Next Issue
Previous Issue

E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Table of Contents

Molecules, Volume 21, Issue 8 (August 2016)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Cover Story (view full-size image) Methylxanthines are phytochemicals that have been included in the diet of human populations for a [...] Read more.
View options order results:
result details:
Displaying articles 1-142
Export citation of selected articles as:
Open AccessArticle Ribosome Inactivating Proteins from Rosaceae
Molecules 2016, 21(8), 1105; https://doi.org/10.3390/molecules21081105
Received: 11 July 2016 / Revised: 16 August 2016 / Accepted: 18 August 2016 / Published: 22 August 2016
Cited by 8 | PDF Full-text (3948 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Ribosome-inactivating proteins (RIPs) are widespread among higher plants of different taxonomic orders. In this study, we report on the RIP sequences found in the genome/transcriptome of several important Rosaceae species, including many economically important edible fruits such as apple, pear, peach, apricot, and
[...] Read more.
Ribosome-inactivating proteins (RIPs) are widespread among higher plants of different taxonomic orders. In this study, we report on the RIP sequences found in the genome/transcriptome of several important Rosaceae species, including many economically important edible fruits such as apple, pear, peach, apricot, and strawberry. All RIP domains from Rosaceae share high sequence similarity with conserved residues in the catalytic site and the carbohydrate binding sites. The genomes of Malus domestica and Pyrus communis contain both type 1 and type 2 RIP sequences, whereas for Prunus mume, Prunus persica, Pyrus bretschneideri, and Pyrus communis a complex set of type 1 RIP sequences was retrieved. Heterologous expression and purification of the type 1 as well as the type 2 RIP from apple allowed to characterize the biological activity of the proteins. Both RIPs from Malus domestica can inhibit protein synthesis. Furthermore, molecular modelling suggests that RIPs from Rosaceae possess three-dimensional structures that are highly similar to the model proteins and can bind to RIP substrates. Screening of the recombinant type 2 RIP from apple on a glycan array revealed that this type 2 RIP interacts with terminal sialic acid residues. Our data suggest that the RIPs from Rosaceae are biologically active proteins. Full article
Figures

Figure 1

Open AccessArticle Furfural Production from d-Xylose and Xylan by Using Stable Nafion NR50 and NaCl in a Microwave-Assisted Biphasic Reaction
Molecules 2016, 21(8), 1102; https://doi.org/10.3390/molecules21081102
Received: 9 July 2016 / Revised: 5 August 2016 / Accepted: 10 August 2016 / Published: 22 August 2016
Cited by 15 | PDF Full-text (3406 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Pentose dehydration and direct transformation of xylan into furfural were performed in a water-cyclopentyl methyl ether (CPME) biphasic system under microwave irradiation. Heated up between 170 and 190 °C in the presence of Nafion NR50 and NaCl, d-xylose, l-arabinose and xylan
[...] Read more.
Pentose dehydration and direct transformation of xylan into furfural were performed in a water-cyclopentyl methyl ether (CPME) biphasic system under microwave irradiation. Heated up between 170 and 190 °C in the presence of Nafion NR50 and NaCl, d-xylose, l-arabinose and xylan gave furfural with maximum yields of 80%, 42% and 55%, respectively. The influence of temperature and reaction time on the reaction kinetics was discussed. This study was also completed by the survey of different reactant ratios, such as organic layer-water or catalyst-inorganic salt ratios. The exchange between proton and cation induced by an excess of NaCl was monitored, and a synergetic effect between the remaining protons and the released HCl was also discovered. Full article
Figures

Graphical abstract

Open AccessArticle A Novel Insecticidal Peptide SLP1 Produced by Streptomyces laindensis H008 against Lipaphis erysimi
Molecules 2016, 21(8), 1101; https://doi.org/10.3390/molecules21081101
Received: 9 July 2016 / Revised: 15 August 2016 / Accepted: 18 August 2016 / Published: 22 August 2016
PDF Full-text (1362 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Aphids are major insect pests for crops, causing damage by direct feeding and transmission of plant diseases. This paper was completed to discover and characterize a novel insecticidal metabolite against aphids from soil actinobacteria. An insecticidal activity assay was used to screen 180
[...] Read more.
Aphids are major insect pests for crops, causing damage by direct feeding and transmission of plant diseases. This paper was completed to discover and characterize a novel insecticidal metabolite against aphids from soil actinobacteria. An insecticidal activity assay was used to screen 180 bacterial strains from soil samples against mustard aphid, Lipaphis erysimi. The bacterial strain H008 showed the strongest activity, and it was identified by the phylogenetic analysis of the 16S rRNA gene and physiological traits as a novel species of genus Streptomyces (named S. laindensis H008). With the bioassay-guided method, the insecticidal extract from S. laindensis H008 was subjected to chromatographic separations. Finally, a novel insecticidal peptide was purified from Streptomyces laindensis H008 against L. erysimi, and it was determined to be S-E-P-A-Q-I-V-I-V-D-G-V-D-Y-W by TOF-MS and amino acid analysis. Full article
Figures

Figure 1

Open AccessArticle Effect of the Production of Dried Fruits and Juice from Chokeberry (Aronia melanocarpa L.) on the Content and Antioxidative Activity of Bioactive Compounds
Molecules 2016, 21(8), 1098; https://doi.org/10.3390/molecules21081098
Received: 1 July 2016 / Revised: 14 August 2016 / Accepted: 16 August 2016 / Published: 22 August 2016
Cited by 13 | PDF Full-text (408 KB) | HTML Full-text | XML Full-text
Abstract
The aim of this study was to evaluate the production of dried fruits and juices from chokeberry as potential sources of bioactive compounds with beneficial effects on human health. Dry powders and juices from chokeberry were analyzed for the contents of sugars with
[...] Read more.
The aim of this study was to evaluate the production of dried fruits and juices from chokeberry as potential sources of bioactive compounds with beneficial effects on human health. Dry powders and juices from chokeberry were analyzed for the contents of sugars with high-performance liquid chromatography coupled with an evaporative light scattering detector (HPLC-ELSD method), and the antioxidant capacity was analyzed by the FRAP (ferric-reducing ability of plasma) and ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)) tests. Polyphenols were identified by high performance liquid chromatography (HPLC) coupled with a tandem mass spectrometer and a photodiode-array detector (LC-PDA-ESI-MS/MS), and their quantitative analysis was carried out by UPLC-MS/MS (using a Q/TOF detector and a PDA detector). A total of 27 polyphenolic compounds was identified in chokeberry products, including 7 anthocyanins, 11 flavonols, 5 phenolic acids, 3 flavan-3-ols and 1 flavanone. Three anthocyanin derivatives were reported for the first time from chokeberry fruit. A higher activity of the bioactive compounds was determined in dried fruit pomace and in juice obtained from crushed fruits than in those from the whole fruits. In addition, the pomace was found to be a better material for the production of dry powders, compared to chokeberry fruits. Full article
Figures

