Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (641)

Search Parameters:
Keywords = paracrine activity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 685 KB  
Review
Fibroblast Growth Factor-7 and Hair Biology: Bridging Basic Science and Therapeutic Applications
by Huey-Chun Huang, Wang-Ju Hsieh, Ivona Percec and Tsong-Min Chang
Curr. Issues Mol. Biol. 2026, 48(1), 102; https://doi.org/10.3390/cimb48010102 - 19 Jan 2026
Abstract
Alopecia profoundly impacts psychological well-being and quality of life, yet current therapeutic options such as minoxidil and finasteride exhibit limited efficacy. Fibroblast growth factor 7 (FGF-7), also known as keratinocyte growth factor (KGF), is a paracrine growth factor secreted by dermal papilla cells [...] Read more.
Alopecia profoundly impacts psychological well-being and quality of life, yet current therapeutic options such as minoxidil and finasteride exhibit limited efficacy. Fibroblast growth factor 7 (FGF-7), also known as keratinocyte growth factor (KGF), is a paracrine growth factor secreted by dermal papilla cells that specifically activates the epithelial receptor FGFR2b. Receptor engagement triggers multiple downstream signaling cascades, including the MAPK/ERK, PI3K/Akt, and Wnt/β-catenin pathways, promoting keratinocyte proliferation, stem cell activation, and the transition of hair follicles into the anagen phase. Both in vitro and in vivo animal studies consistently demonstrate that FGF-7 accelerates telogen-to-anagen transition and enhances follicular regeneration. FGF-7 acts synergistically with insulin-like growth factor 1 (IGF-1) and vascular endothelial growth factor (VEGF) to sustain nutrient delivery and cell proliferation. Human scalp studies further reveal a strong association between the FGF-7/FGFR2b signaling and follicular activity; however, clinical trials remain scarce. Topical application of FGF-7 has demonstrated an excellent safety profile, whereas systemic administration necessitates careful monitoring. Future directions include the development of engineering to extend the systemic half-life, advanced delivery systems, and gene or mRNA-based therapeutic approaches. Thus, the FGF-7/FGFR2b axis is a highly compelling molecular target for next-generation hair regeneration therapies. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

14 pages, 2178 KB  
Article
Autophagy Activation in Mesenchymal Stem Cells with Lithium Chloride and Trehalose: Implications for Regenerative Medicine
by Ali Fouad, Yasser ElSherbini, Elsayed Abdelhady and Mohamed Abdraboh
BioMed 2026, 6(1), 4; https://doi.org/10.3390/biomed6010004 - 16 Jan 2026
Viewed by 80
Abstract
Background/Objectives: Mesenchymal stem cells (MSCs) are deemed to be a highly safe model for autologous and allogeneic cellular therapy, owing to their inherent lack of HLA-DR expression, immunomodulatory properties, homing ability, and plasticity allowing differentiation into different cell types. The interest in [...] Read more.
Background/Objectives: Mesenchymal stem cells (MSCs) are deemed to be a highly safe model for autologous and allogeneic cellular therapy, owing to their inherent lack of HLA-DR expression, immunomodulatory properties, homing ability, and plasticity allowing differentiation into different cell types. The interest in activating autophagic signaling in MSCs has recently grown due to its significant potential in maintaining stemness, enhancing paracrine signaling, and providing therapeutic benefits for cancer and neurodegenerative diseases. This study aimed to explore the impact of autophagy induction on enhancing the therapeutic potential of MSCs by maintaining their plasticity and to assess different induction agents. Methods: In this study, MSCs were first extracted from the fat tissue of Sprague–Dawley (SD) rats and characterized phenotypically and molecularly by their positive expression of stemness markers CD29, CD106, and CD44, and their negative expression of hematopoietic surface markers CD14, CD34, and CD45, using a flow cytometry approach. Isolated MSCs were then treated separately with two FDA-approved autophagy inducers: Lithium Chloride and Trehalose, following assessment of autophagy activity. Results: Treated MSCs showed significant increases in autophagic activity at both the transcriptional and translational levels. The successful induction of autophagy in MSCs was confirmed through the elevated expression of autophagy-related genes such as ATG3, ATG13, ATG14, P62, and ULK1. These data were confirmed by the significant upregulation in LC3 protein expression and the formation of autophagosomes, which was detected using a transmission electron microscope. Furthermore, the expression of Oct4, Sox2, and Nanog genes was significantly enhanced after treatment with Trehalose and Lithium Chloride compared with untreated control MSCs which may indicate an upregulation of pluripotency. Meanwhile, Lithium Chloride and Trehalose did not significantly induce cellular apoptosis, indicated by the Bax/Bcl-2 expression ratio, and significantly decreased the expression of the antioxidant markers SOD and GPx. Conclusions: Treatment of MSCs with Trehalose and, in particular, Lithium Chloride significantly activated autophagic signaling, which showed a profound effect in enhancing cells’ pluripotency, reinforcing the usage of treated MSCs for autologous and/or allogenic cellular therapy. However, further in vivo studies for activating autophagy in cellular grafts should be conducted before their use in clinical trials. Full article
Show Figures

