Biological Activities of the Essential Oil from Erigeron floribundus
Abstract
:1. Introduction
2. Results
2.1. Essential Oil Analysis
2.2. Cytotoxicity Assessment
2.3. Antimicrobial Activity
2.4. NadD Inhibition Analysis
2.5. Antioxidant Activity
2.6. Inhibition of T. brucei Proliferation
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Hydrodistillation
4.3. Chemicals
4.4. Chemical Analysis of Essential Oil
4.5. Antimicrobial Activity
4.6. Antioxidant Activity
4.7. Cytotoxic Activity on Tumor Cells
4.8. Enzyme Inhibition Assay
4.9. T. brucei and Mammalian Cell Culture
4.10. Growth Inhibition Assay on T. brucei and Balb/3T3 Cells
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Asongalem, E.A.; Foyet, H.S.; Ngogang, J.; Folefoc, G.N.; Dimo, T.; Kamtchouing, P. Analgesic and antinflammatory activities of Erigeron floribundus. J. Ethnopharmacol. 2004, 91, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Yapo, F.A.; Yapi, F.H.; Ahiboh, H.; Hauhouot-Attounbre, M.L.; Guédé, N.Z.; Djaman, J.A.; Monnet, D. Immunomodulatory effect of the aqueous extract of Erigeron floribundus (Kunth) Sch. Beep. (Asteraceae) leaf in rabbits. Trop. J. Pharm. Res. 2011, 10, 187–193. [Google Scholar] [CrossRef]
- Atindenou, K.K.; Koné, M.; Terreaux, C.; Traore, D.; Hostettemann, K.; Dosso, M. Evaluation of the antimicrobial activity of medicinal plants from the Ivory Coast. Phytother. Res. 2002, 16, 497–502. [Google Scholar] [CrossRef] [PubMed]
- Etchikié, C.A.; Sassa, A.M.; Abba, A.; Nyonbourg, E. Evaluation in vitro de l′activité antibactérienne de cinq plantes de la pharmacopée traditionnelle de l′Adamaoua (Cameroun). Cameroon J. Exp. Biol. 2011, 7, 22–27. [Google Scholar]
- Telefo, P.B.; Lienou, L.L.; Yemele, M.D.; Lemfack, M.C.; Mouokeu, C.; Goka, C.S.; Tagne, S.R.; Moundipa, F.P. Ethnopharmacological survey of plants used for the treatment of female infertility in Baham, Cameroon. J. Ethnopharmacol. 2011, 136, 178–187. [Google Scholar] [CrossRef] [PubMed]
- Koné, M.; Atindehou Kamanzi, K.; Traoré, D. Plantes et médecine traditionnelle dans la région de Ferkessédougou (Côte d′Ivoire). Annales de Botanique de l′Afrique de l′Ouest 2002, 2, 13–23. [Google Scholar]
- Tra Bi, F.H.; Koné, M.W.; Kouamé, N.F. Antifungal activity of Erigeron floribundus (Asteraceae) from Côte d′Ivoire, West Africa. Trop. J. Pharm. Res. 2008, 7, 975–979. [Google Scholar] [CrossRef]
- Ménan, H.; Banzouzi, J.T.; Hocquette, A.; Pélissier, Y.; Blache, Y.; Koné, M.; Mallié, M.; Assi, L.A.; Valentin, A. Antiplasmodial activity and cytotoxicity of plants used in West African traditional medicine for the treatment of malaria. J. Ethnopharmacol. 2006, 105, 131–136. [Google Scholar]
