa 488 | goat | 1:1000 | Invitrogen (Carlsbad, CA, USA) | A-11001 |
| Rabbit IgG | Alexa 555 | goat | 1:1000 | Invitrogen | A-21428 |
| Week | Mean ± SD | Median | Min | Max | H-Statistic | p-Value | |
|---|---|---|---|---|---|---|---|
| PGP/DβH [%] (N = 5) | 5 | 79.41 ± 0.98 | 80.76 | 71.09 | 87.25 | 10.22 | <0.001 |
| 7 | 82.01 ± 6.65 | 85.12 | 37.50 | 89.19 | |||
| 10 | 88.52 ± 1.65 | 88.91 | 78.19 | 90.73 | |||
| PGP/VAChT [%] (N = 5) | 5 | 25.90 ± 1.01 | 26.19 | 13.60 | 36.36 | 12.50 | <0.001 |
| 7 | 6.45 ± 0.26 | 6.18 | 4.30 | 9.09 | |||
| 10 | 1.98 ± 0.20 | 1.68 | 1.03 | 3.46 | |||
| DβH/VAChT [%] (N = 5) | 5 | 12.45 ± 0.90 | 13.52 | 1.14 | 20.78 | 12.50 | <0.001 |
| 7 | 9.08 ± 0.24 | 9.13 | 7.29 | 10.17 | |||
| 10 | 5.38 ± 0.18 | 5.44 | 4.35 | 5.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Franke-Radowiecka, A. Sympathetic Chain Ganglia in the Female Pig During Prenatal Development: Noradrenergic and Cholinergic Neurons. Curr. Issues Mol. Biol. 2026, 48, 175. https://doi.org/10.3390/cimb48020175
Franke-Radowiecka A. Sympathetic Chain Ganglia in the Female Pig During Prenatal Development: Noradrenergic and Cholinergic Neurons. Current Issues in Molecular Biology. 2026; 48(2):175. https://doi.org/10.3390/cimb48020175
Chicago/Turabian StyleFranke-Radowiecka, Amelia. 2026. "Sympathetic Chain Ganglia in the Female Pig During Prenatal Development: Noradrenergic and Cholinergic Neurons" Current Issues in Molecular Biology 48, no. 2: 175. https://doi.org/10.3390/cimb48020175
APA StyleFranke-Radowiecka, A. (2026). Sympathetic Chain Ganglia in the Female Pig During Prenatal Development: Noradrenergic and Cholinergic Neurons. Current Issues in Molecular Biology, 48(2), 175. https://doi.org/10.3390/cimb48020175