Figure 1

23 pages, 2668 KB  
Review
Targeting Cardiac Fibroblast Plasticity for Antifibrotic and Regenerative Therapy in Heart Failure
by Suchandrima Dutta, Sophie Chen, Waqas Ahmad, Wei Huang, Jialiang Liang and Yigang Wang
Cells 2026, 15(2), 112; https://doi.org/10.3390/cells15020112 - 8 Jan 2026
Viewed by 255
Abstract
Cardiac fibrosis is a major component of heart failure (HF) and develops when reparative wound healing becomes chronic, leading to excessive extracellular matrix accumulation. Cardiac fibroblasts (CFs), the main regulators of matrix remodeling, are heterogeneous in developmental origins, regional localizations, and activation states. [...] Read more.
Cardiac fibrosis is a major component of heart failure (HF) and develops when reparative wound healing becomes chronic, leading to excessive extracellular matrix accumulation. Cardiac fibroblasts (CFs), the main regulators of matrix remodeling, are heterogeneous in developmental origins, regional localizations, and activation states. This diversity determines whether tissue repair resolves normally or progresses into maladaptive scarring that disrupts myocardial structure and function after injuries. Recent single-cell and spatial transcriptomic studies show that CFs exist in distinct yet interrelated molecular states in murine models and human cardiac tissue with specialized roles in matrix production, angiogenesis, immune signaling, and mechanical sensing. These insights redefine cardiac fibrosis as a dynamic and context-dependent process rather than a uniform cellular response. Although CFs are promising targets for preventing HF progression and enhancing cardiac remodeling, translation into effective therapies remains limited by the unclear heterogeneity of pathological fibroblasts, the lack of distinctive CF markers, and the broad activity of fibrogenic signaling pathways. In this review, we discuss the dynamics of CF activations during the development and progression of HF and assess the underlying pathways and mechanisms contributing to cardiac dysfunction. Additionally, we highlight the potential of targeting CFs for developing therapeutic strategies. These include nonspecific suppression of fibroblast activity and targeted modulation of the signaling pathways and cell populations that sustain chronic remodeling. Furthermore, we assess regenerative approaches that can reprogram fibroblasts or modulate their paracrine functions to restore functional myocardium. Integrating antifibrotic and regenerative strategies with advances in precision drug discovery and gene delivery offers a path toward reversing established fibrosis and achieving recovery in HF. Full article
(This article belongs to the Special Issue Signalling Mechanisms Regulating Cardiac Fibroblast Function)
Show Figures

Graphical abstract

27 pages, 2345 KB  
Review
Limbal Epithelial Stem Cells in Review: Immune and Lymphangiogenic Privilege and Their Clinical Relevance
by Berbang Meshko, Thomas Volatier, Claus Cursiefen and Maria Notara
Cells 2026, 15(1), 91; https://doi.org/10.3390/cells15010091 - 5 Jan 2026
Viewed by 484
Abstract
The cornea maintains transparency by preserving immune and (lymph)angiogenic privilege through active suppression of inflammation and vascular invasion, a process centrally regulated by limbal epithelial stem cells (LESCs) located at the corneoscleral junction. Beyond renewing the corneal epithelium, LESCs maintain immune and vascular [...] Read more.
The cornea maintains transparency by preserving immune and (lymph)angiogenic privilege through active suppression of inflammation and vascular invasion, a process centrally regulated by limbal epithelial stem cells (LESCs) located at the corneoscleral junction. Beyond renewing the corneal epithelium, LESCs maintain immune and vascular balance via extracellular matrix interactions and paracrine signalling, exerting predominantly anti-inflammatory and anti-(lymph)angiogenic effects in vivo. Disruption of the limbal niche by trauma, UV exposure, or genetic disorders such as aniridia leads to limbal stem cell deficiency (LSCD), chronic inflammation, loss of corneal avascularity, and vision loss. The identification of ABCB5 as a key LESC marker has clarified functional limbal subsets, highlighting ABCB5+ epithelial cells as mediators of repair, remodelling, and immune suppression, and positioning them as promising therapeutic targets for treatments that restore both epithelial integrity and corneal immune privilege. Full article
Show Figures

