water-logo

Journal Browser

Journal Browser

Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:

Article

31 pages, 8526 KiB  
Article
Occurrence of Antibiotic Resistant Bacteria in Urban Karst Groundwater Systems
by Rachel A. Kaiser, Jason S. Polk, Tania Datta, Rohan R. Parekh and Getahun E. Agga
Water 2022, 14(6), 960; https://doi.org/10.3390/w14060960 - 18 Mar 2022
Cited by 19 | Viewed by 3335
Abstract
Antibiotic resistance is a global concern for human, animal, and environmental health. Many studies have identified wastewater treatment plants and surface waters as major reservoirs of antibiotic resistant bacteria (ARB) and genes (ARGs). Yet their prevalence in urban karst groundwater systems remains largely [...] Read more.
Antibiotic resistance is a global concern for human, animal, and environmental health. Many studies have identified wastewater treatment plants and surface waters as major reservoirs of antibiotic resistant bacteria (ARB) and genes (ARGs). Yet their prevalence in urban karst groundwater systems remains largely unexplored. Considering the extent of karst groundwater use globally, and the growing urban areas in these regions, there is an urgent need to understand antibiotic resistance in karst systems to protect source water and human health. This study evaluated the prevalence of ARGs associated with resistance phenotypes at 10 urban karst features in Bowling Green, Kentucky weekly for 46 weeks. To expand the understanding of prevalence in urban karst, a spot sampling of 45 sites in the Tampa Bay Metropolitan area, Florida was also conducted. Specifically, this study considered tetracycline and extended spectrum beta-lactamase (ESBLs) producing, including third generation cephalosporin, resistant E. coli, and tetracycline and macrolide resistant Enterococcus spp. across the 443 Kentucky and 45 Florida samples. A consistent prevalence of clinically relevant and urban associated ARGs were found throughout the urban karst systems, regardless of varying urban development, karst geology, climate, or landuse. These findings indicate urban karst groundwater as a reservoir for antibiotic resistance, potentially threatening human health. Full article
(This article belongs to the Special Issue Antibiotic Resistance in Environmental Waters)
Show Figures

Figure 1

18 pages, 4265 KiB  
Article
Monitoring Recent Changes in Drought and Wetness in the Source Region of the Yellow River Basin, China
by Yanqun Ren, Jinping Liu, Masoud Jafari Shalamzari, Arfan Arshad, Suxia Liu, Tie Liu and Hui Tao
Water 2022, 14(6), 861; https://doi.org/10.3390/w14060861 - 10 Mar 2022
Cited by 16 | Viewed by 2685
Abstract
The source region of the Yellow River Basin (SRYRB) is not only sensitive to climate change and the vulnerable region of the ecological environment but also the primary runoff generating region of the Yellow River Basin (YRB). Its changes of drought and wetness [...] Read more.
The source region of the Yellow River Basin (SRYRB) is not only sensitive to climate change and the vulnerable region of the ecological environment but also the primary runoff generating region of the Yellow River Basin (YRB). Its changes of drought and wetness profoundly impact water resources security, food production and ecological environment in the middle and downward reaches of YRB. In the context of global warming, based on daily precipitation, maximum and minimum temperature of 12 national meteorological stations around and within SRYRB during 1960–2015, this study obtained standardized precipitation index (SPI) and reconnaissance drought index (RDI) on 1-, 3-, 6- and 12-month scales, and then compared the consistency of SPI and RDI in many aspects. Finally, the temporal and spatial variation characteristics of drought and wetness in the SRYRB during 1960–2015 were analyzed in this study. The results showed that SPI and RDI have high consistency on different time scales (correlation coefficient above 0.92). According to the average distribution and change trend of the RDI, SRYRB presented an overall wetness state on different time scales. We found an increasing trend in wetness since the early 1980s. In terms of wetness events of different magnitudes, the highest frequency for moderate and severe ones was in June (12.7%) and February (5.5%), respectively, and for extreme wetness events, both September and January had the highest frequency (1.8%). Among the four seasons, the change rate of RDI in spring was the largest with a value of 0.38 decade−1, followed by winter (0.36 decade−1) and autumn (0.2 decade−1) and the smallest in summer (0.1 decade−1). There was a greater consistency between RDI values of larger time scales such as annual and vegetation growing seasonal (VGS) scales in SRYRB. There was generally a growing trend in wetness in the VGS time scale. These findings presented in this study can provide data support for drought and wetness management in SRYRB. Full article
Show Figures

Figure 1

18 pages, 17238 KiB  
Article
Data-Driven Flood Alert System (FAS) Using Extreme Gradient Boosting (XGBoost) to Forecast Flood Stages
by Will Sanders, Dongfeng Li, Wenzhao Li and Zheng N. Fang
Water 2022, 14(5), 747; https://doi.org/10.3390/w14050747 - 26 Feb 2022
Cited by 21 | Viewed by 5781
Abstract
Heavy rainfall leads to severe flooding problems with catastrophic socio-economic impacts worldwide. Hydrologic forecasting models have been applied to provide alerts of extreme flood events and reduce damage, yet they are still subject to many uncertainties due to the complexity of hydrologic processes [...] Read more.
Heavy rainfall leads to severe flooding problems with catastrophic socio-economic impacts worldwide. Hydrologic forecasting models have been applied to provide alerts of extreme flood events and reduce damage, yet they are still subject to many uncertainties due to the complexity of hydrologic processes and errors in forecasted timing and intensity of the floods. This study demonstrates the efficacy of using eXtreme Gradient Boosting (XGBoost) as a state-of-the-art machine learning (ML) model to forecast gauge stage levels at a 5-min interval with various look-out time windows. A flood alert system (FAS) built upon the XGBoost models is evaluated by two historical flooding events for a flood-prone watershed in Houston, Texas. The predicted stage values from the FAS are compared with observed values with demonstrating good performance by statistical metrics (RMSE and KGE). This study further compares the performance from two scenarios with different input data settings of the FAS: (1) using the data from the gauges within the study area only and (2) including the data from additional gauges outside of the study area. The results suggest that models that use the gauge information within the study area only (Scenario 1) are sufficient and advantageous in terms of their accuracy in predicting the arrival times of the floods. One of the benefits of the FAS outlined in this study is that the XGBoost-based FAS can run in a continuous mode to automatically detect floods without requiring an external starting trigger to switch on as usually required by the conventional event-based FAS systems. This paper illustrates a data-driven FAS framework as a prototype that stakeholders can utilize solely based on their gauging information for local flood warning and mitigation practices. Full article
(This article belongs to the Special Issue Advances in Flood Forecasting and Hydrological Modeling)
Show Figures

Figure 1

20 pages, 4111 KiB  
Article
Exploiting IoT and Its Enabled Technologies for Irrigation Needs in Agriculture
by Veerachamy Ramachandran, Ramar Ramalakshmi, Balasubramanian Prabhu Kavin, Irshad Hussain, Abdulrazak H. Almaliki, Abdulrhman A. Almaliki, Ashraf Y. Elnaggar and Enas E. Hussein
Water 2022, 14(5), 719; https://doi.org/10.3390/w14050719 - 24 Feb 2022
Cited by 48 | Viewed by 7378
Abstract
The increase in population growth and demand is rapidly depleting natural resources. Irrigation plays a vital role in the productivity and growth of agriculture, consuming no less than 75% of fresh water utilization globally. Irrigation, being the largest consumer of water across the [...] Read more.
The increase in population growth and demand is rapidly depleting natural resources. Irrigation plays a vital role in the productivity and growth of agriculture, consuming no less than 75% of fresh water utilization globally. Irrigation, being the largest consumer of water across the globe, needs refinements in its process, and because it is implemented by individuals (farmers), the use of water for irrigation is not effective. To enhance irrigation management, farmers need to keep track of information such as soil type, climatic conditions, available water resources, soil pH, soil nutrients, and soil moisture to make decisions that resolve or prevent agricultural complexity. Irrigation, a data-driven technology, requires the integration of emerging technologies and modern methodologies to provide solutions to the complex problems faced by agriculture. The paper is an overview of IoT-enabled modern technologies through which irrigation management can be elevated. This paper presents the evolution of irrigation and IoT, factors to be considered for effective irrigation, the need for effective irrigation optimization, and how dynamic irrigation optimization would help reduce water use. The paper also discusses the different IoT architecture and deployment models, sensors, and controllers used in the agriculture field, available cloud platforms for IoT, prominent tools or software used for irrigation scheduling and water need prediction, and machine learning and neural network models for irrigation. Convergence of the tools, technologies and approaches helps in the development of better irrigation management applications. Access to real-time data, such as weather, plant and soil data, must be enhanced for the development of effective irrigation management applications. Full article
Show Figures