- Kuiate, J.R.; Tsona, A.A.; Foko, J.; Bessiere, J.M.; Menut, C.; Amvam Zollo, P.H. Chemical composition and in vitro antifungal properties of essential oils from leaves and flowers of Erigeron floribundus (H.B. et K.) Sch. Bip. from Cameroon. J. Essent. Oil Res. 2005, 17, 261–264. [Google Scholar] [CrossRef]
- Solórzano-Santos, F.; Miranda-Novales, M.G. Essential oils from aromatic herbs as antimicrobial agents. Curr. Opin. Biotechnol. 2012, 23, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Nibret, E.; Wink, M. Trypanocidal and antileukaemic effects of the essential oils of Hagenia abyssinica, Leonotis ocymifolia, Moringa stenopetala, and their main individual constituents. Phytomedicine 2010, 17, 911–920. [Google Scholar] [CrossRef] [PubMed]
- Pavela, R. Essential oils for the development of eco-friendly mosquito larvicides: A review. Ind. Crops Prod. 2015, 76, 174–187. [Google Scholar] [CrossRef]
- Bilia, A.R.; Guccione, C.; Isacchi, B.; Righeschi, C.; Firenzuoli, F.; Bergonzi, M.C. Essential oils loaded in nanosystems: A developing strategy for a successful therapeutic approach. Evid. Based Complement. Altern. Med. 2014, 2014, 651593. [Google Scholar] [CrossRef] [PubMed]
- Sorci, L.; Cimadamore, F.; Scotti, S.; Petrelli, R.; Cappellacci, L.; Franchetti, P.; Orsomando, G.; Magni, G. Initial-rate kinetics of human NMNadenylyltransferases: Substrate and metal ion specificity, inhibition by products and multisubstrate analogues, and isozyme contributions to NAD+ biosynthesis. Biochemistry 2007, 46, 4912–4922. [Google Scholar] [CrossRef] [PubMed]
- Sorci, L.; Kurnasov, O.; Rodionov, D.A.; Osterman, A.L. Genomics and Enzymology of NAD Biosynthesis. Comprehensive Natural Products II Chemistry and Biology; Elsevier: Oxford, UK, 2010; Volume 7, pp. 213–257. [Google Scholar]
- Petrelli, R.; Felczak, K.; Cappellacci, L. NMN/NaMN adenylyltransferase (NMNAT) and NAD kinase (NADK) inhibitors: Chemistry and potential therapeutic applications. Curr. Med. Chem. 2011, 18, 1973–1992. [Google Scholar] [CrossRef] [PubMed]
- Sorci, L.; Pan, Y.; Eyobo, Y.; Rodionova, I.; Huang, N.; Kurnasov, O.; Zhong, S.; Mackerell, A.D., Jr.; Zhang, H.; Osterman, A.L. Targeting NAD biosynthesis in bacterial pathogens: Structure-based development of inhibitors of nicotinate mononucleotide adenylyltransferase NadD. Chem. Biol. 2009, 16, 849–861. [Google Scholar] [CrossRef] [PubMed]
- Huang, N.; Kolhatkar, R.; Eyobo, Y.; Sorci, L.; Rodionova, I.; Osterman, A.L.; Mackerell, A.D.; Zhang, H. Complexes of bacterial nicotinate mononucleotide adenylyltransferase with inhibitors: implication for structure-based drug design and improvement. J. Med. Chem. 2010, 53, 5229–5239. [Google Scholar] [CrossRef] [PubMed]
- Sorci, L.; Blaby, I.K.; Rodionova, I.A.; De Ingeniis, J.; Tkachenko, S.; de Crécy-Lagard, V.; Osterman, A.L. Quinolinate salvage and insights for targeting NAD biosynthesis in group A streptococci. J. Bacteriol. 2013, 195, 726–732. [Google Scholar] [CrossRef] [PubMed]