Figure 1

29 pages, 1598 KB  
Review
Inflammation and Resolution in Obesity-Related Cardiovascular Disease
by Paschalis Karakasis, Panagiotis Stachteas, Panagiotis Iliakis, Georgios Sidiropoulos, Konstantinos Grigoriou, Dimitrios Patoulias, Antonios P. Antoniadis and Nikolaos Fragakis
Int. J. Mol. Sci. 2026, 27(1), 535; https://doi.org/10.3390/ijms27010535 - 5 Jan 2026
Viewed by 995
Abstract
Obesity-associated inflammation underlies much of cardiometabolic pathology, reflecting the convergence of chronic, low-grade systemic immune activation with region-specific maladaptation of adipose depots. Among these, epicardial adipose tissue (EAT)—a visceral fat layer contiguous with the myocardium and sharing its microvasculature—functions as a cardio-proximal immunometabolic [...] Read more.
Obesity-associated inflammation underlies much of cardiometabolic pathology, reflecting the convergence of chronic, low-grade systemic immune activation with region-specific maladaptation of adipose depots. Among these, epicardial adipose tissue (EAT)—a visceral fat layer contiguous with the myocardium and sharing its microvasculature—functions as a cardio-proximal immunometabolic interface that influences atrial fibrillation, heart failure with preserved ejection fraction, and coronary atherogenesis through paracrine crosstalk. These relationships extend beyond crude measures of adiposity, emphasizing the primacy of local inflammatory signaling, adipokine flux, and fibro-inflammatory remodeling at the EAT–myocardium interface. Of importance, substantial weight reduction only partially reverses obesity-imprinted transcriptional and epigenetic programs across subcutaneous, visceral, and epicardial depots, supporting the concept of an enduring adipose memory that sustains cardiovascular (CV) risk despite metabolic improvement. Accordingly, therapeutic strategies should move beyond weight-centric management toward mechanism-guided interventions. Resolution pharmacology—leveraging specialized pro-resolving mediators and their cognate G-protein-coupled receptors—offers a biologically plausible means to terminate inflammation and reprogram immune–stromal interactions within adipose and CV tissues. Although preclinical studies report favorable effects on vascular remodeling, myocardial injury, and arrhythmic vulnerability, clinical translation is constrained by pharmacokinetic liabilities of native mediators and by incomplete validation of biomarkers for target engagement. This review integrates mechanistic, depot-resolved, and therapeutic evidence to inform the design of next-generation anti-inflammatory strategies for obesity-related CV disease. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

21 pages, 1320 KB  
Review
Mesothelial Cells in Fibrosis: Focus on Intercellular Crosstalk
by Nadezhda Bakalenko, Evdokiya Kuznetsova, Konstantin Dergilev, Irina Beloglazova and Anna Malashicheva
Biomolecules 2026, 16(1), 85; https://doi.org/10.3390/biom16010085 - 5 Jan 2026
Viewed by 264
Abstract
Mesothelial cells line serosal cavities and internal organs, playing a vital role in maintaining serosal integrity and homeostasis. Their remarkable plasticity and ability to undergo mesothelial-to-mesenchymal transition (MMT) position them as key regulators of tissue repair. However, when normal repair processes fail, mesothelial [...] Read more.
Mesothelial cells line serosal cavities and internal organs, playing a vital role in maintaining serosal integrity and homeostasis. Their remarkable plasticity and ability to undergo mesothelial-to-mesenchymal transition (MMT) position them as key regulators of tissue repair. However, when normal repair processes fail, mesothelial cells can acquire a profibrotic phenotype. They actively contribute to all stages of fibrosis development, including inflammation, fibrin accumulation, myofibroblast differentiation, and extracellular matrix (ECM) remodeling. Fibrotic progression involves multiple cell types, and communication among them is essential for its perpetuation. Mesothelial cells are implicated in bidirectional crosstalk with fibroblasts, macrophages, lymphocytes, and endothelial cells of the serosal microenvironment through direct contact, paracrine signaling, and extracellular vesicle exchange. These interactions regulate immune cell recruitment, cytokine balance, endothelial permeability, and ECM deposition, while, in turn, immune and endothelial cells modulate mesothelial activation, proliferation, and transition. Understanding this complex network of intercellular communication provides new insights into fibrosis pathogenesis and reveals promising targets for antifibrotic therapies. Full article
(This article belongs to the Special Issue New Insights into Mesothelial Cells)
Show Figures