Figure 1

Open AccessArticle Antinociceptive Effect of 3-(2,3-Dimethoxyphenyl)-1-(5-methylfuran-2-yl)prop-2-en-1-one in Mice Models of Induced Nociception
Molecules 2016, 21(8), 1077; https://doi.org/10.3390/molecules21081077
Received: 28 June 2016 / Revised: 11 August 2016 / Accepted: 12 August 2016 / Published: 22 August 2016
Cited by 1 | PDF Full-text (2992 KB) | HTML Full-text | XML Full-text
Abstract
The antinociceptive effects produced by intraperitoneal administration of a novel synthetic chalcone, 3-(2,3-dimethoxyphenyl)-1-(5-methylfuran-2-yl)prop-2-en-1-one (DMFP), were investigated in several mouse models of induced nociception. The administration of DMFP (0.1, 0.5, 1.0 and 5.0 mg/kg) produced significant attenuation on the acetic acid-induced abdominal-writhing test. It
[...] Read more.
The antinociceptive effects produced by intraperitoneal administration of a novel synthetic chalcone, 3-(2,3-dimethoxyphenyl)-1-(5-methylfuran-2-yl)prop-2-en-1-one (DMFP), were investigated in several mouse models of induced nociception. The administration of DMFP (0.1, 0.5, 1.0 and 5.0 mg/kg) produced significant attenuation on the acetic acid-induced abdominal-writhing test. It also produced a significant increase in response latency time in the hot-plate test and a marked reduction in time spent licking the injected paw in both phases of the formalin-induced paw-licking test. In addition, it was also demonstrated that DMFP exhibited significant inhibition of the neurogenic nociceptive response induced by intraplantar injections of capsaicin and glutamate. Moreover, the antinociceptive effect of DMFP in the acetic acid-induced abdominal-writhing test and the hot-plate test was not antagonized by pretreatment with a non-selective opioid receptor antagonist, naloxone. Finally, DMFP did not show any toxic effects and/or mortality in a study of acute toxicity and did not interfere with motor coordination during the Rota-rod test. Our present results show that DMFP exhibits both peripheral and central antinociceptive effects. It was suggested that its peripheral antinociceptive activity is associated with attenuated production and/or release of NO and various pro-inflammatory mediators, while central antinociceptive activity seems to be unrelated to the opioidergic system, but could involve, at least in part, an interaction with the inhibition of capsaicin-sensitive fibers and the glutamatergic system. Full article
(This article belongs to the Section Natural Products Chemistry)
Figures

Graphical abstract

Open AccessArticle Neuroprotective Effects of Methyl 3,4-Dihydroxybenzoate against TBHP-Induced Oxidative Damage in SH-SY5Y Cells
Molecules 2016, 21(8), 1071; https://doi.org/10.3390/molecules21081071
Received: 29 June 2016 / Revised: 8 August 2016 / Accepted: 10 August 2016 / Published: 22 August 2016
Cited by 2 | PDF Full-text (3027 KB) | HTML Full-text | XML Full-text
Abstract
This study investigated the neuroprotective effects of methyl 3,4-dihydroxybenzoate (MDHB) against t-butyl hydroperoxide (TBHP) induced oxidative damage in SH-SY5Y (human neuroblastoma cells) and the underlying mechanisms. SH-SY5Y were cultured in DMEM + 10% FBS for 24 h and pretreated with different concentrations
[...] Read more.
This study investigated the neuroprotective effects of methyl 3,4-dihydroxybenzoate (MDHB) against t-butyl hydroperoxide (TBHP) induced oxidative damage in SH-SY5Y (human neuroblastoma cells) and the underlying mechanisms. SH-SY5Y were cultured in DMEM + 10% FBS for 24 h and pretreated with different concentrations of MDHB or N-acetyl-l-cysteine (NAC) for 4 h prior to the addition of 40 μM TBHP for 24 h. Cell viability was analyzed using the methylthiazolyltetrazolium (MTT) and lactate dehydrogenase (LDH) assays. An annexin V-FITC assay was used to detect cell apoptosis rates. The 2′,7′-dichlorofluorescin diacetate (DCFH-DA) assay was used to determine intracellular ROS levels. The activities of antioxidative enzymes (GSH-Px and SOD) were measured using commercially available kits. The oxidative DNA damage marker 8-OHdG was detected using ELISA. Western blotting was used to determine the expression of Bcl-2, Bax, caspase 3, p-Akt and Akt proteins in treated SH-SY5Y cells. Our results showed that MDHB is an effective neuroprotective compound that can mitigate oxidative stress and inhibit apoptosis in SH-SY5Y cells. Full article
(This article belongs to the Special Issue Chemistry and Pharmacology of Modulators of Oxidative Stress)
Figures

Figure 1a

Open AccessArticle Curcumin Ameliorates Furazolidone-Induced DNA Damage and Apoptosis in Human Hepatocyte L02 Cells by Inhibiting ROS Production and Mitochondrial Pathway
Molecules 2016, 21(8), 1061; https://doi.org/10.3390/molecules21081061
Received: 19 June 2016 / Revised: 8 August 2016 / Accepted: 10 August 2016 / Published: 22 August 2016
Cited by 13 | PDF Full-text (6451 KB) | HTML Full-text | XML Full-text
Abstract
Furazolidone (FZD), a synthetic nitrofuran derivative, has been widely used as an antibacterial and antiprotozoal agent. Recently, the potential toxicity of FZD has raised concerns, but its mechanism is still unclear. This study aimed to investigate the protective effect of curcumin on FZD-induced
[...] Read more.
Furazolidone (FZD), a synthetic nitrofuran derivative, has been widely used as an antibacterial and antiprotozoal agent. Recently, the potential toxicity of FZD has raised concerns, but its mechanism is still unclear. This study aimed to investigate the protective effect of curcumin on FZD-induced cytotoxicity and the underlying mechanism in human hepatocyte L02 cells. The results showed that curcumin pre-treatment significantly ameliorated FZD-induced oxidative stress, characterized by decreased reactive oxygen species (ROS) and malondialdehyde formation, and increased superoxide dismutase, catalase activities and glutathione contents. In addition, curcumin pre-treatment significantly ameliorated the loss of mitochondrial membrane potential, the activations of caspase-9 and -3, and apoptosis caused by FZD. Alkaline comet assay showed that curcumin markedly reduced FZD-induced DNA damage in a dose-dependent manner. Curcumin pre-treatment consistently and markedly down-regulated the mRNA expression levels of p53, Bax, caspase-9 and -3 and up-regulated the mRNA expression level of Bcl-2. Taken together, these results reveal that curcumin protects against FZD-induced DNA damage and apoptosis by inhibiting oxidative stress and mitochondrial pathway. Our study indicated that curcumin may be a promising combiner with FZD to reduce FZD-related toxicity in clinical applications. Full article
(This article belongs to the Special Issue Chemistry and Pharmacology of Modulators of Oxidative Stress)
Figures

Figure 1

Open AccessArticle Punica granatum L. Hydrogel for Wound Care Treatment: From Case Study to Phytomedicine Standardization
Molecules 2016, 21(8), 1059; https://doi.org/10.3390/molecules21081059
Received: 2 July 2016 / Revised: 7 August 2016 / Accepted: 7 August 2016 / Published: 22 August 2016
Cited by 2 | PDF Full-text (3416 KB) | HTML Full-text | XML Full-text
Abstract
The pharmacological activities of many Punica granatum L. components suggest a wide range of clinical applications for the prevention and treatment of diseases where chronic inflammation is believed to play an essential etiologic role. The current work reports a case study analyzing the
[...] Read more.
The pharmacological activities of many Punica granatum L. components suggest a wide range of clinical applications for the prevention and treatment of diseases where chronic inflammation is believed to play an essential etiologic role. The current work reports a case study analyzing the effect produced by a magistral formulation of ethanolic extracts of Punica granatum peels on a non-healing chronic ulcer. The complete closure of the chronic ulcer that was initially not responsive to standard medical care was observed. A 2% (w/w) P. granatum peels ethanolic extract hydrogel-based formulation (PGHF) was standardized and subjected to physicochemical studies to establish the quality control parameters using, among others, assessment criteria such as optimum appearance, pH range, viscosity and hydrogel disintegration. The stability and quantitative chromatographic data was assessed in storage for six months under two temperature regimes. An efficient HPLC-DAD method was established distinguishing the biomarkers punicalin and punicalagin simultaneously in a single 8 min run. PGHF presented suitable sensorial and physicochemical performance, showing that punicalagin was not significantly affected by storage (p > 0.05). Formulations containing extracts with not less than 0.49% (w/w) total punicalagin might find good use in wound healing therapy. Full article
(This article belongs to the collection Bioactive Compounds)
Figures