Figure 1

26 pages, 45295 KiB  
Article
Assessing the Groundwater Reserves of the Udaipur District, Aravalli Range, India, Using Geospatial Techniques
by Megha Shyam, Gowhar Meraj, Shruti Kanga, Sudhanshu, Majid Farooq, Suraj Kumar Singh, Netrananda Sahu and Pankaj Kumar
Water 2022, 14(4), 648; https://doi.org/10.3390/w14040648 - 19 Feb 2022
Cited by 18 | Viewed by 5827
Abstract
Population increase has placed ever-increasing demands on the available groundwater (GW) resources, particularly for intensive agricultural activities. In India, groundwater is the backbone of agriculture and drinking purposes. In the present study, an assessment of groundwater reserves was carried out in the Udaipur [...] Read more.
Population increase has placed ever-increasing demands on the available groundwater (GW) resources, particularly for intensive agricultural activities. In India, groundwater is the backbone of agriculture and drinking purposes. In the present study, an assessment of groundwater reserves was carried out in the Udaipur district, Aravalli range, India. It was observed that the principal aquifer for the availability of groundwater in the studied area is quartzite, phyllite, gneisses, schist, and dolomitic marble, which occur in unconfined to semi-confined zones. Furthermore, all primary chemical ingredients were found within the permissible limit, including granum. We also found that the average annual rainfall days in a year in the study area was 30 from 1957 to 2020, and it has been found that there are chances to receive surplus rainfall once in every five deficit rainfall years. Using integrated remote sensing, GIS, and a field-based spatial modeling approach, it was found that the dynamic GW reserves of the area are 637.42 mcm/annum, and the total groundwater draft is 639.67 mcm/annum. The deficit GW reserves are 2.25 mcm/annum from an average rainfall of 627 mm, hence the stage of groundwater development is 100.67% and categorized as over-exploited. However, as per the relationship between reserves and rainfall events, surplus reserves are available when rainfall exceeds 700 mm. We conclude that enough static GW reserves are available in the studied area to sustain the requirements of the drought period. For the long-term sustainability of groundwater use, controlling groundwater abstraction by optimizing its use, managing it properly through techniques such as sprinkler and drip irrigation, and achieving more crop-per-drop schemes, will go a long way to conserving this essential reserve, and create maximum groundwater recharge structures. Full article
Show Figures

Figure 1

26 pages, 5276 KiB  
Article
A Hybrid Model for Water Quality Prediction Based on an Artificial Neural Network, Wavelet Transform, and Long Short-Term Memory
by Junhao Wu and Zhaocai Wang
Water 2022, 14(4), 610; https://doi.org/10.3390/w14040610 - 17 Feb 2022
Cited by 85 | Viewed by 5854
Abstract
Clean water is an indispensable essential resource on which humans and other living beings depend. Therefore, the establishment of a water quality prediction model to predict future water quality conditions has a significant social and economic value. In this study, a model based [...] Read more.
Clean water is an indispensable essential resource on which humans and other living beings depend. Therefore, the establishment of a water quality prediction model to predict future water quality conditions has a significant social and economic value. In this study, a model based on an artificial neural network (ANN), discrete wavelet transform (DWT), and long short-term memory (LSTM) was constructed to predict the water quality of the Jinjiang River. Firstly, a multi-layer perceptron neural network was used to process the missing values based on the time series in the water quality dataset used in this research. Secondly, the Daubechies 5 (Db5) wavelet was used to divide the water quality data into low-frequency signals and high-frequency signals. Then, the signals were used as the input of LSTM, and LSTM was used for training, testing, and prediction. Finally, the prediction results were compared with the nonlinear auto regression (NAR) neural network model, the ANN-LSTM model, the ARIMA model, multi-layer perceptron neural networks, the LSTM model, and the CNN-LSTM model. The outcome indicated that the ANN-WT-LSTM model proposed in this study performed better than previous models in many evaluation indices. Therefore, the research methods of this study can provide technical support and practical reference for water quality monitoring and the management of the Jinjiang River and other basins. Full article
(This article belongs to the Special Issue Decision Support Tools for Water Quality Management)
Show Figures

Figure 1

21 pages, 6419 KiB  
Article
Water Level Forecasting Using Spatiotemporal Attention-Based Long Short-Term Memory Network
by Fahima Noor, Sanaulla Haq, Mohammed Rakib, Tarik Ahmed, Zeeshan Jamal, Zakaria Shams Siam, Rubyat Tasnuva Hasan, Mohammed Sarfaraz Gani Adnan, Ashraf Dewan and Rashedur M. Rahman
Water 2022, 14(4), 612; https://doi.org/10.3390/w14040612 - 17 Feb 2022
Cited by 25 | Viewed by 4559
Abstract
Bangladesh is in the floodplains of the Ganges, Brahmaputra, and Meghna River delta, crisscrossed by an intricate web of rivers. Although the country is highly prone to flooding, the use of state-of-the-art deep learning models in predicting river water levels to aid flood [...] Read more.
Bangladesh is in the floodplains of the Ganges, Brahmaputra, and Meghna River delta, crisscrossed by an intricate web of rivers. Although the country is highly prone to flooding, the use of state-of-the-art deep learning models in predicting river water levels to aid flood forecasting is underexplored. Deep learning and attention-based models have shown high potential for accurately forecasting floods over space and time. The present study aims to develop a long short-term memory (LSTM) network and its attention-based architectures to predict flood water levels in the rivers of Bangladesh. The models developed in this study incorporated gauge-based water level data over 7 days for flood prediction at Dhaka and Sylhet stations. This study developed five models: artificial neural network (ANN), LSTM, spatial attention LSTM (SALSTM), temporal attention LSTM (TALSTM), and spatiotemporal attention LSTM (STALSTM). The multiple imputation by chained equations (MICE) method was applied to address missing data in the time series analysis. The results showed that the use of both spatial and temporal attention together increases the predictive performance of the LSTM model, which outperforms other attention-based LSTM models. The STALSTM-based flood forecasting system, developed in this study, could inform flood management plans to accurately predict floods in Bangladesh and elsewhere. Full article
(This article belongs to the Special Issue AI and Deep Learning Applications for Water Management)
Show Figures

Figure 1

26 pages, 15657 KiB  
Article
Wavelet Analysis of Dam Injection and Discharge in Three Gorges Dam and Reservoir with Precipitation and River Discharge
by Lirong Yin, Lei Wang, Barry D. Keim, Kory Konsoer and Wenfeng Zheng
Water 2022, 14(4), 567; https://doi.org/10.3390/w14040567 - 13 Feb 2022
Cited by 69 | Viewed by 3770
Abstract
The Yangtze River has been the primary support of the resources and transportation of China. The Three Gorges Dam and Reservoir on the Yangtze River is one of the world’s largest dams. The influence caused by the dam and reservoir on the river [...] Read more.
The Yangtze River has been the primary support of the resources and transportation of China. The Three Gorges Dam and Reservoir on the Yangtze River is one of the world’s largest dams. The influence caused by the dam and reservoir on the river system has been overwhelming and destructive. For better water resource use and flood-prevention planning, more understanding is needed regarding the dam’s impact on river discharge, regional precipitation, and frequency of extreme rainfall events. This study aims to analyze the changes in river discharge and regional precipitation records before and after the construction of the Three Gorges Dam. This research examines temporal correlations among these data by collecting daily dam injection and dam discharge records, the precipitation from ground stations, and river discharge. The time series are analyzed with the wavelet analysis. The precipitation datasets decrease in wavelet magnitude after 1998 when the dam was built in the wavelet analysis. The annual cycle, shown as a bright year line through the time range, still exists in the analysis result after 1998, but the magnitude of the annual cycle has reduced. The river discharge shows a decrease of wavelet magnitude at the three downstream locations. The possible explanation of this pattern could be the human-controlled dam discharge. The constant water level maintained in the reservoir by human control would slow down the flow speed and stabilize it. Full article
Show Figures

Figure 1

20 pages, 5182 KiB  
Article
Surface Water Change Detection via Water Indices and Predictive Modeling Using Remote Sensing Imagery: A Case Study of Nuntasi-Tuzla Lake, Romania
by Cristina Șerban, Carmen Maftei and Gabriel Dobrică
Water 2022, 14(4), 556; https://doi.org/10.3390/w14040556 - 12 Feb 2022
Cited by 18 | Viewed by 3411
Abstract
Water body feature extraction using a remote sensing technique represents an important tool in the investigation of water resources and hydrological drought assessment. Nuntasi-Tuzla Lake, a component of the Danube Delta Natural Reserve, is located on the Romanian Black Sea littoral. On account [...] Read more.
Water body feature extraction using a remote sensing technique represents an important tool in the investigation of water resources and hydrological drought assessment. Nuntasi-Tuzla Lake, a component of the Danube Delta Natural Reserve, is located on the Romanian Black Sea littoral. On account of an event in summer 2020, when the lake surface water decreased significantly, this study aims to identify the variation of the Nuntasi-Tuzla Lake surface water over a long-term period in correlation with human intervention and climate change. To this end, it provides an analysis in the period 1965–2021 via hydrological drought indices and data mining classification. The latter approach is based on several water indices derived from Landsat TM/ETM+/OLI and MODIS full-time series datasets: Normalized Difference Vegetation Index (NDVI), Normalized Difference Vegetation Index (NDVI), Modified NDWI (MNDWI), Weighted Normalized Difference Water Index (WNDWI), and Water Ratio Index (WRI). The experimental results indicate that the proposed classification methods can extract relevant features from waterbodies using remote sensing imagery with a high accuracy. Moreover, the study shows a similarity in the evolution of surface water cover identified with the data mining classification and the drought periods detected in the flow data series for the Nuntasi and Sacele Rivers that supply the Nuntasi-Tuzla Lake. Overall, the results of our investigation show that human intervention and hydrological drought had an extensive impact on the long-term changes in surface water of the Nuntasi-Tuzla Lake. Full article
Show Figures

Figure 1

16 pages, 5413 KiB  
Article
A Digital Twin of a Water Distribution System by Using Graph Convolutional Networks for Pump Speed-Based State Estimation
by Carlos A. Bonilla, Ariele Zanfei, Bruno Brentan, Idel Montalvo and Joaquín Izquierdo
Water 2022, 14(4), 514; https://doi.org/10.3390/w14040514 - 9 Feb 2022
Cited by 17 | Viewed by 4610
Abstract
Water distribution system monitoring is currently carried out using advanced real-time control technologies to achieve a higher operational efficiency. Data analysis techniques can be implemented for condition estimation, which are crucial tools for managing, developing, and operating water networks using the monitored flow [...] Read more.
Water distribution system monitoring is currently carried out using advanced real-time control technologies to achieve a higher operational efficiency. Data analysis techniques can be implemented for condition estimation, which are crucial tools for managing, developing, and operating water networks using the monitored flow rate and pressure data at some network pipes and nodes. This work proposes a state estimation methodology that enables one to infer the hydraulic state of the operating speed of pumping systems from these pressure and flow measurements. The presented approach suggests using graph convolutional neural network theory linked to hydraulic models for generating a digital twin of the water system. It is validated on two benchmark hydraulic networks: the Patios-Villa del Rosario, Colombia, and the C-Town networks. The results show that the proposed model effectively predicts the state estimation in the two hydraulic networks used. The results of the evaluation metrics indicate low values of mean squared error and mean absolute error and high values of the coefficient of determination, reflecting high predictive ability and that the prediction results adequately represent the real data. Full article
(This article belongs to the Special Issue Urban Water Networks Modelling and Monitoring)
Show Figures