Figure 1

30 pages, 1460 KB  
Review
Neuron–Glioma Synapses in Tumor Progression
by Cristina Cueto-Ureña, María Jesús Ramírez-Expósito and José Manuel Martínez-Martos
Biomedicines 2026, 14(1), 72; https://doi.org/10.3390/biomedicines14010072 - 29 Dec 2025
Viewed by 564
Abstract
Gliomas are the most common malignant primary brain tumors in adults. The treatment of high-grade gliomas is very limited due to their diffuse infiltration, high plasticity, and resistance to conventional therapies. Although they were long considered passive massive lesions, they are now regarded [...] Read more.
Gliomas are the most common malignant primary brain tumors in adults. The treatment of high-grade gliomas is very limited due to their diffuse infiltration, high plasticity, and resistance to conventional therapies. Although they were long considered passive massive lesions, they are now regarded as functionally integrated components of neural circuits, as they form authentic electrochemical synapses with neurons. This allows them to mimic neuronal activity to drive tumor growth and invasion. Ultrastructural studies show presynaptic vesicles in neurons and postsynaptic densities in glioma cell membranes, while electrophysiological recordings detect postsynaptic currents in tumor cells. Tumor microtubules (TMs), dynamic cytoplasmic protrusions enriched in AMPA receptors, are the structures responsible for glioma–glioma and glioma–neuron connectivity, also contributing to treatment resistance and tumor network integration. In these connections, neurons release glutamate that mainly activates their AMPA receptors in glioma cells, while gliomas release excess glutamate, causing excitotoxicity, altering the local excitatory-inhibitory balance, and promoting a hyperexcitable and pro-tumorigenic microenvironment. In addition, certain gliomas, such as diffuse midline gliomas, have altered chloride homeostasis, which makes GABAergic signaling depolarizing and growth promoting. Synaptogenic factors, such as neuroligin-3 and BDNF, further enhance glioma proliferation and synapse formation. These synaptic and paracrine interactions contribute to cognitive impairment, epileptogenesis, and resistance to surgical and pharmacological interventions. High functional connectivity within gliomas correlates with shorter patient survival. Therapies such as AMPA receptor antagonists (perampanel), glutamate release modulators (riluzole or sulfasalazine), and chloride cotransporter inhibitors (NKCC1 blockers) aim to improve outcomes for patients. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

20 pages, 1207 KB  
Review
Modulation of Cardiometabolic Risk by Vitamin D and K2: Simple Supplementation or Real Drug? Uncovering the Pharmacological Properties
by Saverio D’Elia, Roberta Bottino, Andreina Carbone, Tiziana Formisano, Massimiliano Orlandi, Simona Sperlongano, Pasquale Castaldo, Daniele Molinari, Alberto Palladino, Mariarosaria Morello, Gisella Titolo, Francesco S. Loffredo, Francesco Natale, Plinio Cirillo and Giovanni Cimmino
Int. J. Mol. Sci. 2026, 27(1), 298; https://doi.org/10.3390/ijms27010298 - 27 Dec 2025
Viewed by 1176
Abstract
Vitamin D, traditionally regarded as a nutrient, is increasingly recognized as a pharmacologically active secosteroid with pleiotropic effects extending beyond calcium homeostasis and bone integrity. Together with vitamin K2, it participates in the fine-tuning of mineral metabolism and vascular health, potentially modulating cardiometabolic [...] Read more.
Vitamin D, traditionally regarded as a nutrient, is increasingly recognized as a pharmacologically active secosteroid with pleiotropic effects extending beyond calcium homeostasis and bone integrity. Together with vitamin K2, it participates in the fine-tuning of mineral metabolism and vascular health, potentially modulating cardiometabolic risk through intertwined endocrine and paracrine pathways. Despite widespread fortification and supplementation, vitamin D deficiency remains a major global health concern, driven by limited sun exposure, obesity, and metabolic dysfunction. Observational and mechanistic studies consistently link low serum 25(OH)D concentrations with hypertension, insulin resistance, heart failure, and increased cardiovascular mortality. At the molecular level, vitamin D exerts pharmacological actions—modulating the renin–angiotensin–aldosterone system, exerting anti-inflammatory and antifibrotic effects, and influencing endothelial and cardiomyocyte signaling. While experimental and epidemiological evidence suggests potential cardiovascular benefits, large randomized controlled trials (RCTs) provide conflicting results, particularly regarding hypertension and heart failure. However, these often-neutral results do not preclude a targeted action. On the contrary, clinical efficacy is strongly dependent on baseline deficiency status and the presence of metabolic cofactors. In this context, high-dose supplementation of Vitamin D, in combination with Vitamin K2 to prevent vascular calcification, elevates the supplement to a genuine pharmacological agent, with a distinct therapeutic potential for modulating cardiometabolic risk in selected patient subgroups. Emerging evidence supports the concept that vitamin D, when appropriately dosed and combined with K2, may act more as a low-potency pharmacological modulator than a simple nutritional supplement. This review synthesizes current mechanistic, observational, and interventional evidence, aiming to clarify whether vitamin D should be reclassified—from a micronutrient to a pharmacologically relevant agent—in cardiometabolic prevention and therapy, proposing a paradigm shift toward personalized and targeted dosing strategies, characteristic of precision pharmacology. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