Graphical abstract

Open AccessArticle Gold Nanocluster Decorated Polypeptide/DNA Complexes for NIR Light and Redox Dual-Responsive Gene Transfection
Molecules 2016, 21(8), 1103; https://doi.org/10.3390/molecules21081103
Received: 30 July 2016 / Revised: 15 August 2016 / Accepted: 18 August 2016 / Published: 20 August 2016
Cited by 7 | PDF Full-text (3051 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Endo/lysosomal escape and subsequent nuclear translocation are recognized as the two major challenges for efficient gene transfection. Herein, nuclear localization signal (NLS) peptide sequences and oligomeric lysine sequences were crosslinked via disulfide bonds to obtain glutathione (GSH) reducible polypeptide (pNLS). The pNLS could
[...] Read more.
Endo/lysosomal escape and subsequent nuclear translocation are recognized as the two major challenges for efficient gene transfection. Herein, nuclear localization signal (NLS) peptide sequences and oligomeric lysine sequences were crosslinked via disulfide bonds to obtain glutathione (GSH) reducible polypeptide (pNLS). The pNLS could condense DNA into compact positive-charged complexes with redox sensitivity, and then gold nanoclusters (AuNC) were further decorated to the surface via electrostatic interactions obtaining versatile pNLS/DNA/AuNC complexes. The AuNC could generate reactive oxygen species (ROS) under NIR-irradiation and accelerate the endo/lysosomal escape of the complexes, and then the pNLS sequence degraded by GSH in cytoplasm would release the DNA and facilitate the subsequent nuclear translocation for enhanced gene transfection. Full article
(This article belongs to the Special Issue Stimuli-Responsive Biomaterials in Biomedical Applications)
Figures

Figure 1

Open AccessArticle Self-Supported N-Heterocyclic Carbenes and Their Use as Organocatalysts
Molecules 2016, 21(8), 1100; https://doi.org/10.3390/molecules21081100
Received: 19 July 2016 / Revised: 13 August 2016 / Accepted: 15 August 2016 / Published: 20 August 2016
PDF Full-text (1628 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The study of N-heterocyclic carbenes (NHCs) as organocatalysts has proliferated in recent years, and they have been found to be useful in a variety of reactions. In an attempt to further expand their utility and to study their recyclability, we designed and
[...] Read more.
The study of N-heterocyclic carbenes (NHCs) as organocatalysts has proliferated in recent years, and they have been found to be useful in a variety of reactions. In an attempt to further expand their utility and to study their recyclability, we designed and synthesized a series of self-supported NHCs in which the catalytic carbene groups form part of a densely functionalized polymer backbone, and studied them as organocatalysts. Of the self-Supported NHCs examined, a benzimidazole derived polymer with flexible linkers connecting the catalytic groups was found to be the most efficient organocatalyst in a model benzoin condensation reaction, and thus it was used in a variety of such reactions, including some involving catalyst recycling. Furthermore, it was also used to catalyze a set of redox esterification reactions involving conjugated unsaturated aldehydes. In all of these reactions the catalyst afforded good yield of the desired product and its polymeric nature facilitated product purification. Full article
(This article belongs to the Special Issue Recent Advancements in Polymer-Supported Catalysis)
Figures

Figure 1

Open AccessArticle Effect of Mono- and Poly-CH/P Exchange(s) on the Aromaticity of the Tropylium Ion
Molecules 2016, 21(8), 1099; https://doi.org/10.3390/molecules21081099
Received: 27 June 2016 / Revised: 9 August 2016 / Accepted: 11 August 2016 / Published: 20 August 2016
Cited by 1 | PDF Full-text (4915 KB) | HTML Full-text | XML Full-text
Abstract
In view of the fact that the phosphorus atom in its low co-ordination state (coordination numbers 1 and 2) has been termed as the carbon copy, there have been attempts to investigate, theoretically as well as experimentally, the effect of the exchange(s) of
[...] Read more.
In view of the fact that the phosphorus atom in its low co-ordination state (coordination numbers 1 and 2) has been termed as the carbon copy, there have been attempts to investigate, theoretically as well as experimentally, the effect of the exchange(s) of CH- moiety with phosphorus atom(s) (CH/P) on the structural and other aspects of the classical carbocyclic and heterocyclic systems. Tropylium ion is a well-known non-benzenoid aromatic system and has been studied extensively for its aromatic character. We have now investigated the effect of mono- and poly-CH/P exchange(s) on the aromaticity of the tropylium ion. For this purpose, the parameters based on the geometry and magnetic properties, namely bond equalization, aromatic stabilization energies (ASE), Nucleus-Independent Chemical Shift (NICS) values, (NICS(0), NICS(1), NICS(1)zz), proton nucleus magnetic resonance (1H-NMR) chemical shifts, magnetic susceptibility exaltation and magnetic anisotropic values of mono-, di-, tri- and tetra-phosphatropylium ions have been determined at the Density Functional Theory (DFT) (B3LYP/6-31+G(d)) level. Geometry optimization reveals bond length equalization. ASEs range from −46.3 kcal/mol to −6.2 kcal/mol in mono- and diphospha-analogues which are planar. However, the ions having three and four phosphorus atoms lose planarity and their ASE values approach the values typical for non-aromatic structures. Of the three NICS values, the NICS(1)zz is consistently negative showing aromatic character of all the systems studied. It is also supported by the magnetic susceptibility exaltations and magnetic anisotropic values. Furthermore, 1H-NMR chemical shifts also fall in the aromatic region. The conclusion that mono-, di-, tri- and tetra-phosphatropylium ions are aromatic in nature has been further corroborated by determining the energy gap between the Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) (HOMO − LUMO gap), which falls in the range, ca. 3 × 10−19–9 × 10−19 J. The systems having more than four phosphorus atoms are not able to sustain their monocyclic structure. Full article
(This article belongs to the Special Issue Recent Advances in Organophosphorus Chemistry)
Figures