Figure 1

20 pages, 14840 KiB  
Article
A Stacking Ensemble Learning Model for Monthly Rainfall Prediction in the Taihu Basin, China
by Jiayue Gu, Shuguang Liu, Zhengzheng Zhou, Sergey R. Chalov and Qi Zhuang
Water 2022, 14(3), 492; https://doi.org/10.3390/w14030492 - 7 Feb 2022
Cited by 36 | Viewed by 4123
Abstract
The prediction of monthly rainfall is greatly beneficial for water resources management and flood control projects. Machine learning (ML) techniques, as an increasingly popular approach, have been applied in diverse climatic regions, showing their respective superiority. On top of that, the ensemble learning [...] Read more.
The prediction of monthly rainfall is greatly beneficial for water resources management and flood control projects. Machine learning (ML) techniques, as an increasingly popular approach, have been applied in diverse climatic regions, showing their respective superiority. On top of that, the ensemble learning model that synthesizes the advantages of different ML models deserves more attention. In this study, an ensemble learning model based on stacking approach was proposed. Four prevalent ML models, namely k-nearest neighbors (KNN), extreme gradient boosting (XGB), support vector regression (SVR), and artificial neural networks (ANN) are taken as base models. To combine the outputs from the base models, the weighting algorithm is used as second-layer learner to generate predictions. Large-scale climate indices, large-scale atmospheric variables, and local meteorological variables were used as predictors. R2, RMSE and MAE, were used as evaluation metrics. The results show that the performance of base models varied among the nine stations in the Taihu Basin, while the stacking approach generally performed better than the four base models. The stacking model showed better performance in spring and winter than in summer and autumn. During wet months, the accuracy of model prediction varied more significantly. On the whole, based on performance evaluation measures, it is concluded that the proposed stacking ensemble multi-ML model can provide a flexible and reasonable prediction framework applicable to other regions. Full article
(This article belongs to the Special Issue Statistics in Hydrology)
Show Figures

Figure 1

21 pages, 26830 KiB  
Article
Development of Deep Learning Models to Improve the Accuracy of Water Levels Time Series Prediction through Multivariate Hydrological Data
by Kidoo Park, Younghun Jung, Yeongjeong Seong and Sanghyup Lee
Water 2022, 14(3), 469; https://doi.org/10.3390/w14030469 - 4 Feb 2022
Cited by 20 | Viewed by 2934
Abstract
Since predicting rapidly fluctuating water levels is very important in water resource engineering, Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) were used to evaluate water-level-prediction accuracy at Hangang Bridge Station in Han River, South Korea, where seasonal fluctuations were large and [...] Read more.
Since predicting rapidly fluctuating water levels is very important in water resource engineering, Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) were used to evaluate water-level-prediction accuracy at Hangang Bridge Station in Han River, South Korea, where seasonal fluctuations were large and rapidly changing water levels were observed. The hydrological data input to each model were collected from the Water Resources Management Information System (WAMIS) at the Hangang Bridge Station, and the meteorological data were provided by the Seoul Observatory of the Meteorological Administration. For high-accuracy high-water-level prediction, the correlation between water level and collected hydrological and meteorological data was analyzed and input into the models to determine the priority of the data to be trained. Multivariate input data were created by combining daily flow rate (DFR), daily vapor pressure (DVP), daily dew-point temperature (DDPT), and 1-hour-max precipitation (1HP) data, which are highly correlated with the water level. It was possible to predict improved high water levels through the training of multivariate input data of LSTM and GRU. In the prediction of water-level data with rapid temporal fluctuations in the Hangang Bridge Station, the accuracy of GRU’s predicted water-level data was much better in most multivariate training than that of LSTM. When multivariate training data with a large correlation with the water level were used by the GRU, the prediction results with higher accuracy (R2=0.74800.8318; NSE=0.75240.7965; MRPE=0.08070.0895) were obtained than those of water-level prediction results by univariate training. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

22 pages, 26404 KiB  
Article
Remote Analysis of the Chlorophyll-a Concentration Using Sentinel-2 MSI Images in a Semiarid Environment in Northeastern Brazil
by Thaís R. Benevides T. Aranha, Jean-Michel Martinez, Enio P. Souza, Mário U. G. Barros and Eduardo Sávio P. R. Martins
Water 2022, 14(3), 451; https://doi.org/10.3390/w14030451 - 2 Feb 2022
Cited by 14 | Viewed by 3440
Abstract
In this paper, the authors use remote-sensing images to monitor the water quality of reservoirs located in the semiarid region of Northeast Brazil. Sentinel-2 MSI TOA Level 1C reflectance images were used to remotely estimate the concentration of chlorophyll-a (chl-a), the main indicator [...] Read more.
In this paper, the authors use remote-sensing images to monitor the water quality of reservoirs located in the semiarid region of Northeast Brazil. Sentinel-2 MSI TOA Level 1C reflectance images were used to remotely estimate the concentration of chlorophyll-a (chl-a), the main indicator of the trophic state of aquatic environments, in five reservoirs in the state of Ceará, Brazil. A three-spectral band retrieval model was calibrated using 171 water samples, collected from November 2015 through July 2018 in 5 reservoirs. For validation, 71 additional samples, collected from August 2018 through December 2019, were used to ensure a robust accuracy assessment. The TOA Level 1C products performed very well, achieving a relative RMSE of 28% and R2 = 0.80. Data on wind direction and speed, solar radiation and reservoir volume were used to generate a conceptual model to analyze the behavior of chl-a in the surface waters of the Castanhão reservoir. During 2019, the reservoir water quality showed strong variation, with concentration fluctuating from 30 to 95 µg/L We showed that the end of the dry season is marked by strong eutrophic conditions corresponding to very low water inflows into the reservoir. During the rainy season there is a large decrease in the chl-a concentration following the increase of the lake water storage. During the following dry season, satellite data show a progressive improvement of the trophic state controlled by wind intensity that promotes a better mixing of the reservoir waters and inhibiting the development of most phytoplankton. Full article
Show Figures

Figure 1

18 pages, 3734 KiB  
Article
Evaluation of Machine Learning Techniques for Hydrological Drought Modeling: A Case Study of the Wadi Ouahrane Basin in Algeria
by Mohammed Achite, Muhammad Jehanzaib, Nehal Elshaboury and Tae-Woong Kim
Water 2022, 14(3), 431; https://doi.org/10.3390/w14030431 - 30 Jan 2022
Cited by 29 | Viewed by 5255
Abstract
Forecasting meteorological and hydrological drought using standardized metrics of rainfall and runoff (SPI/SRI) is critical for the long-term planning and management of water resources at the global and regional levels. In this study, various machine learning (ML) techniques including four methods (i.e., ANN, [...] Read more.
Forecasting meteorological and hydrological drought using standardized metrics of rainfall and runoff (SPI/SRI) is critical for the long-term planning and management of water resources at the global and regional levels. In this study, various machine learning (ML) techniques including four methods (i.e., ANN, ANFIS, SVM, and DT) were utilized to construct hydrological drought forecasting models in the Wadi Ouahrane basin in the northern part of Algeria. The performance of ML models was assessed using evaluation criteria, including RMSE, MAE, NSE, and R2. The results showed that all the ML models accurately predicted hydrological drought, while the SVM model outperformed the other ML models, with the average RMSE = 0.28, MAE = 0.19, NSE = 0.86, and R2 = 0.90. The coefficient of determination of SVM was 0.95 for predicting SRI at the 12-months timescale; as the timescale moves from higher to lower (12 months to 3 months), R2 starts decreasing. Full article
(This article belongs to the Special Issue Assessing and Managing Risk of Flood and Drought in a Changing World)
Show Figures

Figure 1

21 pages, 6098 KiB  
Article
A Model-Based Approach for Improving Surface Water Quality Management in Aquaculture Using MIKE 11: A Case of the Long Xuyen Quadangle, Mekong Delta, Vietnam
by Huynh Vuong Thu Minh, Van Pham Dang Tri, Vu Ngoc Ut, Ram Avtar, Pankaj Kumar, Trinh Trung Tri Dang, Au Van Hoa, Tran Van Ty and Nigel K. Downes
Water 2022, 14(3), 412; https://doi.org/10.3390/w14030412 - 29 Jan 2022
Cited by 16 | Viewed by 4495
Abstract
This study utilized MIKE 11 to quantify the spatio-temporal dynamics of water quality parameters (Biochemical Oxygen Demand (BOD5), Dissolved Oxygen (DO) and temperature) in the Long Xuyen Quadrangle area of the Vietnamese Mekong Delta. Calibrated for the year of 2019 and [...] Read more.
This study utilized MIKE 11 to quantify the spatio-temporal dynamics of water quality parameters (Biochemical Oxygen Demand (BOD5), Dissolved Oxygen (DO) and temperature) in the Long Xuyen Quadrangle area of the Vietnamese Mekong Delta. Calibrated for the year of 2019 and validated for the year of 2020, the developed model showed a significant agreement between the observed and simulated values of water quality parameters. Locations near to cage culture areas exhibited higher BOD5 values than sites close to pond/lagoon culture areas due to the effects of numerous point sources of pollution, including upstream wastewater and out-fluxes from residential and tourism activities in the surrounding areas, all of which had a direct impact on the quality of the surface water used for aquaculture. Moreover, as aquacultural effluents have intensified and dispersed over time, water quality in the surrounding water bodies has degraded. The findings suggest that the effective planning, assessment and management of rapidly expanding aquaculture sites should be improved, including more rigorous water quality monitoring, to ensure the long-term sustainable expansion and development of the aquacultural sector in the Long Xuyen Quadrangle in particular, and the Vietnamese Mekong Delta as a whole. Full article
Show Figures