24 pages, 3826 KB  
Article
Spatial Phenotype of the Mast Cell Population in Endometritis of Various Severities
by Sergey Mikhalev, Andrey Kostin, Mark Kurtser, Victor Radzinsky, Mekan Orazov, Alexander Alekhnovich, Aleksandra Prikhodko, Grigory Demyashkin, Ilya Klabukov, Denis Baranovskii, Daniel Elieh-Ali-Komi, Igor Buchwalow, Markus Tiemann, Liudmila Mikhaleva and Dmitrii Atiakshin
Cells 2026, 15(1), 38; https://doi.org/10.3390/cells15010038 - 24 Dec 2025
Viewed by 386
Abstract
Endometritis features an inflammatory milieu in the endometrium, accompanied by the recruitment of immunocompetent cells, including mast cells (MCs). The mechanisms underlying MC involvement in chronic endometritis (CE) and fibrous niche formation remain poorly understood, particularly regarding spatial intercellular interactions in situ. In [...] Read more.
Endometritis features an inflammatory milieu in the endometrium, accompanied by the recruitment of immunocompetent cells, including mast cells (MCs). The mechanisms underlying MC involvement in chronic endometritis (CE) and fibrous niche formation remain poorly understood, particularly regarding spatial intercellular interactions in situ. In this study, we used multiplex immunohistochemistry and quantitative immunofluorescence analysis to map the spatial phenotype of MC distribution. Standard histochemical techniques, monoplex and multiplex immunohistochemical staining technologies, light-field microscopy, epifluorescence, and confocal microscopy with multispectral imaging, combined with quantitative immunofluorescence analysis with AI application, were used to identify the spatial phenotyping of quantitative and qualitative features of the endometrial MC population in CE. The increased intensity of endometrial inflammation was accompanied by a rise in the profile of MC content in the endometrium; this accounted for a 0.014% increase in the control and 0.067%, 0.113%, and 0.206% increases in mild, moderate, and severe CE, respectively. We are the first to map the number of MCs that demonstrated loci of accumulations in the endometrium coinciding with foci of fibrous changes. The number of these foci correlated with the severity of chronic endometritis and the development of clinical signs. The frequency of juxtacrine and paracrine MC colocalization with other immunocompetent cells increased with increased CE activity and fibrotic changes: For CD8+ lymphocytes, colocalization increased from 4.6% in the control to 11.6%, 18.5%, and 28.0% in mild, moderate, and severe CE, respectively. For monocytes, colocalization increased from 5.6% in the control to 18.7%, 26.8%, and 28.8% in mild, moderate, and severe CE, respectively. For type 1 macrophages, colocalization increased from 5.6% in the control to 13.5%, 17.4%, and 24.6% in mild, moderate, and severe CE, respectively. For type 2 macrophages, colocalization increased from 3.4% in the control to 9.6%, 9.1%, and 21.5% in mild, moderate, and severe CE, respectively. Spatial patterns of juxtacrine and paracrine MC interactions with other immune cells may provide diagnostic algorithms for chronic endometritis, enabling targeted therapy and preventing fibrotic changes. Full article
Show Figures