- Rodionova, I.A.; Schuster, B.M.; Guinn, K.M.; Sorci, L.; Scott, D.A.; Li, X.; Kheterpal, L.; Shoen, C.; Cynamon, M.; Locher, C.; et al. Metabolic and bactericidal effects of targeted suppression of NadD and NadE enzymes in mycobacteria. mBio 2014, 5, 245–256. [Google Scholar] [CrossRef] [PubMed]
- Scotti, L.; Mendonça, F.J.; da Silva, M.S.; Scotti, M.T. Enzymatic Targets in Trypanosoma brucei. Curr. Protein Pept. Sci. 2016, 17, 243–259. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy; Allured Publishing Co.: Carol Stream, IL, USA, 2007. [Google Scholar]
- NIST 08. National Institute of Standards and Technology. Mass spectral library (NIST/EPA/NIH); National Institute of Standards and Technology: Gaithersburg MD, USA, 2008. [Google Scholar]
- FFNSC 2. Flavors and Fragrances of Natural and Synthetic Compounds. Mass spectral database; Shimadzu Corps: Kyoto, Japan, 2012. [Google Scholar]
- Petrelli, D.; Repetto, A.; D′Ercole, S.; Rombini, S.; Ripa, S.; Prenna, M.; Vitali, L.A. Analysis of meticillin-susceptible and meticillin-resistant biofilm-forming Staphylococcus aureus from catheter infections isolated in a large Italian hospital. J. Med. Microbiol. 2008, 57, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Orsomando, G.; Agostinelli, S.; Bramucci, M.; Cappellacci, L.; Damiano, S.; Lupidi, G.; Maggi, F.; Ngahang Kamte, S.L.; Biapa Nya, P.C.; et al. Mexican sunflower (Tithonia diversifolia, Asteraceae) volatile oil as a selective inhibitor of Staphylococcus aureus nicotinate mononucleotide adenylyltransferase (NadD). Ind. Crops Prod. 2016, 85, 181–189. [Google Scholar] [CrossRef]
- Vitali, L.A.; Beghelli, D.; Biapa Nya, P.C.; Bistoni, O.; Cappellacci, L.; Damiano, S.; Lupidi, G.; Maggi, F.; Orsomando, G.; Papa, F.; et al. Diverse biological effects of the essential oil from Iranian Trachyspermum ammi. Arabian J. Chem. 2015, 26. [Google Scholar] [CrossRef]
- Mori, V.; Amici, A.; Mazzola, F.; Di Stefano, M.; Conforti, L.; Magni, G.; Ruggieri, S.; Raffaelli, N.; Orsomando, G. Metabolic profiling of alternative NAD biosynthetic routes in mouse tissues. PLoS ONE 2014, 9, e113939. [Google Scholar] [CrossRef] [PubMed]
- Aruoma, O.I. Methodological considerations for characterizing potential antioxidant actions of bioactive components in plant foods. Mutat. Res. Fundam. Mol. Mech. Mutagen. 2003, 523–524, 9–20. [Google Scholar]
- Jun, N.J.; Mosaddik, A.; Moon, J.Y.; Jang, K.C.; Lee, D.S.; Ahn, K.S.; Cho, S.K. Cytotoxic activity of beta-caryophyllene oxide isolated from Jeju guava (Psidium cattleianum Sabine) leaf. Rec. Nat. Prod. 2011, 5, 242–246. [Google Scholar]