Graphical abstract

Open AccessArticle Four New Dicaffeoylquinic Acid Derivatives from Glasswort (Salicornia herbacea L.) and Their Antioxidative Activity
Molecules 2016, 21(8), 1097; https://doi.org/10.3390/molecules21081097
Received: 30 May 2016 / Revised: 15 August 2016 / Accepted: 16 August 2016 / Published: 20 August 2016
Cited by 5 | PDF Full-text (978 KB) | HTML Full-text | XML Full-text
Abstract
Four new dicaffeoylquinic acid derivatives and two known 3-caffeoylquinic acid derivatives were isolated from methanol extracts using the aerial parts of Salicornia herbacea. The four new dicaffeoylquinic acid derivatives were established as 3-caffeoyl-5-dihydrocaffeoylquinic acid, 3-caffeoyl-5-dihydrocaffeoylquinic acid methyl ester, 3-caffeoyl-4-dihydrocaffeoylquinic acid methyl ester,
[...] Read more.
Four new dicaffeoylquinic acid derivatives and two known 3-caffeoylquinic acid derivatives were isolated from methanol extracts using the aerial parts of Salicornia herbacea. The four new dicaffeoylquinic acid derivatives were established as 3-caffeoyl-5-dihydrocaffeoylquinic acid, 3-caffeoyl-5-dihydrocaffeoylquinic acid methyl ester, 3-caffeoyl-4-dihydrocaffeoylquinic acid methyl ester, and 3,5-di-dihydrocaffeoylquinic acid methyl ester. Their chemical structures were determined by nuclear magnetic resonance and electrospray ionization-mass spectroscopy (LC-ESI-MS). In addition, the presence of dicaffeoylquinic acid derivatives in this plant was reconfirmed by LC-ESI-MS/MS analysis. The isolated compounds strongly scavenged 1,1-diphenyl-2-picrylhydrazyl radicals and inhibited cholesteryl ester hydroperoxide formation during rat blood plasma oxidation induced by copper ions. These results indicate that the caffeoylquinic acid derivatives may partially contribute to the antioxidative effect of S. herbacea. Full article
(This article belongs to the Section Natural Products Chemistry)
Figures

Figure 1

Open AccessArticle Optimization of the Ultrasonic-Assisted Extraction of Bioactive Flavonoids from Ampelopsis grossedentata and Subsequent Separation and Purification of Two Flavonoid Aglycones by High-Speed Counter-Current Chromatography
Molecules 2016, 21(8), 1096; https://doi.org/10.3390/molecules21081096
Received: 28 June 2016 / Revised: 8 August 2016 / Accepted: 16 August 2016 / Published: 20 August 2016
Cited by 6 | PDF Full-text (3016 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The fermented leaf of Ampelopsis grossedentata has been used as a beverage and folk medicine called “vine tea” in the southern region of China. In this paper, the optimum extraction conditions for the maximum recovery amounts of total flavonoids (TF), dihydromyricetin (DMY), myricitrin
[...] Read more.
The fermented leaf of Ampelopsis grossedentata has been used as a beverage and folk medicine called “vine tea” in the southern region of China. In this paper, the optimum extraction conditions for the maximum recovery amounts of total flavonoids (TF), dihydromyricetin (DMY), myricitrin (MYG) and myricetin (MY) from natural Ampelopsis grossedentata leaves subjected to ultrasonic-assisted extraction (UAE) were determined and optimized by using response surface methodology. The method was employed by the Box–Behnken design (BBD) and Derringer’s desirability function using methanol concentration, extraction time, liquid/solid ratio as factors and the contents of TF, DMY, MYG and MY as responses. The obtained optimum UAE conditions were as follows: a solvent of 80.87% methanol, an extraction time of 31.98 min and a liquid/solid ratio of 41.64:1 mL/g. Through analysis of the response surface, it implied that methanol concentration and the liquid/solid ratio had significant effects on TF, DMY, MYG and MY yields, whereas extraction time had relatively little effects. The established extraction and analytical methods were successfully applied to determine the contents of the total flavonoids and three individual flavonoids in 10 batches of the leaf samples of A. grossedentata from three counties in Fujian Province, China. The results suggested the variability in the quality of A. grossedentata leaves from different origins. In addition, high purities of dihydromyricetin and myricetin were simultaneously separated and purified from the extract subjected to optimized UAE, by high-speed counter-current chromatography using a solvent system of N-hexane–ethyl acetate–methanol–water (1:3:2:4; v/v/v/v). In a single operation, 200 mg of the extract were separated to yield 86.46 mg of dihydromyricetin and 3.61 mg of myricetin with the purity of 95.03% and 99.21%, respectively. The results would be beneficial for further exploiting the herbal products and controlling the quality of the herb and its derived products. Full article
(This article belongs to the Special Issue Flavonoids: From Structure to Health Issues)
Figures

Figure 1

Open AccessArticle Beneficial Effects of Trillium govanianum Rhizomes in Pain and Inflammation
Molecules 2016, 21(8), 1095; https://doi.org/10.3390/molecules21081095
Received: 29 June 2016 / Revised: 5 August 2016 / Accepted: 12 August 2016 / Published: 20 August 2016
Cited by 4 | PDF Full-text (1506 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Trillium govanianum rhizome is used as an analgesic and anti-inflammatory remedy in traditional medicine in northern Pakistan. In an attempt to establish its medicinal value, the present research evaluated the analgesic and anti-inflammatory potential of T. govanianum. The in vivo anti-inflammatory activity
[...] Read more.
Trillium govanianum rhizome is used as an analgesic and anti-inflammatory remedy in traditional medicine in northern Pakistan. In an attempt to establish its medicinal value, the present research evaluated the analgesic and anti-inflammatory potential of T. govanianum. The in vivo anti-inflammatory activity of extract and fractions was investigated in the carrageenan induced paw edema assay. The in vitro suppression of oxidative burst of extract, fractions and isolated compounds was assessed through luminol-enhanced chemiluminescence assay. The in vivo analgesic activity was assayed in chemical and thermal induced nociceptive pain models. The crude methanol extract and its solvent fractions showed anti-inflammatory and analgesic responses, exhibited by significant amelioration of paw edema and relieve of the tonic visceral chemical and acute phasic thermal nociception. In the oxidative burst assay, based on IC50, the crude methanol extract and n-butanol soluble fraction produced a significant inhibition, followed by chloroform and hexane soluble fractions as compared to ibuprofen. Similarly, the isolated compounds pennogenin and borassoside E exhibited significant level of oxidative burst suppressive activity. The in vivo anti-inflammatory and analgesic activities as well as the in vitro inhibition of oxidative burst validated the traditional use of T. govanianum rhizomes as a phytotherapeutic remedy for both inflammatory conditions and pain. The observed activities might be attributed to the presence of steroids and steroid-based compounds. Therefore, the rhizomes of this plant species could serve as potential novel source of compounds effective for alleviating pain and inflammation. Full article
Figures

Figure 1

Open AccessArticle Copper Ion Attenuated the Antiproliferative Activity of Di-2-pyridylhydrazone Dithiocarbamate Derivative; However, There Was a Lack of Correlation between ROS Generation and Antiproliferative Activity
Molecules 2016, 21(8), 1088; https://doi.org/10.3390/molecules21081088
Received: 14 July 2016 / Revised: 8 August 2016 / Accepted: 16 August 2016 / Published: 20 August 2016
Cited by 6 | PDF Full-text (3764 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The use of chelators for cancer treatment has been an alternative option. Dithiocarbamates have recently attracted considerable attention owning to their diverse biological activities; thus, the preparation of new dithiocarbamate derivatives with improved antitumor activity and selectivity as well as probing the underlying
[...] Read more.
The use of chelators for cancer treatment has been an alternative option. Dithiocarbamates have recently attracted considerable attention owning to their diverse biological activities; thus, the preparation of new dithiocarbamate derivatives with improved antitumor activity and selectivity as well as probing the underlying molecular mechanism are required. In this study, di-2-pyridylhydrazone dithiocarbamate S-propionic acid (DpdtpA) and its copper complex were prepared and characterized, and its antiproliferative activity was evaluated. The proliferation inhibition assay showed that DpdtpA exhibited excellent antiproliferative effect in hepatocellular carcinoma (IC50 = 1.3 ± 0.3 μM for HepG2, and 2.5 ± 0.6 μM for Bel-7402). However, in the presence of copper ion, the antiproliferative activity of DpdtpA was dramatically attenuated (20–30 fold) owing to the formation of copper chelate. A preliminarily mechanistic study revealed that reactive oxygen species (ROS) generation mediated the antiproliferative activity of DpdtpA, and accordingly induced apoptosis, DNA cleavage, and autophagy. Surprisingly, the cytotoxicity of DpdtpA copper complex (DpdtpA–Cu) was also involved in ROS generation; however, a paradoxical relation between cellular ROS level and cytotoxicity was observed. Further investigation indicated that DpdtpA could induce cell cycle arrest at the S phase; however, DpdtpA–Cu lacked this effect, which explained the difference in their antiproliferative activity. Full article
Figures