Figure 1

16 pages, 5504 KiB  
Article
Estimating Phosphorus and COD Concentrations Using a Hybrid Soft Sensor: A Case Study in a Norwegian Municipal Wastewater Treatment Plant
by Abhilash Nair, Aleksander Hykkerud and Harsha Ratnaweera
Water 2022, 14(3), 332; https://doi.org/10.3390/w14030332 - 24 Jan 2022
Cited by 15 | Viewed by 4515
Abstract
Online monitoring of wastewater quality parameters is vital for an efficient and stable operation of wastewater treatment plants (WWTP). Several WWTPs rely on daily/weekly analysis of water samples rather than online automated wet-analyzers due to their high capital and maintenance costs. Soft-sensors are [...] Read more.
Online monitoring of wastewater quality parameters is vital for an efficient and stable operation of wastewater treatment plants (WWTP). Several WWTPs rely on daily/weekly analysis of water samples rather than online automated wet-analyzers due to their high capital and maintenance costs. Soft-sensors are emerging as a viable alternative for real-time monitoring of parameters that either lack a reliable measuring principle or are measured using expensive online sensors. This paper presents the development, implementation, and validation of a hybrid soft sensor used to estimate Total Phosphorus (TP) and Chemical Oxygen Demand (COD) in the influent and effluent streams of a full-scale WWTP. A systematic method for cleaning and processing sensor data, identifying statistically significant correlations, and developing a mathematical model, is discussed. A non-intrusive Industrial Internet of Things (IIoT) infrastructure for soft-sensor deployment and a web-based GUI for data visualization are also presented in this work. The values of TP and COD estimated by the soft sensor are validated by comparing the estimated values to the daily average of their corresponding lab measurements. The data validation results demonstrate the potential of soft sensors in providing real-time values of essential wastewater quality parameters with an acceptable degree of accuracy. Full article
(This article belongs to the Special Issue Water Quality Monitoring and Modeling Research)
Show Figures

Figure 1

15 pages, 2904 KiB  
Article
Applications of Computational and Statistical Models for Optimizing the Electrochemical Removal of Cephalexin Antibiotic from Water
by Maliheh Arab, Mahdieh Ghiyasi Faramarz and Khalid Hashim
Water 2022, 14(3), 344; https://doi.org/10.3390/w14030344 - 24 Jan 2022
Cited by 27 | Viewed by 3620
Abstract
One of the most serious effects of micropollutants in the environment is biological magnification, which causes adverse effects on humans and the ecosystem. Among all of the micro-pollutants, antibiotics are commonly present in the aquatic environment due to their wide use in treating [...] Read more.
One of the most serious effects of micropollutants in the environment is biological magnification, which causes adverse effects on humans and the ecosystem. Among all of the micro-pollutants, antibiotics are commonly present in the aquatic environment due to their wide use in treating or preventing various diseases and infections for humans, plants, and animals. Therefore, an aluminum-based electrocoagulation unit has been used in this study to remove cephalexin antibiotics, as a model of the antibiotics, from water. Computational and statistical models were used to optimize the effects of key parameters on the electrochemical removal of cephalexin, including the initial cephalexin concentration (15–55 mg/L), initial pH (3–11), electrolysis time (20–40 min), and electrode type (insulated and non-insulated). The response surface methodology-central composite design (RSM-CCD) was used to investigate the dependency of the studied variables, while the artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) methods were applied for predicting the experimental training data. The results showed that the best experimental and predicted removals of cephalexin (CEX) were 88.21% and 93.87%, respectively, which were obtained at a pH of 6.14 and electrolysis time of 34.26 min. The results also showed that the ANFIS model predicts and interprets the experimental results better than the ANN and RSM-CCD models. Sensitivity analysis using the Garson method showed the comparative significance of the variables as follows: pH (30%) > electrode type (27%) > initial CEX concentration (24%) > electrolysis time (19%). Full article
Show Figures

Figure 1

21 pages, 81233 KiB  
Article
Recharge and Geochemical Evolution of Groundwater in Fractured Basement Aquifers (NW India): Insights from Environmental Isotopes (δ18O, δ2H, and 3H) and Hydrogeochemical Studies
by Rudra Mohan Pradhan, Ajit Kumar Behera, Sudhir Kumar, Pankaj Kumar and Tapas Kumar Biswal
Water 2022, 14(3), 315; https://doi.org/10.3390/w14030315 - 21 Jan 2022
Cited by 15 | Viewed by 4756
Abstract
Considering water as a limiting factor for socio-economic development, especially in arid/semi-arid regions, both scientific communities and policymakers are interested in groundwater recharge-related data. India is fast moving toward a crisis of groundwater due to intense abstraction and contamination. There is a lack [...] Read more.
Considering water as a limiting factor for socio-economic development, especially in arid/semi-arid regions, both scientific communities and policymakers are interested in groundwater recharge-related data. India is fast moving toward a crisis of groundwater due to intense abstraction and contamination. There is a lack of understanding regarding the occurrence, movement, and behaviors of groundwater in a fractured basement terrane. Therefore, integrated environmental isotopes (δ18O, δ2H, and 3H) and hydrogeochemical studies have been used to understand the recharge processes and geochemical evolution of groundwater in the fractured basement terranes of Gujarat, NW India. Our results show that the relative abundance of major cations and anions in the study basin are Ca2+ > Na+ > Mg2+ > K+ and HCO3 > Cl > SO42− > NO3, respectively. This suggests that the chemical weathering of silicate minerals influences the groundwater chemistry in the aquifer system. A change in hydrochemical facies from Ca-HCO3 to Na-Mg-Ca-Cl. HCO3 has been identified from the recharge to discharge areas. Along the groundwater flow direction, the presence of chemical constituents with different concentrations demonstrates that the various geochemical mechanisms are responsible for this geochemical evolution. Furthermore, the chemical composition of groundwater also reflects that the groundwater has interacted with distinct rock types (granites/granulites). The stable isotopes (δ18O and δ2H) of groundwater reveal that the local precipitation is the main source of recharge. However, the groundwater recharge is affected by the evaporation process due to different geological conditions irrespective of topographical differences in the study area. The tritium (3H) content of groundwater suggests that the aquifer is mainly recharged by modern rainfall events. Thus, in semi-arid regions, the geology, weathering, and geologic structures have a significant role in bringing chemical changes in groundwater and smoothening the recharge process. The findings of this study will prove vital for the decision-makers or policymakers to take appropriate measures to design water budgets as well as water management plans more sustainably. Full article
Show Figures

Figure 1

14 pages, 1770 KiB  
Article
Method Development for Low-Concentration PAHs Analysis in Seawater to Evaluate the Impact of Ship Scrubber Washwater Effluents
by Chih-Feng Chen, Yee Cheng Lim, Yun-Ru Ju, Frank Paolo Jay B. Albarico, Jia-Wei Cheng, Chiu-Wen Chen and Cheng-Di Dong
Water 2022, 14(3), 287; https://doi.org/10.3390/w14030287 - 19 Jan 2022
Cited by 13 | Viewed by 2826
Abstract
A naval ship’s exhaust gas scrubber may discharge polycyclic aromatic hydrocarbons (PAHs) into seawater. Due to the high lipophilicity and low water solubility of PAHs, their concentrations in seawater are extremely low, making them difficult to detect or accurately determine. To accurately assess [...] Read more.
A naval ship’s exhaust gas scrubber may discharge polycyclic aromatic hydrocarbons (PAHs) into seawater. Due to the high lipophilicity and low water solubility of PAHs, their concentrations in seawater are extremely low, making them difficult to detect or accurately determine. To accurately assess the impact of scrubber washwater effluent on the PAHs concentration of seawater, appropriate analysis methods must be established. In this study, a large-volume pre-concentration water sampler was used onboard to concentrate PAHs in surface seawater (100 L) from four sites offshore of southern Taiwan. The quantitative and qualitative analysis of dissolved PAHs in seawater and quality control samples were implemented using a GC/MS system with the aid of internal and surrogate standards. Results showed that the field and equipment blank samples of quality control samples were lower than twice the detection limit. The detection limit of individual PAHs is between 0.001 (naphthalene, NA) and 0.014 ng/L (dibenzo[a,h]anthracene, DBA), which meets the requirements for evaluating PAHs in seawater (that is, less than the maximum permissible concentrations (MPCs)). The concentration of total PAHs (TPAHs) in the four seawater samples ranged from 2.297 to 4.001 ng/L and had an average concentration of 3.056 ± 0.727 ng/L. The concentrations of 16 PAHs were determined in each seawater sample, indicating that the analytical method in this study is suitable for the determination of low-concentration PAHs in seawater. Phenanthrene (PHE) is the most dominant compound in seawater samples accounting for 59.6 ± 12.6% of TPAHs, followed by fluorine (FL) accounting for 8.5 ± 3.7%. The contribution of high-ring PAHs to TPAHs is not high (0.5–9.2%), but the observed concentrations can cause a higher risk to aquatic organisms than low-ring PAHs. The diagnostic ratio showed that the sources of PAHs in the seawater collected offshore of southern Taiwan may include mixed sources such as petrogenic, petroleum combustion, and biomass combustion. The results can be used for regular monitoring, which contributes to pollution prevention and management of the marine environment. Full article
(This article belongs to the Special Issue The Relationship between Ships and Marine Environment)
Show Figures