- Prawat, U.; Chairerk, O.; Lenthas, R.; Salae, A.W.; Tuntiwachwuttikul, P. Two new cycloartane-type triterpenoids and one new flavanone from the leaves of Dasymaschalon dasymaschalum and their biological activity. Phytochem. Lett. 2013, 6, 286–290. [Google Scholar] [CrossRef]
- Venditti, A.; Bianco, A.; Nicoletti, M.; Quassinti, L.; Bramucci, M.; Lupidi, G.; Vitali, L.A.; Petrelli, D.; Papa, F.; Vittori, S.; et al. Phytochemical analysis, biological evaluation and micromorphological study of Stachys alopecuros (L.) Benth. subsp. divulsa (Ten.) Grande endemic to central Apennines, Italy. Fitoterapia 2013, 90, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Fogang, H.P.D.; Tapondjou, L.A.; Womeni, H.M.; Quassinti, L.; Bramucci, M.; Vitali, L.A.; Petrelli, D.; Lupidi, G.; Maggi, F.; Papa, F.; et al. Characterization and biological activity of essential oils from fruits of Zanthoxylum xanthoxyloides Lam. and Z. leprieurii Guill. & Perr., two culinary plants from Cameroon. Flav. Fragr. J. 2012, 27, 171–179. [Google Scholar]
- Jia, S.S.; Xi, G.P.; Zhang, M.; Chen, Y.B.; Lei, B.; Dong, X.S.; Yang, Y.M. Induction of apoptosis by d-limonene is mediated by inactivation of Akt in LS174T human colon cancer cells. Oncol. Rep. 2013, 29, 349–354. [Google Scholar] [PubMed]
- Manuele, M.G.; Ferraro, G.; Anesini, C. Effect of Tilia x viridis flower extract on the proliferation of a lymphoma cell line and on normal murine lymphocytes: Contribution of monoterpenes, especially limonene. Phytother. Res. 2008, 22, 1520–1526. [Google Scholar] [CrossRef] [PubMed]
- Manassero, C.A.; Girotti, J.R.; Mijailovsky, S.; García de Bravo, M.; Polo, M. In vitro comparative analysis of antiproliferative activity of essential oil from mandarin peel and its principal component limonene. Nat. Prod. Res. 2013, 2, 1475–1478. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Michel, L.; Chaumont, J.P.; Millet-Clerc, J. Use of caryophyllene oxide as an antifungal agent in an in vitro experimental model of onychomycosis. Mycopathologia 2000, 148, 79–82. [Google Scholar] [CrossRef]
- Clarke, S.R.; Mohamed, R.; Bian, L.; Routh, A.F.; Kokai-Kun, J.F.; Mond, J.J.; Tarkowski, A.; Foster, S.J. The Staphylococcus aureus surface protein IsdA mediates resistance to innate defenses of human skin. Cell Host Microbe 2007, 1, 199–212. [Google Scholar] [CrossRef] [PubMed]
- De Souza Araújo, C.; de Oliveira, A.P.; Lima, R.N.; Alves, P.R.; Diniz, T.C.; da Silva Almeida, J.R.G. Chemical constituents and antioxidant activity of the essential oil from leaves of Annona vepretorum Mart. (Annonaceae). Pharmacogn. Mag. 2015, 11, 615–618. [Google Scholar]
- Sonboli, A.; Esmaeili, M.A.; Gholipour, A.; Kanani, M.R. Composition, cytotoxicity and antioxidant activity of the essential oil of Dracocephalum surmandinum from Iran. Nat. Prod. Comm. 2010, 5, 341–344. [Google Scholar]