Figure 1

Open AccessArticle Compositions, Formation Mechanism, and Neuroprotective Effect of Compound Precipitation from the Traditional Chinese Prescription Huang-Lian-Jie-Du-Tang
Molecules 2016, 21(8), 1094; https://doi.org/10.3390/molecules21081094
Received: 30 June 2016 / Revised: 26 July 2016 / Accepted: 1 August 2016 / Published: 19 August 2016
Cited by 4 | PDF Full-text (7932 KB) | HTML Full-text | XML Full-text
Abstract
Compounds in the form of precipitation (CFP) are universally formed during the decocting of Chinese prescriptions, such as Huang-Lian-Jie-Du-Tang (HLJDT). The formation rate of HLJDT CFP even reached 2.63% ± 0.20%. The identification by liquid chromatography mass spectrometry (LC-MSn) proved that
[...] Read more.
Compounds in the form of precipitation (CFP) are universally formed during the decocting of Chinese prescriptions, such as Huang-Lian-Jie-Du-Tang (HLJDT). The formation rate of HLJDT CFP even reached 2.63% ± 0.20%. The identification by liquid chromatography mass spectrometry (LC-MSn) proved that the main chemical substances of HLJDT CFP are baicalin and berberine, which is coincident with the theory that the CFP might derive from interaction between acidic and basic compounds. To investigate the formation mechanism of HLJDT CFP, baicalin and berberine were selected to synthesize a simulated precipitation and then the baicalin–berberine complex was obtained. Results indicated that the melting point of the complex interposed between baicalin and berberine, and the UV absorption, was different from the mother material. In addition, 1H-NMR integral and high-resolution mass spectroscopy (HR-MS) can validate that the binding ratio was 1:1. Compared with baicalin, the chemical shifts of H and C on glucuronide had undergone significant changes by 1H-, 13C-NMR, which proved that electron transfer occurred between the carboxylic proton and the lone pair of electrons on the N atom. Both HLJDT CFP and the baicalin–berberine complex showed protective effects against cobalt chloride-induced neurotoxicity in differentiated PC12 cells. It is a novel idea, studying the material foundation of CFP in Chinese prescriptions. Full article
(This article belongs to the Section Natural Products Chemistry)
Figures

Graphical abstract

Open AccessArticle Neuroprotection by Combined Administration with Maslinic Acid, a Natural Product from Olea europaea, and MK-801 in the Cerebral Ischemia Model
Molecules 2016, 21(8), 1093; https://doi.org/10.3390/molecules21081093
Received: 19 June 2016 / Revised: 15 August 2016 / Accepted: 17 August 2016 / Published: 19 August 2016
Cited by 5 | PDF Full-text (5157 KB) | HTML Full-text | XML Full-text
Abstract
Glutamate-mediated excitotoxicity is a major cause of ischemic brain damage. MK-801 confers neuroprotection by attenuating the activation of the N-methyl-d-aspartate (NMDA) receptor, but it failed in clinical use due to the short therapeutic window. Here we aim to investigate the
[...] Read more.
Glutamate-mediated excitotoxicity is a major cause of ischemic brain damage. MK-801 confers neuroprotection by attenuating the activation of the N-methyl-d-aspartate (NMDA) receptor, but it failed in clinical use due to the short therapeutic window. Here we aim to investigate the effects of maslinic acid, a natural product from Olea europaea, on the therapeutic time window and dose range for the neuroprotection of MK-801. Rats were administered with maslinic acid intracerebroventricularly and cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) followed by reperfusion. MK-801 was administered at 1 h, 2 h, 3 h and 4 h after ischemia, respectively. The cerebral infarct volume was determined by 2,3,5-Triphenyltetrazolium chloride (TTC) staining, neuronal damage was assessed by Haematoxylin Eosin (H&E) staining, and the expression of glial glutamate transporters and glial fibrillary acidic protein (GFAP) was evaluated by immunohistochemistry and Western blot post-ischemia. Results showed that the presence of maslinic acid extended the therapeutic time window for MK-801 from 1 h to 3 h. Co-treatment of maslinic acid and MK-801 at a subthreshold dosage obviously induced neuroprotection after ischemia. The combination of these two compounds improved the outcome in ischemic rats. Moreover, maslinic acid treatment promoted the expression of GLT-1 and GFAP post-ischemia. These data suggest that the synergistic effect of maslinic acid on neurological protection might be associated with the improvement of glial function, especially with the increased expression of GLT-1. The combination therapy of maslinic acid and MK-801 may prove to be a potential strategy for treating acute ischemic stroke. Full article
Figures

Figure 1

Open AccessArticle Comprehensive Quantitative Analysis of SQ Injection Using Multiple Chromatographic Technologies
Molecules 2016, 21(8), 1092; https://doi.org/10.3390/molecules21081092
Received: 21 July 2016 / Revised: 11 August 2016 / Accepted: 15 August 2016 / Published: 19 August 2016
PDF Full-text (2205 KB) | HTML Full-text | XML Full-text
Abstract
Quality control of Chinese medicine injections remains a challenge due to our poor knowledge of their complex chemical profile. This study aims to investigate the chemical composition of one of the best-selling injections, Shenqi Fuzheng (SQ) injection (SQI), via a full component quantitative
[...] Read more.
Quality control of Chinese medicine injections remains a challenge due to our poor knowledge of their complex chemical profile. This study aims to investigate the chemical composition of one of the best-selling injections, Shenqi Fuzheng (SQ) injection (SQI), via a full component quantitative analysis. A total of 15 representative small molecular components of SQI were simultaneously determined using ultra-high performance liquid chromatography (UHPLC) coupled with quadrupole tandem time-of-flight mass spectrometry (Q-TOF-MS); saccharide composition of SQI was also quantitatively determined by high performance liquid chromatography (HPLC) with evaporative light scattering detector (ELSD) on an amino column before and after acid hydrolysis. The existence of polysaccharides was also examined on a gel permeation chromatography column. The method was well validated in terms of linearity, sensitivity, precision, accuracy and stability, and was successfully applied to analyze 13 SQI samples. The results demonstrate that up to 94.69% (w/w) of this injection product are quantitatively determined, in which small molecules and monosaccharide/sucrose account for 0.18%–0.21%, and 53.49%–58.2%, respectively. The quantitative information contributes to accumulating scientific evidence to better understand the therapy efficacy and safety of complex Chinese medicine injections. Full article
(This article belongs to the collection Herbal Medicine Research)
Figures