Figure 1

17 pages, 2152 KiB  
Article
Geographical Preference for Installation of Solar Still Water Desalination Technologies in Iran: An Analytical Hierarchy Process (AHP)-Based Answer
by Sina Jafari, Majid Aghel, Ali Sohani and Siamak Hoseinzadeh
Water 2022, 14(2), 265; https://doi.org/10.3390/w14020265 - 17 Jan 2022
Cited by 15 | Viewed by 2595
Abstract
Water shortage is one of the most crucial challenges worldwide, especially in the Middle Eastern countries, with high population and low freshwater resources. Considering this point and the increasing popularity of solar stills desalination systems, as the contribution, this study aims at finding [...] Read more.
Water shortage is one of the most crucial challenges worldwide, especially in the Middle Eastern countries, with high population and low freshwater resources. Considering this point and the increasing popularity of solar stills desalination systems, as the contribution, this study aims at finding the geographical preference for installation of those technologies in Iran, which is one of the biggest and most populated countries in the Middle East. For this purpose, from each climatic zone of Iran, one representative city is chosen, and analytical hierarchy process (AHP), as one of the most powerful tools for systematic decision-making, is applied. Annual fresh water production (AFWP) from the technical aspect, energy payback period (EPBP) from the energy perspective, and investment payback period from the economic point of view are selected as the decision criteria. Obtaining the three indicated indicators is done using artificial neural networks (ANNs) for yield and water temperature in the basin, which are developed by means of the recorded experimental data. The results indicate that hot arid cities with high received solar radiation, or the ones that have a higher water tariff compared to the others, are the preferred places for installation of solar stills. The example of the first category is Ahvaz, while Tehran is representative of the cities from the second category. AHP demonstrates that they are the first and second priorities for solar still installation, with scores of 26.9 and 22.7, respectively. Ahvaz has AWFP, EPBP, and IPP of 2706.5 L, 0.58 years, and 4.01 years; while the corresponding values for Tehran are 2115.3 L, 0.87 years, and 2.86 years. This study belongs to three classifications in the mathematical problems: 1. experimental work (code: 76–05), 2. Neural networks (code: 92B20), 3. and decision problems, (code: 20F10). Full article
(This article belongs to the Special Issue Renewable Energy Systems Flexibility for Water Desalination)
Show Figures

Figure 1

20 pages, 12880 KiB  
Article
Application of Artificial Neural Networks for Mangrove Mapping Using Multi-Temporal and Multi-Source Remote Sensing Imagery
by Arsalan Ghorbanian, Seyed Ali Ahmadi, Meisam Amani, Ali Mohammadzadeh and Sadegh Jamali
Water 2022, 14(2), 244; https://doi.org/10.3390/w14020244 - 15 Jan 2022
Cited by 16 | Viewed by 4120
Abstract
Mangroves, as unique coastal wetlands with numerous benefits, are endangered mainly due to the coupled effects of anthropogenic activities and climate change. Therefore, acquiring reliable and up-to-date information about these ecosystems is vital for their conservation and sustainable blue carbon development. In this [...] Read more.
Mangroves, as unique coastal wetlands with numerous benefits, are endangered mainly due to the coupled effects of anthropogenic activities and climate change. Therefore, acquiring reliable and up-to-date information about these ecosystems is vital for their conservation and sustainable blue carbon development. In this regard, the joint use of remote sensing data and machine learning algorithms can assist in producing accurate mangrove ecosystem maps. This study investigated the potential of artificial neural networks (ANNs) with different topologies and specifications for mangrove classification in Iran. To this end, multi-temporal synthetic aperture radar (SAR) and multi-spectral remote sensing data from Sentinel-1 and Sentinel-2 were processed in the Google Earth Engine (GEE) cloud computing platform. Afterward, the ANN topologies and specifications considering the number of layers and neurons, learning algorithm, type of activation function, and learning rate were examined for mangrove ecosystem mapping. The results indicated that an ANN model with four hidden layers, 36 neurons in each layer, adaptive moment estimation (Adam) learning algorithm, rectified linear unit (Relu) activation function, and the learning rate of 0.001 produced the most accurate mangrove ecosystem map (F-score = 0.97). Further analysis revealed that although ANN models were subjected to accuracy decline when a limited number of training samples were used, they still resulted in satisfactory results. Additionally, it was observed that ANN models had a high resistance when training samples included wrong labels, and only the ANN model with the Adam learning algorithm produced an accurate mangrove ecosystem map when no data standardization was performed. Moreover, further investigations showed the higher potential of multi-temporal and multi-source remote sensing data compared to single-source and mono-temporal (e.g., single season) for accurate mangrove ecosystem mapping. Overall, the high potential of the proposed method, along with utilizing open-access satellite images and big-geo data processing platforms (i.e., GEE, Google Colab, and scikit-learn), made the proposed approach efficient and applicable over other study areas for all interested users. Full article
(This article belongs to the Special Issue Mapping and Monitoring of Wetlands)
Show Figures

Figure 1

12 pages, 2243 KiB  
Article
Evaluation of Soil Water Content Using SWAT for Southern Saskatchewan, Canada
by Mohammad Zare, Shahid Azam and David Sauchyn
Water 2022, 14(2), 249; https://doi.org/10.3390/w14020249 - 15 Jan 2022
Cited by 13 | Viewed by 3060
Abstract
Soil water content (SWC) is one of the most important hydrologic variables; it plays a decisive role in the control of various land surface processes. We simulated SWC using a Soil and Water Assessment Tool (SWAT) model in southern Saskatchewan. SWC was calibrated [...] Read more.
Soil water content (SWC) is one of the most important hydrologic variables; it plays a decisive role in the control of various land surface processes. We simulated SWC using a Soil and Water Assessment Tool (SWAT) model in southern Saskatchewan. SWC was calibrated using measured data and Soil Moisture Active Passive (SMAP) Level-4 for the surface (0–5 cm) SWC for hydrological response units (HRU) at daily and monthly (warm season) intervals for the years 2015 to 2020. We used the SUFI-2 technique in SWAT-CUP, and observed daily instrumented streamflow records, for calibration (1995 to 2004) and validation (2005–2010). The results reveal that the SWAT model performs well with a monthly PBIAS < 10% and Nash–Sutcliffe efficiency (NS) and R2 ≥ 0.8 for calibration and validation. The correlation coefficient between ground measurement with SMAP and SWAT products are 0.698 and 0.633, respectively. Moreover, SMAP data of surface SWC coincides well with measurements in terms of both amount and trend compared with the SWAT product. The highest r value occurred in July when the mean r value in SWAT and SMAP were 0.87 to 0.84, and then in June for r value of 0.75. In contrast, the lowest values were in April and May (0.07 and 0.04, respectively) at the beginning of the growing season in southern Saskatchewan. Furthermore, calibration in the SWAT model is based on a batch form whereby parameters are adjusted to corresponding input by modifying simulations with observations. SWAT underestimates the abrupt increase in streamflow during the snowmelt months (April and May). This study achieved the objective of developing a SWAT model that simulates SWC in a prairie watershed, and, therefore, can be used in a subsequent phase of research to estimate future soil moisture conditions under projected climate changes. Full article
(This article belongs to the Section Soil and Water)
Show Figures

Figure 1

14 pages, 846 KiB  
Article
The Effect of Trophic Modes on Biomass and Lipid Production of Five Microalgal Strains
by Andonia Nicodemou, Michalis Kallis, Anastasia Agapiou, Androulla Markidou and Michalis Koutinas
Water 2022, 14(2), 240; https://doi.org/10.3390/w14020240 - 14 Jan 2022
Cited by 17 | Viewed by 2683
Abstract
Five microalgae strains, namely Isochrysis galbana, Microchloropsis gaditana, Scenedesmus obliquus, Nannochloropsis oculata and Tetraselmis suecica, were selected as potential candidates for polyunsaturated fatty acids’ production, evaluating biomass productivity and their capacity to accumulate high lipid contents under different trophic [...] Read more.
Five microalgae strains, namely Isochrysis galbana, Microchloropsis gaditana, Scenedesmus obliquus, Nannochloropsis oculata and Tetraselmis suecica, were selected as potential candidates for polyunsaturated fatty acids’ production, evaluating biomass productivity and their capacity to accumulate high lipid contents under different trophic modes. Microalgae strains were cultivated in the presence of 1% glucose using mixotrophic and heterotrophic conditions, while autotrophic cultures served as control experiments. The results demonstrate that S. obliquus performed the highest biomass productivity that reached 0.13 and 0.14 g L−1 d−1 under mixotrophic and heterotrophic conditions, respectively. I. galbana and S. obliquus utilized elevated contents of glucose in mixotrophy, removing 55.9% and 95.6% of the initial concentration of the carbohydrate, respectively, while glucose consumption by the aforementioned strains also remained high under heterotrophic cultivation. The production of lipids was maximal for I. galbana in mixotrophy and S. obliquus in heterotrophy, performing lipid productivities of 24.85 and 22.77 mg L−1 d−1, respectively. The most abundant saturated acid detected for all microalgae strains evaluated was palmitic acid (C16:0), while oleic and linolenic acids (C18:1n9c/C18:3n3) comprised the most abundant unsaturated fatty acids. I. galbana performed the highest linoleic acid (C18:2n6c) content under heterotrophic nutrition, which reached 87.9 mg g−1 of ash-free dry weight. Among the microalgae strains compared, the biomass and lipid production monitored for I. galbana and S. obliquus confirm that both strains could serve as efficient bioproducers for application in algal biorefineries. Full article
Show Figures