Figure 1

20 pages, 1015 KB  
Review
Mesenchymal Stem Cell Secretome for Cardiac Regeneration: Opportunity for Cell-Free Therapy
by Paulina Piotrowska, Honorata Kraskiewicz and Aleksandra Klimczak
Int. J. Mol. Sci. 2026, 27(1), 209; https://doi.org/10.3390/ijms27010209 - 24 Dec 2025
Viewed by 555
Abstract
Cell-free therapy is gaining increasing interest among researchers as an alternative to mesenchymal stem/stromal cell (MSC) therapy. Since the therapeutic effects of MSCs rely predominantly on their paracrine activity, the use of their secretome as a therapeutic agent in broadly defined regenerative medicine, [...] Read more.
Cell-free therapy is gaining increasing interest among researchers as an alternative to mesenchymal stem/stromal cell (MSC) therapy. Since the therapeutic effects of MSCs rely predominantly on their paracrine activity, the use of their secretome as a therapeutic agent in broadly defined regenerative medicine, including cardiac regeneration, appears to be a rational approach. In this review, we discuss recent studies that employed secretomes derived from various types of MSCs in cardiomyocyte regeneration following myocardial infarction (MI). Special attention is given to the protein components of the secretome, which may drive tissue repair, and methods of priming the MSC to achieve secretome composition tailored for heart regeneration. Finally, we summarize recent preclinical findings on the effects of MSC secretomes on cardiomyocyte regeneration. Full article
(This article belongs to the Special Issue Mesenchymal Stem Cell-Based Therapy: Cell Therapy vs. EV Therapy)
Show Figures

Figure 1

21 pages, 6422 KB  
Article
Generation of Bioactive Stem Cell-Derived Secretome in 3D Bioreactor System: Towards Cell-Free Therapy in Veterinary Medicine
by Věra Daňková, Andrea Exnerová, Hana Vágnerová, Vojtěch Pavlík and Kristina Nešporová
Biomolecules 2026, 16(1), 2; https://doi.org/10.3390/biom16010002 - 19 Dec 2025
Viewed by 376
Abstract
Canine adipose-derived mesenchymal stem cells (cASC) are promising for regenerative veterinary medicine due to their immunomodulatory and reparative capacities. Three-dimensional (3D) culturing provides a more physiologically relevant environment than conventional two-dimensional (2D) monolayers, enhancing paracrine activity and therapeutic potential of mesenchymal stem cells [...] Read more.
Canine adipose-derived mesenchymal stem cells (cASC) are promising for regenerative veterinary medicine due to their immunomodulatory and reparative capacities. Three-dimensional (3D) culturing provides a more physiologically relevant environment than conventional two-dimensional (2D) monolayers, enhancing paracrine activity and therapeutic potential of mesenchymal stem cells (MSC). This study investigates the production and biological characterization of cASC secretome generated under hypoxic conditions with platelet lysate (PLT) supplementation, either in a 2D culture or in a stirred-tank 3D culture. Secretomes obtained from 3D cultures were compared with those from 2D cultures prepared under identical hypoxic and PLT-supplemented conditions. Quantitative analyses revealed enhanced secretion of key factors, including monocyte chemoattractant protein-1 (MCP-1) and vascular endothelial growth factor (VEGF), in 3D-derived secretomes. Functional in vitro assays demonstrated superior anti-inflammatory, pro-migratory, and antifibrotic effects of the 3D secretome, evidenced by nuclear factor kappa B (NF-κB) inhibition, increased fibroblast migration, and modulation of extracellular matrix gene expression. Additionally, the bioreactor system enabled consistent secretome production with reproducible biological activity. These findings indicate that 3D bioreactor cultivation under hypoxia with PLT supplementation can generate a biologically active secretome from canine adipose-derived stem cells, providing a promising basis for further exploration in veterinary regenerative applications. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Graphical abstract