- Gürsoy, N.; Tepe, B.; Akpulat, H.A. Chemical Composition and Antioxidant Activity of the Essential Oils of Salvia palaestina (Bentham) and S. ceratophylla (L.). Rec. Nat. Prod. 2012, 6, 278–287. [Google Scholar]
- Wink, M. Evolutionary advantage and molecular modes of action of multi-component mixtures used in phytomedicine. Curr. Drug Metab. 2008, 10, 996–1009. [Google Scholar] [CrossRef]
- Maggi, F.; Tirillini, B.; Vittori, S.; Sagratini, G.; Papa, F. Analysis of the Volatile Components of Onosma echioides (L.) L. var. columnae Lacaita Growing in Central Italy. J. Essent. Oil Res. 2009, 21, 441–447. [Google Scholar] [CrossRef]
- CLSI (Clinical and Laboratory Standards Institute). Performance Standards for Antimicrobial Disk Susceptibility Tests, 10th ed.; Approved standard M02-A10; CLSI: Wayne, MI, USA, 2009. [Google Scholar]
- Maggi, F.; Randriana, R.F.; Rasoanaivo, P.; Nicoletti, M.; Quassinti, L.; Bramucci, M.; Lupidi, G.; Petrelli, D.; Vitali, L.A.; Papa, F.; et al. Chemical composition and in vitro biological activities of the essential oil of Vepris macrophylla (Baker) I. Verd. Endemic to Madagascar. Chem. Biodivers. 2013, 10, 356–366. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, R.; Chandrasekar, M.J.N.; Nanjan, M.J.; Suresh, B. Antioxidant activity of Caesalpinia digyna root. J. Ethnopharmacol. 2007, 113, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Rad. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Müller, L.; Frohlich, K.; Bohm, V. Comparative antioxidant activities of carotenoids measured by ferric reducing antioxidant power (FRAP), ABTS bleaching assay (αTEAC), DPPH assay and peroxyl radical scavenging assay. Food Chem. 2011, 129, 139–148. [Google Scholar] [CrossRef]
- Quassinti, L.; Lupidi, G.; Maggi, F.; Papa, F.; Vittori, S.; Bianco, A.; Bramucci, M. Antioxidant and antiproliferative activity of Hypericum hircinum L. subsp. majus (Aiton) N. Robson essential oil. Nat. Prod. Res. 2013, 27, 862–868. [Google Scholar] [CrossRef] [PubMed]
- Rodionova, I.A.; Zuccola, H.J.; Sorci, L.; Aleshin, A.E.; Kazanov, M.D.; Ma, C.T.; Sergienko, E.; Rubin, E.J.; Locher, C.P.; Osterman, A.L. Mycobacterial nicotinate mononucleotide adenylyltransferase: structure, mechanism, and implications for drug discovery. J. Biol. Chem. 2015, 290, 7693–7706. [Google Scholar] [CrossRef] [PubMed]
- Orsomando, G.; Cialabrini, L.; Amici, A.; Mazzola, F.; Ruggieri, S.; Conforti, L.; Janeckova, L.; Coleman, M.P.; Magni, G. Simultaneous single-sample determination of NMNAT isozyme activities in mouse tissues. PLos ONE 2012, 7, e53271. [Google Scholar] [CrossRef] [PubMed]