Figure 1

23 pages, 6504 KiB  
Article
Underwater Fish Detection and Counting Using Mask Regional Convolutional Neural Network
by Teh Hong Khai, Siti Norul Huda Sheikh Abdullah, Mohammad Kamrul Hasan and Ahmad Tarmizi
Water 2022, 14(2), 222; https://doi.org/10.3390/w14020222 - 12 Jan 2022
Cited by 24 | Viewed by 5792
Abstract
Fish production has become a roadblock to the development of fish farming, and one of the issues encountered throughout the hatching process is the counting procedure. Previous research has mainly depended on the use of non-machine learning-based and machine learning-based counting methods and [...] Read more.
Fish production has become a roadblock to the development of fish farming, and one of the issues encountered throughout the hatching process is the counting procedure. Previous research has mainly depended on the use of non-machine learning-based and machine learning-based counting methods and so was unable to provide precise results. In this work, we used a robotic eye camera to capture shrimp photos on a shrimp farm to train the model. The image data were classified into three categories based on the density of shrimps: low density, medium density, and high density. We used the parameter calibration strategy to discover the appropriate parameters and provided an improved Mask Regional Convolutional Neural Network (Mask R-CNN) model. As a result, the enhanced Mask R-CNN model can reach an accuracy rate of up to 97.48%. Full article
(This article belongs to the Special Issue AI and Deep Learning Applications for Water Management)
Show Figures

Figure 1

14 pages, 3206 KiB  
Article
Research on the Non-Point Source Pollution Characteristics of Important Drinking Water Sources
by Lei Hou, Zhongyuan Zhou, Ruyan Wang, Jianxin Li, Fei Dong and Jingqiang Liu
Water 2022, 14(2), 211; https://doi.org/10.3390/w14020211 - 12 Jan 2022
Cited by 30 | Viewed by 4340
Abstract
In recent years, freshwater resource contamination by non-point source pollution has become particularly prominent in China. To control non-point source (NPS) pollution, it is important to estimate NPS pollution exports, identify sources of pollution, and analyze the pollution characteristics. As such, in this [...] Read more.
In recent years, freshwater resource contamination by non-point source pollution has become particularly prominent in China. To control non-point source (NPS) pollution, it is important to estimate NPS pollution exports, identify sources of pollution, and analyze the pollution characteristics. As such, in this study, we established the modified export coefficient model based on rainfall and terrain to investigate the pollution sources and characteristics of non-point source total nitrogen (TN) and total phosphorus (TP) throughout the Huangqian Reservoir watershed—which serves as an important potable water source for the main tributary of the lower Yellow River. The results showed that: (1) In 2018, the non-point source total nitrogen (TN) and total phosphorus (TP) loads in the Huangqian Reservoir basin were 707.09 t and 114.42 t, respectively. The contribution ratios to TN export were, from high to low, rural life (33.58%), farmland (32.68%), other land use types (20.08%), and livestock and poultry breeding (13.67%). The contribution ratios to TP export were, from high to low, rural life (61.19%), livestock and poultry breeding (21.65%), farmland (12.79%), and other land use types (4.38%). The non-point source pollution primarily originated from the rural life of the water source protection zone. (2) Non-point source TN and TP pollution loads and load intensities showed significantly different spatial distribution patterns throughout the water source protection area. Specifically, their load intensities and loads were the largest in the second-class protected zone, which is the key source area of non-point source pollution. (3) When considering whether to invest in agricultural land fertilizer control or rural domestic sewage, waste, and livestock manure pollution control, the latter is demonstrably more effective. Thus, in addition to putting low-grade control on agricultural fertilizer loss, to rapidly and effectively improve potable water quality, non-point source pollution should, to a larger extent, also be controlled through measures such as establishing household biogas digesters, introducing village sewage treatment plants, and improving the recovery rate of rural domestic garbage. The research results discussed herein provide a theoretical basis for formulating a reasonable and effective protection plan for the Huangqian Reservoir water source and can potentially be used to do the same for other similar freshwater resources. Full article
(This article belongs to the Special Issue Water and Soil Resources Management in Agricultural Areas)
Show Figures

Figure 1

18 pages, 9681 KiB  
Article
Comparison of Rainfall-Runoff Simulation between Support Vector Regression and HEC-HMS for a Rural Watershed in Taiwan
by Shen Chiang, Chih-Hsin Chang and Wei-Bo Chen
Water 2022, 14(2), 191; https://doi.org/10.3390/w14020191 - 11 Jan 2022
Cited by 26 | Viewed by 3955
Abstract
To better understand the effect and constraint of different data lengths on the data-driven model training for the rainfall-runoff simulation, the support vector regression (SVR) approach was applied to the data-driven model as the core algorithm in the present study. Various features selection [...] Read more.
To better understand the effect and constraint of different data lengths on the data-driven model training for the rainfall-runoff simulation, the support vector regression (SVR) approach was applied to the data-driven model as the core algorithm in the present study. Various features selection strategies and different data lengths were employed in the training phase of the model. The validated results of the SVR were compared with the rainfall-runoff simulation derived from a physically based hydrologic model, the Hydrologic Modeling System (HEC-HMS). The HEC-HMS was considered a conventional approach and was also calibrated with a dataset period identical to the SVR. Our results showed that the SVR and HEC-HMS models could be adopted for short and long periods of rainfall-runoff simulation. However, the SVR model estimated the rainfall-runoff relationship reasonably well even if the observational data of one year or one typhoon event was used. In contrast, the HEC-HMS model needed more parameter optimization and inference processes to achieve the same performance level as the SVR model. Overall, the SVR model was superior to the HEC-HMS model in the performance of the rainfall-runoff simulation. Full article
Show Figures

Figure 1

16 pages, 2228 KiB  
Article
Mind the Gap! Reconciling Environmental Water Requirements with Scarcity in the Murray–Darling Basin, Australia
by Matthew J. Colloff and Jamie Pittock
Water 2022, 14(2), 208; https://doi.org/10.3390/w14020208 - 11 Jan 2022
Cited by 12 | Viewed by 4562
Abstract
The Murray–Darling Basin Plan is a $AU 13 billion program to return water from irrigation use to the environment. Central to the success of the Plan, commenced in 2012, is the implementation of an Environmentally Sustainable Level of Take (ESLT) and a Sustainable [...] Read more.
The Murray–Darling Basin Plan is a $AU 13 billion program to return water from irrigation use to the environment. Central to the success of the Plan, commenced in 2012, is the implementation of an Environmentally Sustainable Level of Take (ESLT) and a Sustainable Diversion Limit (SDL) on the volume of water that can be taken for consumptive use. Under the enabling legislation, the Water Act (2007), the ESLT and SDL must be set by the “best available science.” In 2009, the volume of water to maintain wetlands and rivers of the Basin was estimated at 3000–7600 GL per year. Since then, there has been a steady step-down in this volume to 2075 GL year due to repeated policy adjustments, including “supply measures projects,” building of infrastructure to obtain the same environmental outcomes with less water. Since implementation of the Plan, return of water to the environment is falling far short of targets. The gap between the volume required to maintain wetlands and rivers and what is available is increasing with climate change and other risks, but the Plan makes no direct allowance for climate change. We present policy options that address the need to adapt to less water and re-frame the decision context from contestation between water for irrigation versus the environment. Options include best use of water for adaptation and structural adjustment packages for irrigation communities integrated with environmental triage of those wetlands likely to transition to dryland ecosystems under climate change. Full article
(This article belongs to the Special Issue Advances in Water Scarcity and Conservation)
Show Figures

Figure 1

18 pages, 12583 KiB  
Article
Development and Application of an Urban Flood Forecasting and Warning Process to Reduce Urban Flood Damage: A Case Study of Dorim River Basin, Seoul
by Yong-Man Won, Jung-Hwan Lee, Hyeon-Tae Moon and Young-Il Moon
Water 2022, 14(2), 187; https://doi.org/10.3390/w14020187 - 10 Jan 2022
Cited by 17 | Viewed by 3326
Abstract
Early and accurate flood forecasting and warning for urban flood risk areas is an essential factor to reduce flood damage. This paper presents the urban flood forecasting and warning process to reduce damage in the main flood risk area of South Korea. This [...] Read more.
Early and accurate flood forecasting and warning for urban flood risk areas is an essential factor to reduce flood damage. This paper presents the urban flood forecasting and warning process to reduce damage in the main flood risk area of South Korea. This process is developed based on the rainfall-runoff model and deep learning model. A model-driven method was devised to construct the accurate physical model with combined inland-river and flood control facilities, such as pump stations and underground storages. To calibrate the rainfall-runoff model, data of gauging stations and pump stations of an urban stream in August 2020 were used, and the model result was presented as an R2 value of 0.63~0.79. Accurate flood warning criteria of the urban stream were analyzed according to the various rainfall scenarios from the model-driven method. As flood forecasting and warning in the urban stream, deep learning models, vanilla ANN, Long Short-Term Memory (LSTM), Stack-LSTM, and Bidirectional LSTM were constructed. Deep learning models using 10-min hydrological time-series data from gauging stations were trained to warn of expected flood risks based on the water level in the urban stream. A forecasting and warning method that applied the bidirectional LSTM showed an R2 value of 0.9 for the water level forecast with 30 min lead time, indicating the possibility of effective flood forecasting and warning. This case study aims to contribute to the reduction of casualties and flood damage in urban streams and accurate flood warnings in typical urban flood risk areas of South Korea. The developed urban flood forecasting and warning process can be applied effectively as a non-structural measure to mitigate urban flood damage and can be extended considering watershed characteristics. Full article
Show Figures