17 pages, 1631 KB  
Article
Functionally Distinct Shed Subpopulations Detected After Magnetic-Activated Cell Sorting of CD71 and CD146
by Marina Miteva, Emilia Karova, Natalia Grancharova, Mirela Marinova-Takorova, Violeta Dogandzhiyska, Krasimir Hristov, Nikolay Ishkitiev, Vanyo Mitev, Evgeniy Aleksiev and Zornitsa Mihaylova
Cells 2025, 14(24), 2010; https://doi.org/10.3390/cells14242010 - 17 Dec 2025
Viewed by 366
Abstract
Mesenchymal stem cells derived from human exfoliated deciduous teeth (SHED) are a promising source for regenerative therapies due to their multipotency, proliferative capacity, and immunomodulatory properties. The present study aimed to isolate and characterize SHED subpopulations based on CD71 and CD146 expression and [...] Read more.
Mesenchymal stem cells derived from human exfoliated deciduous teeth (SHED) are a promising source for regenerative therapies due to their multipotency, proliferative capacity, and immunomodulatory properties. The present study aimed to isolate and characterize SHED subpopulations based on CD71 and CD146 expression and evaluate their multilineage differentiation potential. SHED were obtained from pediatric donors and separated into CD71+, CD71, CD146+, and CD146 fractions using magnetic-activated cell sorting (MACS). CD71+/CD71 and CD146+/CD146 populations were isolated independently; no simultaneous double sorting for both markers was performed. Immunocytochemistry was employed to confirm the expression of surface and intracellular markers, including STRO-1, CD44, nestin, and vimentin. Multilineage differentiation assays toward osteogenic, adipogenic, and chondrogenic lineages revealed that CD71+ cells exhibited reduced osteogenic capacity compared to CD71 cells, whereas CD146+ cells showed enhanced osteogenic and adipogenic differentiation. Chondrogenic differentiation seemed unaffected by marker expression under the 2D conditions employed. These results highlight functional heterogeneity within SHED populations and indicate that CD71 and CD146 independently influence differentiation outcomes. The selective enrichment of CD146+ SHED may enhance osteogenic and adipogenic regenerative applications, while CD71+ subsets may serve as a valuable model for studying proliferation and paracrine effects. Limitations include the use of in vitro differentiation assays and the absence of in vivo validation; additionally, combined CD71/CD146 analysis may further clarify the relationship between metabolic activity and stem/progenitor niche characteristics. Overall, marker-based characterization of SHED subpopulations provides insight into their biological properties and potential utility in targeted cell-based therapeutic strategies. Full article
Show Figures

Figure 1

19 pages, 961 KB  
Review
Exercise-Induced Molecular Adaptations in Chronic Non-Communicable Diseases—Narrative Review
by Héctor Fuentes-Barría, Raúl Aguilera-Eguía, Miguel Alarcón-Rivera, Olga López-Soto, Juan Alberto Aristizabal-Hoyos, Ángel Roco-Videla, Marcela Caviedes-Olmos and Diana Rojas-Gómez
Int. J. Mol. Sci. 2025, 26(24), 12096; https://doi.org/10.3390/ijms262412096 - 16 Dec 2025
Cited by 1 | Viewed by 743
Abstract
Physical exercise is a potent non-pharmacological strategy for the prevention and management of chronic non-communicable diseases (NCDs), including type 2 diabetes, cardiovascular diseases, obesity, and certain cancers. Growing evidence demonstrates that the benefits of exercise extend beyond its physiological effects and are largely [...] Read more.
Physical exercise is a potent non-pharmacological strategy for the prevention and management of chronic non-communicable diseases (NCDs), including type 2 diabetes, cardiovascular diseases, obesity, and certain cancers. Growing evidence demonstrates that the benefits of exercise extend beyond its physiological effects and are largely mediated by coordinated molecular and cellular adaptations. This review synthesizes current knowledge on the key mechanisms through which exercise modulates metabolic health, emphasizing intracellular signaling pathways, epigenetic regulation, and myokine-driven inter-organ communication. Exercise induces acute and chronic activation of pathways such as AMPK, PGC-1α, mTOR, MAPKs, and NF-κB, leading to enhanced mitochondrial biogenesis, improved oxidative capacity, refined energy sensing, and reduced inflammation. Additionally, repeated muscle contraction stimulates the release of myokines—including IL-6, irisin, BDNF, FGF21, apelin, and others—that act through endocrine and paracrine routes to regulate glucose and lipid metabolism, insulin secretion, adipose tissue remodeling, neuroplasticity, and systemic inflammatory tone. Epigenetic modifications and exercise-responsive microRNAs further contribute to long-term metabolic reprogramming. Collectively, these molecular adaptations establish exercise as a systemic biological stimulus capable of restoring metabolic homeostasis and counteracting the pathophysiological processes underlying NCDs. Understanding these mechanisms provides a foundation for developing targeted, personalized exercise-based interventions in preventive and therapeutic medicine. Full article
Show Figures