- Balducci, E.; Emanuelli, M.; Raffaelli, N.; Ruggieri, S.; Amici, A.; Magni, G.; Orsomando, G.; Polzonetti, V.; Natalini, P. Assay methods for nicotinamide mononucleotide adenylyltransferase of wide applicability. Anal. Biochem. 1995, 228, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Hirumi, H.; Hirumi, K. Continuous cultivation of Trypanosoma brucei blood stream forms in a medium containing a low concentration of serum protein without feeder cell layers. J. Parasitol. 1989, 75, 985–989. [Google Scholar] [CrossRef] [PubMed]
- Sample Availability: Samples of the essential oil from Erigeron floribundus are available from the authors.
N. | Component 1 | RI Calc. 2 | RI Lit. 3 | % 4 | ID 5 | ||
---|---|---|---|---|---|---|---|
HP-5MS | DBWAX | Apolar | Polar | ||||
1 | butyl methyl ketone | 780 | 1088 | 786 | 1088 | tr 6 | RI, MS |
2 | hexanal | 792 | 1024 | 801 | 1024 | 0.1 | RI, MS |
3 | (3E)-hexenol | 844 | 1371 | 844 | 1371 | 0.2 | RI, MS |
4 | n-hexanol | 858 | 1363 | 863 | 1363 | 0.1 | RI, MS |
5 | 1-(2-methyl-2-cyclopenten-1-yl)-ethanone | 871 | tr | MS | |||
6 | α-pinene | 921 | 1026 | 932 | 1026 | 0.2 | Std |
7 | sabinene | 960 | 1125 | 969 | 1125 | tr | RI, MS |
8 | β-pinene | 962 | 1112 | 974 | 1112 | 2.1 | Std |
9 | myrcene | 983 | 1167 | 988 | 1165 | 0.1 | Std |
10 | 2-pentyl furan | 983 | 1231 | 984 | 1231 | 0.1 | RI, MS |
11 | p-cymene | 1017 | 1271 | 1020 | 1272 | tr | Std |
12 | limonene | 1020 | 1199 | 1024 | 1199 | 8.8 | Std |
13 | (E)-β-ocimene | 1042 | 1255 | 1044 | 1255 | 0.1 | RI, MS |
14 | γ-terpinene | 1051 | 1253 | 1054 | 1255 | tr | Std |
15 | terpinolene | 1080 | 1283 | 1086 | 1282 | tr | RI, MS |
16 | linalool | 1096 | 1555 | 1095 | 1556 | 0.1 | Std |
17 | n-nonanal | 1102 | 1393 | 1100 | 1395 | tr | RI, MS |
18 | (E)-4,8-dimethyl-1,3,7-nonatriene | 1112 | tr | MS | |||
19 | trans-p-mentha-2,8-dien-1-ol | 1114 | 1119 | tr | RI, MS | ||
20 | trans-pinocarveol | 1129 | 1656 | 1135 | 1657 | 0.1 | Std |
21 | nerol oxide | 1150 | 1154 | tr | RI, MS | ||
22 | pinocarvone | 1153 | 1563 | 1160 | 1565 | 0.1 | RI, MS |
23 | lavandulol | 1163 | 1686 | 1170 | 1686 | 0.1 | RI, MS |
24 | terpinen-4-ol | 1169 | 1600 | 1174 | 1600 | 0.1 | Std |
25 | trans-isocarveol | 1180 | 1838 | 1175 | tr | RI, MS | |
26 | α-terpineol | 1182 | 1688 | 1186 | 1690 | 0.2 | Std |
27 | myrtenal | 1188 | 1648 | 1195 | 1648 | 0.1 | RI, MS |
28 | myrtenol | 1188 | 1794 | 1194 | 1794 | 0.1 | Std |
29 | β-cyclocitral | 1212 | 1217 | 0.1 | RI, MS | ||
30 | nerol | 1223 | 1840 | 1227 | 1838 | 0.4 | Std |
31 | carvone | 1236 | 1744 | 1239 | 1745 | 0.1 | Std |
32 | geraniol | 1253 | 1850 | 1249 | 1852 | tr | Std |
33 | perilla aldehyde | 1265 | 1783 | 1265 | 1784 | tr | RI, MS |
34 | geranial | 1268 | 1730 | 1264 | 1730 | tr | Std |
35 | perilla alcohol | 1291 | 2028 | 1290 | 2029 | 0.1 | RI, MS |