Figure 1

13 pages, 2790 KiB  
Article
Development of a Distributed Mathematical Model and Control System for Reducing Pollution Risk in Mineral Water Aquifer Systems
by Alexander V. Martirosyan, Yury V. Ilyushin and Olga V. Afanaseva
Water 2022, 14(2), 151; https://doi.org/10.3390/w14020151 - 7 Jan 2022
Cited by 46 | Viewed by 2877
Abstract
The article is devoted to the problem of the growing need of the mineral water fields’ exploitation process automation. The implementation of control systems and mathematical modeling methods can significantly reduce the fields’ structural integrity violation and pollution of aquifers risks. This research [...] Read more.
The article is devoted to the problem of the growing need of the mineral water fields’ exploitation process automation. The implementation of control systems and mathematical modeling methods can significantly reduce the fields’ structural integrity violation and pollution of aquifers risks. This research is especially relevant for the fields with difficult conditions of mineral waters occurrence, since the insufficient accuracy of determining the fields’ operating mode parameters can lead to a severe incident. The article describes a distributed mathematical model developed from the geo-filtration equation. Based on this model, a new method for assessing the mutual influence of the fields, the production of which is carried out from one aquifer, is presented. For a more detailed study of the operating mode parameters influence on the object a physical model of the reservoir was developed. The using of Arduino sensors and the developed software allows us to construct a 3D graph of the input action and its response at the different points of the object as temperature distribution. The simulation results make it possible to use the proposed model for the automatic control system synthesis. Full article
(This article belongs to the Special Issue Groundwater Flow and Transport Models)
Show Figures

Figure 1

15 pages, 4244 KiB  
Article
Water Turbidity Retrieval Based on UAV Hyperspectral Remote Sensing
by Mengying Cui, Yonghua Sun, Chen Huang and Mengjun Li
Water 2022, 14(1), 128; https://doi.org/10.3390/w14010128 - 5 Jan 2022
Cited by 25 | Viewed by 4153
Abstract
The water components affecting turbidity are complex and changeable, and the spectral response mechanism of each water quality parameter is different. Therefore, this study mainly aimed at the turbidity monitoring by unmanned aerial vehicle (UAV) hyperspectral technology, and establishes a set of turbidity [...] Read more.
The water components affecting turbidity are complex and changeable, and the spectral response mechanism of each water quality parameter is different. Therefore, this study mainly aimed at the turbidity monitoring by unmanned aerial vehicle (UAV) hyperspectral technology, and establishes a set of turbidity retrieval models through the artificial control experiment, and verifies the model’s accuracy through UAV flight and water sample data in the same period. The results of this experiment can also be extended to different inland waters for turbidity retrieval. Retrieval of turbidity values of small inland water bodies can provide support for the study of the degree of water pollution. We collected the images and data of aquaculture ponds and irrigation ditches in Dawa District, Panjin City, Liaoning Province. Twenty-nine standard turbidity solutions with different concentration gradients (concentration from 0 to 360 NTU—the abbreviation of Nephelometric Turbidity Unit, which stands for scattered turbidity.) were established through manual control and we simultaneously collected hyperspectral data from the spectral values of standard solutions. The sensitive band to turbidity was obtained after analyzing the spectral information. We established four kinds of retrieval, including the single band, band ratio, normalized ratio, and the partial least squares (PLS) models. We selected the two models with the highest R2 for accuracy verification. The band ratio model and PLS model had the highest accuracy, and R2 was, respectively, 0.65 and 0.72. The hyperspectral image data obtained by UAV were combined with the PLS model, which had the highest R2 to estimate the spatial distribution of water turbidity. The turbidity of the water areas in the study area was 5–300 NTU, and most of which are 5–80 NTU. It shows that the PLS models can retrieve the turbidity with high accuracy of aquaculture ponds, irrigation canals, and reservoirs in Dawa District of Panjin City, Liaoning Province. The experimental results are consistent with the conclusions of the field investigation. Full article
Show Figures

Figure 1

13 pages, 2765 KiB  
Article
Degradation of Azo Dyes with Different Functional Groups in Simulated Wastewater by Electrocoagulation
by Yang Liu, Chenglong Li, Jia Bao, Xin Wang, Wenjing Yu and Lixin Shao
Water 2022, 14(1), 123; https://doi.org/10.3390/w14010123 - 5 Jan 2022
Cited by 27 | Viewed by 4943
Abstract
Increasing attention has been paid to the widespread contamination of azo dyes in water bodies globally. These chemicals can present high toxicity, possibly causing severe irritation of the respiratory tract and even carcinogenic effects. The present study focuses on the periodically reverse electrocoagulation [...] Read more.
Increasing attention has been paid to the widespread contamination of azo dyes in water bodies globally. These chemicals can present high toxicity, possibly causing severe irritation of the respiratory tract and even carcinogenic effects. The present study focuses on the periodically reverse electrocoagulation (PREC) treatment of two typical azo dyes with different functional groups, involving methyl orange (MO) and alizarin yellow (AY), using Fe-Fe electrodes. Based upon the comparative analysis of three main parameters, including current intensity, pH, and electrolyte, the optimal color removal rates for MO and AY could be achieved at a rate of up to 98.7% and 98.6%, respectively, when the current intensity is set to 0.6 A, the pH is set at 6.0, and the electrolyte is selected as NaCl. An accurate predicted method of response surface methodology (RSM) was established to optimize the PREC process involving the three parameters above. The reaction time was the main influence for both azo dyes, while the condition of PREC treatment for AY simulated wastewater was time-saving and energy conserving. According to the further UV–Vis spectrophotometry analysis throughout the procedure of the PREC process, the removal efficiency for AY was better than that of MO, potentially because hydroxyl groups might donate electrons to iron flocs or electrolyze out hydroxyl free radicals. The present study revealed that the functional groups might pose a vital influence on the removal efficiencies of the PREC treatment for those two azo dyes. Full article
(This article belongs to the Special Issue Innovative Technologies for Wastewater and Water Treatment)
Show Figures

Figure 1

29 pages, 3943 KiB  
Article
Water Economics: An In-Depth Analysis of the Connection of Blue Water with Some Primary Level Aspects of Economic Theory I
by Kalomoira Zisopoulou, Dimitris Zisopoulos and Dionysia Panagoulia
Water 2022, 14(1), 103; https://doi.org/10.3390/w14010103 - 4 Jan 2022
Cited by 12 | Viewed by 6039
Abstract
An analysis of the following aspects of water economics was undertaken: Water as an Economic and Social Good, Modes of Government Intervention, Water Scarcity in Economic Theory and Agricultural Water Management Changes, with the support of over 300 sources. Emphasis was placed on [...] Read more.
An analysis of the following aspects of water economics was undertaken: Water as an Economic and Social Good, Modes of Government Intervention, Water Scarcity in Economic Theory and Agricultural Water Management Changes, with the support of over 300 sources. Emphasis was placed on the connection with primary aspects of economics, in contrast to the usual applicative expositions found in water economics literature. This is a novel approach comparing international bodies’ definitions with economic theory at primary level which leads, upon occasion, to serious contradictions which were exhibited in broad lines. Furthermore, it compares the global implications of these definitions to the existing reality at country level, and a lack of bilateral consistency is exhibited. The uniform picture presented at global level is shown to become a non-uniform one at country level, where sharp variations in resources and availability form a competitive market between nations, and water-rich countries already possessing a competitive advantage are shown to attain a water-based comparative advantage as well. It is shown that although at country level water has a quasi-public good character with minimal private good market existence, this is achieved with the existence of a private goods market at international level via international trade in virtual water. A novel approach to management problems stemming from authority levels starting at global level and ending at farm level is analyzed and redressed by employing reality gap theory. Full article
Show Figures

Figure 1

15 pages, 2493 KiB  
Article
A Hybrid Model for Streamflow Forecasting in the Basin of Euphrates
by Huseyin Cagan Kilinc and Bulent Haznedar
Water 2022, 14(1), 80; https://doi.org/10.3390/w14010080 - 3 Jan 2022
Cited by 38 | Viewed by 3663
Abstract
River flow modeling plays a crucial role in water resource management and ensuring its sustainability. Therefore, in recent years, in addition to the prediction of hydrological processes through modeling, applicable and highly reliable methods have also been used to analyze the sustainability of [...] Read more.
River flow modeling plays a crucial role in water resource management and ensuring its sustainability. Therefore, in recent years, in addition to the prediction of hydrological processes through modeling, applicable and highly reliable methods have also been used to analyze the sustainability of water resources. Artificial neural networks and deep learning-based hybrid models have been used by scientists in river flow predictions. Therefore, in this study, we propose a hybrid approach, integrating long-short-term memory (LSTM) networks and a genetic algorithm (GA) for streamflow forecasting. The performance of the hybrid model and the benchmark model was taken into account using daily flow data. For this purpose, the daily river flow time series of the Beyderesi-Kılayak flow measurement station (FMS) from September 2000 to June 2019 and the data from Yazıköy from December 2000 to June 2018 were used for flow measurements on the Euphrates River in Turkey. To validate the performance of the model, the first 80% of the data were used for training, and the remaining 20% were used for the testing of the two FMSs. Statistical methods such as linear regression was used during the comparison process to assess the proposed method’s performance and to demonstrate its superior predictive ability. The estimation results of the models were evaluated with RMSE, MAE, MAPE, STD and R2 statistical metrics. The comparison of daily streamflow predictions results revealed that the LSTM-GA model provided promising accuracy results and mainly presented higher performance than the benchmark model and the linear regression model. Full article
(This article belongs to the Special Issue Advances in Water Use Efficiency in a Changing Environment)
Show Figures