Figure 1

16 pages, 11112 KB  
Article
Evaluation of Human Dental Pulp Stem Cells Expressing BMP2/7 Heterodimers in a Doxycycline-Inducible Manner
by Edit Hrubi, Ferenc Tóth, Gergely Nagy, József Tőzsér and Csaba Hegedűs
Biomolecules 2025, 15(12), 1704; https://doi.org/10.3390/biom15121704 - 6 Dec 2025
Viewed by 660
Abstract
The BMP2/7 heterodimer is known as a stronger inducer of osteogenic differentiation than BMP2 or BMP7 homodimers. Our aim was to establish BMP2/7-expressing human dental pulp stem cells (DPSCs) to evaluate tReceived: 23 October 2025; Revised: 29 November 2025; Accepted: 3 December 2025; [...] Read more.
The BMP2/7 heterodimer is known as a stronger inducer of osteogenic differentiation than BMP2 or BMP7 homodimers. Our aim was to establish BMP2/7-expressing human dental pulp stem cells (DPSCs) to evaluate tReceived: 23 October 2025; Revised: 29 November 2025; Accepted: 3 December 2025; Published: 3 December 2025 he osteogenic potential of the genetically modified cells. Lentiviral transduction was used to introduce the Tet-ON-regulated transgene-containing vector to the cells. Endogenous heterodimers were detected at the mRNA and protein levels using RNA-seq, qPCR, and Western blot, while secreted heterodimers were detected using ELISA assays. Osteogenic differentiation was monitored by measuring alkaline phosphatase (ALP) activity, mineralization, and the expression levels of RUNX2 and ALPL genes. Our results showed that ALP activity did not change in the transduced DPSCs; however, increased mineralization was detected, which correlates with the results obtained by RNA sequencing. Based on our results, BMP2/7-expressing DPSCs could be used in the treatment of bone defects, where heterodimers may have not only autocrine but also paracrine effects. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Graphical abstract

31 pages, 1965 KB  
Review
Reciprocal Paracrine Signaling and Dynamic Coordination of Transitional States in the Alveolar Epithelial Type 2 Cells and Associated Alveolar Lipofibroblasts During Homeostasis, Injury and Repair
by Georgios-Dimitrios Panagiotidis, Mengqing Chen, Xiuyue Yang, Manuela Marega, Stefano Rivetti, Xuran Chu and Saverio Bellusci
Cells 2025, 14(23), 1869; https://doi.org/10.3390/cells14231869 - 26 Nov 2025
Viewed by 839
Abstract
Single-cell RNA-sequencing has transformed our understanding of alveolar epithelial type 2 (AT2) cells and alveolar lipofibroblasts (LIFs) during lung injury and repair. Both cell types undergo dynamic transitions through intermediate states that determine whether the lung proceeds toward regeneration or fibrosis. Emerging evidence [...] Read more.
Single-cell RNA-sequencing has transformed our understanding of alveolar epithelial type 2 (AT2) cells and alveolar lipofibroblasts (LIFs) during lung injury and repair. Both cell types undergo dynamic transitions through intermediate states that determine whether the lung proceeds toward regeneration or fibrosis. Emerging evidence highlights reciprocal paracrine signaling between AT2/AT1 transitional cells and LIF-derived myofibroblasts (aMYFs) as a key regulatory axis. Among these, amphiregulin (AREG)–EGFR signaling functions as a central profibrotic pathway whose inhibition can restore alveolar differentiation and repair. The human WI-38 fibroblast model provides a practical platform to study the reversible LIF–MYF switch and screen antifibrotic and pro-regenerative compounds. Candidate therapeutics including metformin, haloperidol and FGF10 show promise in reprogramming fibroblast and epithelial states through metabolic and signaling modulation. Integrating WI-38-based assays, alveolosphere co-cultures, and multi-omics profiling offers a translational framework for identifying interventions that halt fibrosis and actively induce lung regeneration. This review highlights a unifying framework in which epithelial and mesenchymal plasticity converge to define repair outcomes and identifies actionable targets for promoting alveolar regeneration in chronic lung disease. Full article
(This article belongs to the Special Issue Mechanisms of Lung Growth and Regeneration)
Show Figures

Figure 1

Back to TopTop