Next Article in Journal
Emission Enhancement and Intermittency in Polycrystalline Organolead Halide Perovskite Films
Next Article in Special Issue
C19-Norditerpenoid Alkaloids from Aconitum szechenyianum and Their Effects on LPS-Activated NO Production
Previous Article in Journal
σ-Bond Electron Delocalization in Oligosilanes as Function of Substitution Pattern, Chain Length, and Spatial Orientation
Previous Article in Special Issue
Inhibitory Effect of Camptothecin against Rice Bacterial Brown Stripe Pathogen Acidovorax avenae subsp. avenae RS-2
Article Menu
Issue 8 (August) cover image

Export Article

Open AccessReview

Evaluation of Biosynthetic Pathway and Engineered Biosynthesis of Alkaloids

Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
Author to whom correspondence should be addressed.
Academic Editor: Michael Wink
Molecules 2016, 21(8), 1078;
Received: 20 July 2016 / Revised: 15 August 2016 / Accepted: 15 August 2016 / Published: 18 August 2016
(This article belongs to the Special Issue Diversity of Alkaloids)
PDF [3145 KB, uploaded 18 August 2016]


Varieties of alkaloids are known to be produced by various organisms, including bacteria, fungi and plants, as secondary metabolites that exhibit useful bioactivities. However, understanding of how those metabolites are biosynthesized still remains limited, because most of these compounds are isolated from plants and at a trace level of production. In this review, we focus on recent efforts in identifying the genes responsible for the biosynthesis of those nitrogen-containing natural products and elucidating the mechanisms involved in the biosynthetic processes. The alkaloids discussed in this review are ditryptophenaline (dimeric diketopiperazine alkaloid), saframycin (tetrahydroisoquinoline alkaloid), strictosidine (monoterpene indole alkaloid), ergotamine (ergot alkaloid) and opiates (benzylisoquinoline and morphinan alkaloid). This review also discusses the engineered biosynthesis of these compounds, primarily through heterologous reconstitution of target biosynthetic pathways in suitable hosts, such as Escherichia coli, Saccharomyces cerevisiae and Aspergillus nidulans. Those heterologous biosynthetic systems can be used to confirm the functions of the isolated genes, economically scale up the production of the alkaloids for commercial distributions and engineer the biosynthetic pathways to produce valuable analogs of the alkaloids. In particular, extensive involvement of oxidation reactions catalyzed by oxidoreductases, such as cytochrome P450s, during the secondary metabolite biosynthesis is discussed in details. View Full-Text
Keywords: alkaloids; biosynthesis; enzymes; engineered biosynthesis; aromatic amino acids alkaloids; biosynthesis; enzymes; engineered biosynthesis; aromatic amino acids

Graphical abstract

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Share & Cite This Article

MDPI and ACS Style

Kishimoto, S.; Sato, M.; Tsunematsu, Y.; Watanabe, K. Evaluation of Biosynthetic Pathway and Engineered Biosynthesis of Alkaloids. Molecules 2016, 21, 1078.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Molecules EISSN 1420-3049 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top