Figure 1

Open AccessArticle Protein Tyrosine Phosphatase 1B Inhibitors from the Stems of Akebia quinata
Molecules 2016, 21(8), 1091; https://doi.org/10.3390/molecules21081091
Received: 17 July 2016 / Revised: 6 August 2016 / Accepted: 10 August 2016 / Published: 19 August 2016
Cited by 2 | PDF Full-text (1055 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
PTP1B deficiency in mouse mammary tumor virus (MMTV)-NeuNT transgenic mice inhibited the onset of MMTV-NeuNT-evoked breast cancer, while its overexpression was observed in breast cancer. Thus, PTP1B inhibitors are considered chemopreventative agents for breast cancer. As part of our program to find PTP1B
[...] Read more.
PTP1B deficiency in mouse mammary tumor virus (MMTV)-NeuNT transgenic mice inhibited the onset of MMTV-NeuNT-evoked breast cancer, while its overexpression was observed in breast cancer. Thus, PTP1B inhibitors are considered chemopreventative agents for breast cancer. As part of our program to find PTP1B inhibitors, one new diterpene glycoside (1) and 13 known compounds (214) were isolated from the methanol extract of the stems of Akebia quinata. All isolates were identified based on extensive spectroscopic data analysis, including UV, IR, NMR and MS. Compounds 2, 3, 6, 8 and 11 showed significant inhibitory effects on the PTP1B enzyme, with IC50 values ranging from 4.08 ± 1.09 to 21.80 ± 4.74 μM. PTP1B inhibitors also had concentration-dependent cytotoxic effects on breast cancer cell lines, such as MCF7, MDA-MB-231 and tamoxifen-resistant MCF7 (MCF7/TAMR) (IC50 values ranging from 0.84 ± 0.04 to 7.91 ± 0.39 μM). These results indicate that compounds 6 and 8 from Akebia quinata may be lead compounds acting as anti-breast cancer agents. Full article
(This article belongs to the collection Bioactive Compounds)
Figures

Graphical abstract

Open AccessReview Order, Disorder, and Everything in Between
Molecules 2016, 21(8), 1090; https://doi.org/10.3390/molecules21081090
Received: 21 July 2016 / Revised: 10 August 2016 / Accepted: 11 August 2016 / Published: 19 August 2016
Cited by 19 | PDF Full-text (2936 KB) | HTML Full-text | XML Full-text
Abstract
In addition to the “traditional” proteins characterized by the unique crystal-like structures needed for unique functions, it is increasingly recognized that many proteins or protein regions (collectively known as intrinsically disordered proteins (IDPs) and intrinsically disordered protein regions (IDPRs)), being biologically active, do
[...] Read more.
In addition to the “traditional” proteins characterized by the unique crystal-like structures needed for unique functions, it is increasingly recognized that many proteins or protein regions (collectively known as intrinsically disordered proteins (IDPs) and intrinsically disordered protein regions (IDPRs)), being biologically active, do not have a specific 3D-structure in their unbound states under physiological conditions. There are also subtler categories of disorder, such as conditional (or dormant) disorder and partial disorder. Both the ability of a protein/region to fold into a well-ordered functional unit or to stay intrinsically disordered but functional are encoded in the amino acid sequence. Structurally, IDPs/IDPRs are characterized by high spatiotemporal heterogeneity and exist as dynamic structural ensembles. It is important to remember, however, that although structure and disorder are often treated as binary states, they actually sit on a structural continuum. Full article
Figures

Figure 1

Open AccessArticle Five New Biphenanthrenes from Cremastra appendiculata
Molecules 2016, 21(8), 1089; https://doi.org/10.3390/molecules21081089
Received: 3 July 2016 / Revised: 12 August 2016 / Accepted: 15 August 2016 / Published: 19 August 2016
Cited by 5 | PDF Full-text (565 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Five new biphenanthrenes, cremaphenanthrenes A–E (15), along with six known ones, were isolated from the ethanolic extract of the tubers of Cremastra appendiculata (D. Don) Makino (Orchidaceae). Their structures were elucidated on the basis of extensive spectroscopic analyses. All
[...] Read more.
Five new biphenanthrenes, cremaphenanthrenes A–E (15), along with six known ones, were isolated from the ethanolic extract of the tubers of Cremastra appendiculata (D. Don) Makino (Orchidaceae). Their structures were elucidated on the basis of extensive spectroscopic analyses. All the compounds obtained were tested in vitro for cytotoxic activities against colon (HCT-116), cervix (Hela), and breast (MDA-MB-231) cancer cell lines. They all showed moderate or weak cytotoxicities to the above cancer cell lines. Full article
(This article belongs to the Special Issue Natural Products and Chronic Diseases)
Figures

Graphical abstract

Open AccessArticle Assessment of Phenolic Compounds and Anti-Inflammatory Activity of Ethyl Acetate Phase of Anacardium occidentale L. Bark
Molecules 2016, 21(8), 1087; https://doi.org/10.3390/molecules21081087
Received: 21 June 2016 / Revised: 8 August 2016 / Accepted: 11 August 2016 / Published: 19 August 2016
Cited by 7 | PDF Full-text (3174 KB) | HTML Full-text | XML Full-text
Abstract
The bark of A. occidentale L. is rich in tannins. Studies have described various biological activities of the plant, including antimicrobial, antioxidant, antiulcerogenic and antiinflammatory actions. The objective of this study was to assess the activity of the ethyl acetate phase (EtOAc) of
[...] Read more.
The bark of A. occidentale L. is rich in tannins. Studies have described various biological activities of the plant, including antimicrobial, antioxidant, antiulcerogenic and antiinflammatory actions. The objective of this study was to assess the activity of the ethyl acetate phase (EtOAc) of A. occidentale on acute inflammation and to identify and quantify its phenolic compounds by HPLC. The method was validated and shown to be linear, precise and accurate for catechin, epicatechin, epigallocatechin and gallic acid. Swiss albino mice (Mus musculus) were treated with saline, Carrageenan (2.5%), Indomethacin (10 mg/kg), Bradykinin (6 nmol) and Prostaglandine E2 (5 µg) at different concentrations of EtOAc - A. occidentale (12.5; 25; 50; and 100 mg/kg/weight p.o.) for the paw edema test. Challenge was performed with carrageenan (500 µg/mL i.p.) for the doses 50 and 100 mg/kg of EtOAc. Levels of cytokines IL-1, TNF-α, IL-6 and IL-10 were also measured. All EtOAc - A. occidentale concentrations reduced the edema. At 50 and 100 mg/kg, an anti-inflammatory response of the EtOAc was observed. Carrageenan stimulus produced a neutrophil count of 28.6% while 50 and 100 mg/kg of the phase reduced this to 14.5% and 9.1%, respectively. The EtOAc extract reduced levels of IL-1 and TNF-α. These results suggest that the EtOAc plays a modulatory role in the inflammatory response. The chromatographic method can be used for the analysis of the phenolic compounds of the EtOAc phase. Full article
(This article belongs to the Special Issue Natural Products and Inflammation)
Figures

Graphical abstract

Open AccessArticle Porphyromonas gingivalis Lipopolysaccharide Induced Proliferation and Activation of Natural Killer Cells in Vivo
Molecules 2016, 21(8), 1086; https://doi.org/10.3390/molecules21081086
Received: 27 May 2016 / Revised: 15 August 2016 / Accepted: 16 August 2016 / Published: 19 August 2016
Cited by 1 | PDF Full-text (2335 KB) | HTML Full-text | XML Full-text
Abstract
Porphyromonas gingivalis (P. gingivalis) lipopolysaccharide (LPS) promoted different innate immune activation than that promoted by Escherichia coli (E. coli) LPS. In this study, we examined the effect of P. gingivalis LPS on the proliferation and activation of natural killer
[...] Read more.
Porphyromonas gingivalis (P. gingivalis) lipopolysaccharide (LPS) promoted different innate immune activation than that promoted by Escherichia coli (E. coli) LPS. In this study, we examined the effect of P. gingivalis LPS on the proliferation and activation of natural killer (NK) cells in vivo and compared that function with that of E. coli LPS. Administration of P. gingivalis LPS to C57BL/6 mice induced stronger proliferation of NK cells in the spleen and submandibular lymph nodes (sLNs) and increased the number of circulating NK cells in blood compared to those treated with E. coli LPS. However, P. gingivalis LPS did not induce interferon-gamma (IFN-γ) production and CD69 expression in the spleen and sLN NK cells in vivo, and this was attributed to the minimal activation of the spleen and sLN dendritic cells (DCs), including low levels of co-stimulatory molecule expression and pro-inflammatory cytokine production. Furthermore, P. gingivalis LPS-treated NK cells showed less cytotoxic activity against Yac-1 target cells than E. coli LPS-treated NK cells. Hence, these data demonstrated that P. gingivalis LPS promoted limited activation of spleen and sLN NK cells in vivo, and this may play a role in the chronic inflammatory state observed in periodontal disease. Full article
(This article belongs to the Special Issue Natural Products and Inflammation)
Figures