36 | silphiperfol-5-ene | 1310 | 1421 | 1326 | 0.3 | RI, MS | |
37 | α-cubebene | 1338 | 1457 | 1345 | 0.1 | RI, MS | |
38 | eugenol | 1351 | 2164 | 1356 | 2167 | 0.1 | Std |
39 | α-copaene | 1362 | 1488 | 1374 | 1488 | 0.7 | RI, MS |
40 | modheph-2-ene | 1363 | 1516 | 1377 | 0.7 | RI, MS | |
41 | α-isocomene | 1370 | 1529 | 1377 | 0.5 | RI, MS | |
42 | β-cubebene | 1378 | 1379 | 0.2 | RI, MS | ||
43 | β-elemene | 1380 | 1389 | 0.2 | RI, MS | ||
44 | β-isocomene | 1387 | 1407 | 0.4 | RI, MS | ||
45 | (Z)-caryophyllene | 1392 | 1570 | 1408 | 2.3 | RI, MS | |
46 | (E)-caryophyllene | 1403 | 1590 | 1417 | 1585 | 4.2 | Std |
47 | β-copaene | 1414 | 1535 | 1430 | 0.4 | RI, MS | |
48 | β-gurjunene | 1422 | 1431 | 0.1 | RI, MS | ||
49 | α-trans-bergamotene | 1425 | 1583 | 1432 | 1586 | 2.1 | RI, MS |
50 | α-humulene | 1437 | 1663 | 1452 | 1665 | 1.0 | Std |
51 | geranyl acetone | 1447 | 1453 | 0.1 | RI, MS | ||
52 | (E)-β-farnesene | 1451 | 1745 | 1454 | 1745 | 5.5 | Std |
53 | γ-muurolene | 1464 | 1683 | 1478 | 0.4 | RI, MS | |
54 | germacrene D | 1466 | 1701 | 1484 | 1700 | 0.1 | RI, MS |
55 | β-selinene | 1470 | 1489 | 0.1 | RI, MS | ||
56 | ar-curcumene | 1473 | 1770 | 1479 | 1769 | 1.0 | RI, MS |
57 | (E)-β-ionone | 1476 | 1934 | 1487 | 1936 | 0.1 | Std |
58 | cis-β-guaiene | 1481 | 1492 | 0.2 | RI, MS | ||
59 | γ-curcumene | 1481 | 1673 | 1481 | 0.2 | RI, MS | |
60 | α-muurolene | 1487 | 1719 | 1500 | 0.2 | RI, MS | |
61 | modhephen-8-β-ol | 1492 | 1513 | 0.2 | RI, MS | ||
62 | γ-cadinene | 1499 | 1513 | 0.3 | RI, MS | ||
63 | δ-cadinene | 1511 | 1753 | 1522 | 1752 | 0.5 | RI, MS |
64 | α-calacorene | 1528 | 1907 | 1544 | 0.1 | RI, MS | |
65 | (E)-nerolidol | 1557 | 2048 | 1561 | 2049 | 2.1 | Std |
66 | spathulenol | 1564 | 2127 | 1577 | 2132 | 12.2 | RI, MS |
67 | caryophyllene oxide | 1567 | 1977 | 1582 | 1983 | 12.4 | Std |
68 | salvial-4(14)-en-1-one | 1577 | 2000 | 1594 | 0.8 | RI, MS | |
69 | humulene epoxide II | 1591 | 2034 | 1608 | 2040 | 1.7 | RI, MS |
70 | caryophylla-4(12),8(13)-dien-5α-ol | 1615 | 1639 | 0.6 | RI, MS | ||
71 | caryophylla-4(12),8(13)-dien-5β-ol | 1619 | 1639 | 1.0 | RI, MS | ||
72 | tau-cadinol | 1626 | 2126 | 1625 | 2125 | 1.0 | RI, MS |
73 | muurola-4,10(14)-dien-1-beta-ol | 1637 | 1630 | 1.0 | RI, MS | ||
74 | α-cadinol | 1640 | 2232 | 1652 | 2232 | 1.0 | RI, MS |
75 | 14-hydroxy-9-epi-(E)-caryophyllene | 1656 | 1668 | 2.1 | RI, MS | ||
76 | germacra-4(15),5,10(14)-trien-1-α-ol | 1669 | 1685 | 2.1 | RI, MS | ||
77 | pentadecanal | 1706 | 2041 | 1705 | 2041 | 0.6 | RI, MS |
78 | β-bisabolenol | 1776 | 1785 | 0.2 | RI, MS | ||
79 | 14-hydroxy-δ-cadinene | 1787 | 1788 | 0.3 | RI, MS | ||
80 | neophytadiene | 1831 | 0.2 | MS | |||
81 | 2-pentadecanone, 6,10,14-trimethyl- | 1837 | 2131 | 1838 | 2131 | 0.3 | RI, MS |