Graphical abstract

Open AccessArticle Immunomodulatory and Antioxidant Effects of Polysaccharides from Gynostemma pentaphyllum Makino in Immunosuppressed Mice
Molecules 2016, 21(8), 1085; https://doi.org/10.3390/molecules21081085
Received: 13 July 2016 / Revised: 12 August 2016 / Accepted: 15 August 2016 / Published: 19 August 2016
Cited by 7 | PDF Full-text (1338 KB) | HTML Full-text | XML Full-text
Abstract
The immunomodulatory and antioxidant activities of crude polysaccharides extracted from Gynostemma pentaphyllum Makino (GPMPP) were investigated. GPMPP was composed of rhamnose, arabinose, xylose, mannose, glucose and galactose in the molar ratio of 1.39:3.76:1.00:1.64:4.98:5.88. In vivo studies showed GPMPP significantly increased the spleen and
[...] Read more.
The immunomodulatory and antioxidant activities of crude polysaccharides extracted from Gynostemma pentaphyllum Makino (GPMPP) were investigated. GPMPP was composed of rhamnose, arabinose, xylose, mannose, glucose and galactose in the molar ratio of 1.39:3.76:1.00:1.64:4.98:5.88. In vivo studies showed GPMPP significantly increased the spleen and thymus indices, activated the macrophage phagocytosis and NK cells, and exhibited activity on none or Con A/LPS-stimulated splenocytes in a dose-dependent manner in C57BL/6 mice. Moreover, GPMPP elevated CD4+ T lymphocyte counts as well as the CD4+/CD8+ ratio dose-dependently, and it increased IL-2 level in the sera and spleen of Cy-immunosuppressed mice. Furthermore, GPMPP significantly increased the SOD, GSH-Px, T-AOC, GSH and CAT level, and decreased the MDA level. The results showed that GPMPP might play an important role in prevention of oxidative damage in immunological system. These findings indicate GPMPP has immunomodulatory activity in vivo and seems to be an effective natural immunomodulatory agent. Full article
(This article belongs to the Special Issue Natural Polysaccharides)
Figures

Graphical abstract

Open AccessArticle Antibacterial Activity and Membrane-Disruptive Mechanism of 3-p-trans-Coumaroyl-2-hydroxyquinic Acid, a Novel Phenolic Compound from Pine Needles of Cedrus deodara, against Staphylococcus aureus
Molecules 2016, 21(8), 1084; https://doi.org/10.3390/molecules21081084
Received: 19 July 2016 / Revised: 12 August 2016 / Accepted: 15 August 2016 / Published: 18 August 2016
Cited by 6 | PDF Full-text (5509 KB) | HTML Full-text | XML Full-text
Abstract
Recently, we reported that a novel phenolic compound isolated from Cedrus deodara, 3-p-trans-coumaroyl-2-hydroxyquinic acid (CHQA), exhibits a potent antioxidant activity. The present study aimed to evaluate the antibacterial activity of CHQA against eleven food-borne pathogens and to elucidate
[...] Read more.
Recently, we reported that a novel phenolic compound isolated from Cedrus deodara, 3-p-trans-coumaroyl-2-hydroxyquinic acid (CHQA), exhibits a potent antioxidant activity. The present study aimed to evaluate the antibacterial activity of CHQA against eleven food-borne pathogens and to elucidate its mechanism of action against Staphylococcus aureus. The results from minimum inhibitory concentration (MIC) determinations showed that CHQA exhibited moderate inhibitory effects on all of the tested pathogens with MIC values ranging from 2.5–10 mg/mL. Membrane potential measurements and flow cytometric analysis demonstrated that CHQA damaged the cytoplasmic membrane of S. aureus, causing a significant membrane hyperpolarization with a loss of membrane integrity. Moreover, CHQA induced an increase in membrane fluidity and conformational changes in membrane protein of S. aureus, suggesting that CHQA probably acts on the cell membrane by interactions with membrane lipid and protein. Transmission electron microscopic observations further confirmed that CHQA disrupted the cell membrane of S. aureus and caused severe morphological changes, which even led to leakage of intracellular constituents. These findings indicated that CHQA could have the potential to serve as a natural antibacterial agent to control and prevent the growth of pathogens in food and in food-processing environments. Full article
(This article belongs to the collection Bioactive Compounds)
Figures

Figure 1

Open AccessArticle Rosmarinic Acid Methyl Ester Inhibits LPS-Induced NO Production via Suppression of MyD88- Dependent and -Independent Pathways and Induction of HO-1 in RAW 264.7 Cells
Molecules 2016, 21(8), 1083; https://doi.org/10.3390/molecules21081083
Received: 12 July 2016 / Revised: 8 August 2016 / Accepted: 11 August 2016 / Published: 18 August 2016
Cited by 7 | PDF Full-text (2256 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
In this study, we investigated the anti-inflammatory effect of rosmarinic acid methyl ester (RAME) isolated from a mutant cultivar of Perilla frutescens (L.) Britton. We found that RAME inhibits lipopolysaccharide (LPS)-induced nitric oxide (NO) production, with an IC50 of 14.25 µM, in
[...] Read more.
In this study, we investigated the anti-inflammatory effect of rosmarinic acid methyl ester (RAME) isolated from a mutant cultivar of Perilla frutescens (L.) Britton. We found that RAME inhibits lipopolysaccharide (LPS)-induced nitric oxide (NO) production, with an IC50 of 14.25 µM, in RAW 264.7 cells. RAME inhibited the LPS-induced expression of pro-inflammatory cytokines including interleukin (IL)-1β, IL-6, IL-10, monocyte chemoattractant protein-1, interferon-β, and inducible nitric oxide synthase (iNOS). Moreover, RAME suppressed the activation of nuclear factor kappa B. These results suggest that the downregulation of iNOS expression by RAME was due to myeloid differentiation primary response gene 88 (MyD88)-dependent and -independent pathways. Furthermore, RAME induced the expression of heme oxygenase-1 (HO-1) through activation of nuclear factor-erythroid 2-related factor 2. Treatment with tin protoporphyrin, an inhibitor of HO-1, reversed the RAME-induced suppression of NO production. Taken together, RAME isolated from P. frutescens inhibited NO production in LPS-treated RAW 264.7 cells through simultaneous induction of HO-1 and inhibition of MyD88-dependent and -independent pathways. Full article
(This article belongs to the Special Issue Natural Products and Inflammation)
Figures

Graphical abstract

Open AccessArticle Emission Enhancement and Intermittency in Polycrystalline Organolead Halide Perovskite Films
Molecules 2016, 21(8), 1081; https://doi.org/10.3390/molecules21081081
Received: 15 June 2016 / Revised: 1 August 2016 / Accepted: 9 August 2016 / Published: 18 August 2016
Cited by 8 | PDF Full-text (3074 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Inorganic-organic halide organometal perovskites have demonstrated very promising performance for opto-electronic applications, such as solar cells, light-emitting diodes, lasers, single-photon sources, etc. However, the little knowledge on the underlying photophysics, especially on a microscopic scale, hampers the further improvement of devices based on
[...] Read more.
Inorganic-organic halide organometal perovskites have demonstrated very promising performance for opto-electronic applications, such as solar cells, light-emitting diodes, lasers, single-photon sources, etc. However, the little knowledge on the underlying photophysics, especially on a microscopic scale, hampers the further improvement of devices based on this material. In this communication, correlated conventional photoluminescence (PL) characterization and wide-field PL imaging as a function of time are employed to investigate the spatially- and temporally-resolved PL in CH3NH3PbI3−xClx perovskite films. Along with a continuous increase of the PL intensity during light soaking, we also observe PL blinking or PL intermittency behavior in individual grains of these films. Combined with significant suppression of PL blinking in perovskite films coated with a phenyl-C61-butyric acid methyl ester (PCBM) layer, it suggests that this PL intermittency is attributed to Auger recombination induced by photoionized defects/traps or mobile ions within grains. These defects/traps are detrimental for light conversion and can be effectively passivated by the PCBM layer. This finding paves the way to provide a guideline on the further improvement of perovskite opto-electronic devices. Full article
(This article belongs to the Special Issue Perovskite Solar Cells)
Figures

Graphical abstract

Open AccessArticle Near-Infrared Emitting PbS Quantum Dots for in Vivo Fluorescence Imaging of the Thrombotic State in Septic Mouse Brain
Molecules 2016, 21(8), 1080; https://doi.org/10.3390/molecules21081080
Received: 15 July 2016 / Revised: 9 August 2016 / Accepted: 15 August 2016 / Published: 18 August 2016
Cited by 9 | PDF Full-text (6334 KB) | HTML Full-text | XML Full-text
Abstract
Near-infrared (NIR) fluorescent imaging is a powerful tool for the non-invasive visualization of the inner structure of living organisms. Recently, NIR fluorescence imaging at 1000–1400 nm (second optical window) has been shown to offer better spatial resolution compared with conventional NIR fluorescence imaging
[...] Read more.
Near-infrared (NIR) fluorescent imaging is a powerful tool for the non-invasive visualization of the inner structure of living organisms. Recently, NIR fluorescence imaging at 1000–1400 nm (second optical window) has been shown to offer better spatial resolution compared with conventional NIR fluorescence imaging at 700–900 nm (first optical window). Here we report lead sulfide (PbS) quantum dots (QDs) and their use for in vivo NIR fluorescence imaging of cerebral venous thrombosis in septic mice. Highly fluorescent PbS QDs with a 1100 nm emission peak (QD1100) were prepared from lead acetate and hexamethyldisilathiane, and the surface of QD1100 was coated with mercaptoundecanoic acid so as to be soluble in water. NIR fluorescence imaging of the cerebral vessels of living mice was performed after intravascular injection (200–300 μL) of QD1100 (3 μM) from a caudal vein. By detecting the NIR fluorescence of QD1100, we achieved non-invasive NIR fluorescence imaging of cerebral blood vessels through the scalp and skull. We also achieved NIR fluorescence imaging of cerebral venous thrombosis in septic mice induced by the administration of lipopolysaccharide (LPS). From the NIR fluorescence imaging, we found that the number of thrombi in septic mice was significantly increased by the administration of LPS. The formation of thrombi in cerebral blood vessels in septic mice was confirmed by enzyme-linked immunosorbent assay (ELISA). We also found that the number of thrombi significantly decreased after the administration of heparin, an inhibitor of blood coagulation. These results show that NIR fluorescence imaging with QD1100 is useful for the evaluation of the pathological state of cerebral blood vessels in septic mice. Full article
(This article belongs to the Special Issue Molecular Imaging Probes)
Figures

Graphical abstract

Open AccessArticle σ-Bond Electron Delocalization in Oligosilanes as Function of Substitution Pattern, Chain Length, and Spatial Orientation
Molecules 2016, 21(8), 1079; https://doi.org/10.3390/molecules21081079
Received: 21 July 2016 / Revised: 3 August 2016 / Accepted: 4 August 2016 / Published: 18 August 2016
Cited by 5 | PDF Full-text (8225 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Polysilanes are known to exhibit the interesting property of σ-bond electron delocalization. By employing optical spectroscopy (UV-vis), it is possible to judge the degree of delocalization and also differentiate parts of the molecules which are conjugated or not. The current study compares oligosilanes
[...] Read more.
Polysilanes are known to exhibit the interesting property of σ-bond electron delocalization. By employing optical spectroscopy (UV-vis), it is possible to judge the degree of delocalization and also differentiate parts of the molecules which are conjugated or not. The current study compares oligosilanes of similar chain length but different substitution pattern. The size of the substituents determines the spatial orientation of the main chain and also controls the conformational flexibility. The chemical nature of the substituents affects the orbital energies of the molecules and thus the positions of the absorption bands. Full article
(This article belongs to the Special Issue Advances in Silicon Chemistry)
Figures

Graphical abstract

Open AccessReview Evaluation of Biosynthetic Pathway and Engineered Biosynthesis of Alkaloids
Molecules 2016, 21(8), 1078; https://doi.org/10.3390/molecules21081078
Received: 20 July 2016 / Revised: 15 August 2016 / Accepted: 15 August 2016 / Published: 18 August 2016
Cited by 7 | PDF Full-text (3145 KB) | HTML Full-text | XML Full-text
Abstract
Varieties of alkaloids are known to be produced by various organisms, including bacteria, fungi and plants, as secondary metabolites that exhibit useful bioactivities. However, understanding of how those metabolites are biosynthesized still remains limited, because most of these compounds are isolated from plants
[...] Read more.
Varieties of alkaloids are known to be produced by various organisms, including bacteria, fungi and plants, as secondary metabolites that exhibit useful bioactivities. However, understanding of how those metabolites are biosynthesized still remains limited, because most of these compounds are isolated from plants and at a trace level of production. In this review, we focus on recent efforts in identifying the genes responsible for the biosynthesis of those nitrogen-containing natural products and elucidating the mechanisms involved in the biosynthetic processes. The alkaloids discussed in this review are ditryptophenaline (dimeric diketopiperazine alkaloid), saframycin (tetrahydroisoquinoline alkaloid), strictosidine (monoterpene indole alkaloid), ergotamine (ergot alkaloid) and opiates (benzylisoquinoline and morphinan alkaloid). This review also discusses the engineered biosynthesis of these compounds, primarily through heterologous reconstitution of target biosynthetic pathways in suitable hosts, such as Escherichia coli, Saccharomyces cerevisiae and Aspergillus nidulans. Those heterologous biosynthetic systems can be used to confirm the functions of the isolated genes, economically scale up the production of the alkaloids for commercial distributions and engineer the biosynthetic pathways to produce valuable analogs of the alkaloids. In particular, extensive involvement of oxidation reactions catalyzed by oxidoreductases, such as cytochrome P450s, during the secondary metabolite biosynthesis is discussed in details. Full article
(This article belongs to the Special Issue Diversity of Alkaloids)
Figures

Graphical abstract

Back to Top