82 | hexadecanoic acid | 1962 | 2918 | 1959 | 2917 | 2.5 | RI, MS |
83 | (E)-phytol | 2094 | 2624 | 2096 | 2622 | 0.7 | Std |
84 | n-pentacosane | 2500 | 2500 | 2500 | 2500 | tr | Std |
85 | n-heptacosane | 2700 | 2700 | 2700 | 2700 | tr | Std |
Total identified (%) | 78.6 | ||||||
Grouped compounds | |||||||
Monoterpene hydrocarbons | 11.5 | ||||||
Oxygenated monoterpenes | 1.5 | ||||||
Sesquiterpene hydrocarbons | 21.9 | ||||||
Oxygenated sesquiterpenes | 38.5 | ||||||
Others | 5.2 |
Cell Line (IC50 µg/mL) 1 | |||
---|---|---|---|
A375 2 | MDA–MB 231 3 | HCT116 4 | |
Essential oil | 22.5 | 20.8 | 14.9 |
95% C.I. 5 | 20.6–24.6 | 16.82–25.77 | 13.10–17.00 |
Positive control | |||
Cisplatin | 0.5 | 2.5 | 2.5 |
95% C.I. | 0.4–0.5 | 2.0–3.0 | 2.2–2.9 |
Species | Strain | Essential Oil | Reference Antibiotic 1 | ||
---|---|---|---|---|---|
IZD 2 (mm) | MIC 3 (µg/mL) | IZD (mm) | MIC (µg/mL) | ||
S. aureus | ATCC 29213 | 14.3 ± 0.6 | 512 | 20.67 ± 1.15 | 0.25 |
MRSA 4 -19 | 1024–2048 | ||||
MRSA-42 | 512–1024 | ||||
MRSA-75 | 512–1024 | ||||
MRSA-101 | 512–1024 | ||||
E. faecalis | ATCC 29212 | 8.7 ± 0.6 | 4096 | 24.0 ± 2.6 | 0.5–1 |
E. coli | ATCC 25922 | n.a. 5 | N.D. 6 | 19.7 ± 0.6 | 0.016 |
P. aeruginosa | ATCC 27853 | n.a. | N.D. | 21.7 ± 0.6 | 0.5 |
C. albicans | ATCC 24433 | 9.0 ± 1.0 | 512 | 16.33 ± 0.58 | 4.0 |
DPPH | ABTS | FRAP | |||
---|---|---|---|---|---|
TEAC 1 μmol·TE/g | IC50 2 μg/mL | TEAC 1 μmol·TE/g | IC50 2 μg/mL | TEAC 1 μmol·TE/g | |
E. floribundus oil | 16.9 ± 0.1 | 356.7 ± 7.1 | 85.5 ± 3.6 | 74.9 ± 3.2 | 411.9 ± 2.40 |
Trolox | 1.51 ± 0.04 | 1.6 ± 0.01 |
T. brucei IC50 1 (μg/mL) | Balb/3T3 IC50 1 (μg/mL) | Selectivity Index (SI) | |
---|---|---|---|
E. floribundus oil | 33.5 ± 2.7 | >200 | >5.97 |
Carophyllene oxide | >200 | N.D. | |
Limonene | 5.6 ± 1.6 | >100 | >17.85 |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrelli, R.; Orsomando, G.; Sorci, L.; Maggi, F.; Ranjbarian, F.; Biapa Nya, P.C.; Petrelli, D.; Vitali, L.A.; Lupidi, G.; Quassinti, L.; et al. Biological Activities of the Essential Oil from Erigeron floribundus. Molecules 2016, 21, 1065. https://doi.org/10.3390/molecules21081065
Petrelli R, Orsomando G, Sorci L, Maggi F, Ranjbarian F, Biapa Nya PC, Petrelli D, Vitali LA, Lupidi G, Quassinti L, et al. Biological Activities of the Essential Oil from Erigeron floribundus. Molecules. 2016; 21(8):1065. https://doi.org/10.3390/molecules21081065
Chicago/Turabian StylePetrelli, Riccardo, Giuseppe Orsomando, Leonardo Sorci, Filippo Maggi, Farahnaz Ranjbarian, Prosper C. Biapa Nya, Dezemona Petrelli, Luca A. Vitali, Giulio Lupidi, Luana Quassinti, and et al. 2016. "Biological Activities of the Essential Oil from Erigeron floribundus" Molecules 21, no. 8: 1065. https://doi.org/10.3390/molecules21081065