Figure 1

23 pages, 10130 KiB  
Article
Sensitivity, Hazard, and Vulnerability of Farmlands to Saltwater Intrusion in Low-Lying Coastal Areas of Venice, Italy
by Luigi Tosi, Cristina Da Lio, Alessandro Bergamasco, Marta Cosma, Chiara Cavallina, Andrea Fasson, Andrea Viezzoli, Luca Zaggia and Sandra Donnici
Water 2022, 14(1), 64; https://doi.org/10.3390/w14010064 - 30 Dec 2021
Cited by 16 | Viewed by 2999
Abstract
Saltwater intrusion is a growing threat for coastal aquifers and agricultural practices in low-lying plains. Most of the farmlands located between the margin of the Southern Venice lagoon and the Northern Po delta, Italy, lie a few meters below mean sea level and [...] Read more.
Saltwater intrusion is a growing threat for coastal aquifers and agricultural practices in low-lying plains. Most of the farmlands located between the margin of the Southern Venice lagoon and the Northern Po delta, Italy, lie a few meters below mean sea level and are drained by a large network of artificial channels and hydraulic infrastructures to avoid frequent flooding and allow agricultural practices. This work proposes an assessment of the vulnerability to saltwater intrusion, following a new concept of the hazard status, resulting in combining the depth of the freshwater/saltwater interface and the electrical resistivity of the shallow subsoil. The sensitivity of the farmland system was assessed by using ground elevation, distance from freshwater and saltwater sources, permeability, potential runoff, land subsidence, and sea-level rise indicators. Relative weights were assigned by a pairwise comparison following the Analytic Hierarchy Process approach. The computed vulnerability map highlights that about 30% of the farmlands is under strong and extreme conditions, 28% between marginal and moderate, and 40% under negligible conditions. Results from previous vulnerability assessments are discussed in order to explain their differences in terms of hazard status conceptualization and sensitivity characterization of farmland system. Full article
(This article belongs to the Special Issue Salinization of Water Resources: Ongoing and Future Trends)
Show Figures

Graphical abstract

20 pages, 6692 KiB  
Article
Diversity of Silica-Scaled Chrysophytes in Central Vietnam
by Evgeniy Gusev and Nikita Martynenko
Water 2022, 14(1), 65; https://doi.org/10.3390/w14010065 - 30 Dec 2021
Cited by 16 | Viewed by 2222
Abstract
This paper focuses on the flora of scale-bearing chrysophytes from eight provinces located in the central part of Vietnam. Khanh Hoa, Phu Yen, Binh Dinh, Thua Thien Hue, Quang Tri, and Quang Binh provinces are located in the coastal area of Vietnam. Lam [...] Read more.
This paper focuses on the flora of scale-bearing chrysophytes from eight provinces located in the central part of Vietnam. Khanh Hoa, Phu Yen, Binh Dinh, Thua Thien Hue, Quang Tri, and Quang Binh provinces are located in the coastal area of Vietnam. Lam Dong and Dak Lak provinces represent mountain territories with an elevation of 500–2000 metres above sea level. In total, 212 water bodies of different origins were studied. Samples were obtained from swamp areas, lakes, rivers, reservoirs, ponds, and small temporary water bodies. In total, 76 taxa were identified by electron microscopic observations of samples. A total of 54 taxa were found in the mountainous provinces, while 73 were found in the coastal provinces. Of these, 51 species are common for both areas. The most diverse was the genus Mallomonas with 66 species, varieties, and forms; followed by Synura with 7 taxa; Chrysosphaerella with 2; and Spiniferomonas with 1. Seven taxa of the genus Mallomonas were not identified to the lower rank. All these unidentified specimens may potentially represent new species for science. Ten taxa are reported for the first time in Vietnam. Full article
(This article belongs to the Special Issue Species Richness and Diversity of Aquatic Ecosystems)
Show Figures

Figure 1

13 pages, 3044 KiB  
Article
Monitoring Water Quality of the Haihe River Based on Ground-Based Hyperspectral Remote Sensing
by Qi Cao, Gongliang Yu, Shengjie Sun, Yong Dou, Hua Li and Zhiyi Qiao
Water 2022, 14(1), 22; https://doi.org/10.3390/w14010022 - 22 Dec 2021
Cited by 28 | Viewed by 5173
Abstract
The Haihe River is a typical sluice-controlled river in the north of China. The construction and operation of sluice dams change the flow and other hydrological factors of rivers, which have adverse effects on water, making it difficult to study the characteristics of [...] Read more.
The Haihe River is a typical sluice-controlled river in the north of China. The construction and operation of sluice dams change the flow and other hydrological factors of rivers, which have adverse effects on water, making it difficult to study the characteristics of water quality change and water environment control in northern rivers. In recent years, remote sensing has been widely used in water quality monitoring. However, due to the low signal-to-noise ratio (SNR) and the limitation of instrument resolution, satellite remote sensing is still a challenge to inland water quality monitoring. Ground-based hyperspectral remote sensing has a high temporal-spatial resolution and can be simply fixed in the water edge to achieve real-time continuous detection. A combination of hyperspectral remote sensing devices and BP neural networks is used in the current research to invert water quality parameters. The measured values and remote sensing reflectance of eight water quality parameters (chlorophyll-a (Chl-a), phycocyanin (PC), total suspended sediments (TSS), total nitrogen (TN), total phosphorus (TP), ammonia nitrogen (NH4-N), nitrate-nitrogen (NO3-N), and pH) were modeled and verified. The results show that the performance R2 of the training model is above 80%, and the performance R2 of the verification model is above 70%. In the training model, the highest fitting degree is TN (R2 = 1, RMSE = 0.0012 mg/L), and the lowest fitting degree is PC (R2 = 0.87, RMSE = 0.0011 mg/L). Therefore, the application of hyperspectral remote sensing technology to water quality detection in the Haihe River is a feasible method. The model built in the hyperspectral remote sensing equipment can help decision-makers to easily understand the real-time changes of water quality parameters. Full article
Show Figures

Figure 1

14 pages, 3598 KiB  
Article
Optimization of Magnetic Nanoparticles Draw Solution for High Water Flux in Forward Osmosis
by MhdAmmar Hafiz, Mohammed Talhami, Muneer M. Ba-Abbad and Alaa H. Hawari
Water 2021, 13(24), 3653; https://doi.org/10.3390/w13243653 - 20 Dec 2021
Cited by 10 | Viewed by 2870
Abstract
In this study, bare iron oxide nanoparticles were synthesized using a co-precipitation method and used as a draw solute in forward osmosis. The synthesis conditions of the nanoparticles were optimized using the Box-Behnken method to increase the water flux of the forward osmosis [...] Read more.
In this study, bare iron oxide nanoparticles were synthesized using a co-precipitation method and used as a draw solute in forward osmosis. The synthesis conditions of the nanoparticles were optimized using the Box-Behnken method to increase the water flux of the forward osmosis process. The studied parameters were volume of ammonia solution, reaction temperature, and reaction time. The optimum reaction conditions were obtained at reaction temperature of 30 °C, reaction time of 2.73 h and 25.3 mL of ammonia solution. The water flux from the prediction model was found to be 2.06 LMH which is close to the experimental value of 1.98 LMH. The prediction model had high correlation factors (R2 = 98.82%) and (R2adj = 96.69%). This study is expected to be the base for future studies aiming at developing magnetic nanoparticles draw solution using co-precipitation method. Full article
Show Figures

Graphical abstract

20 pages, 3585 KiB  
Article
Uncertainty in Drought Identification Due to Data Choices, and the Value of Triangulation
by Pius Borona, Friedrich Busch, Tobias Krueger and Philippe Rufin
Water 2021, 13(24), 3611; https://doi.org/10.3390/w13243611 - 16 Dec 2021
Cited by 8 | Viewed by 2830
Abstract
Droughts are complex and gradually evolving conditions of extreme water deficits which can compromise livelihoods and ecological integrity, especially in fragile arid and semi-arid regions that depend on rainfed farming, such as Kitui West in south-eastern Kenya. Against the background of low ground-station [...] Read more.
Droughts are complex and gradually evolving conditions of extreme water deficits which can compromise livelihoods and ecological integrity, especially in fragile arid and semi-arid regions that depend on rainfed farming, such as Kitui West in south-eastern Kenya. Against the background of low ground-station density, 10 gridded rainfall products and four gridded temperature products were used to generate an ensemble of 40 calculations of the Standardized Precipitation Evapotranspiration Index (SPEI) to assess uncertainties in the onset, duration, and magnitude of past droughts. These uncertainties were driven more by variations between the rainfall products than variations between the temperature products. Remaining ambiguities in drought occurrence could be resolved by complementing the quantitative analysis with ground-based information from key informants engaged in disaster relief, effectively formulating an ensemble approach to SPEI-based drought identification to aid decision making. The reported trend towards drier conditions in Eastern Africa was confirmed for Kitui West by the majority of data products, whereby the rainfall effect on those increasingly dry conditions was subtler than just annual and seasonal declines and greater annual variation of rainfall, which requires further investigation. Nevertheless, the effects of increasing droughts are already felt on the ground and warrant decisive action. Full article
(This article belongs to the Topic Water Management in the Era of Climatic Change)
Show Figures

Figure 1

16 pages, 7411 KiB  
Article
A Synergic Use of Sentinel-1 and Sentinel-2 Imagery for Complex Wetland Classification Using Generative Adversarial Network (GAN) Scheme
by Ali Jamali, Masoud Mahdianpari, Fariba Mohammadimanesh, Brian Brisco and Bahram Salehi
Water 2021, 13(24), 3601; https://doi.org/10.3390/w13243601 - 15 Dec 2021
Cited by 9 | Viewed by 3333
Abstract
Due to anthropogenic activities and climate change, many natural ecosystems, especially wetlands, are lost or changing at a rapid pace. For the last decade, there has been increasing attention towards developing new tools and methods for the mapping and classification of wetlands using [...] Read more.
Due to anthropogenic activities and climate change, many natural ecosystems, especially wetlands, are lost or changing at a rapid pace. For the last decade, there has been increasing attention towards developing new tools and methods for the mapping and classification of wetlands using remote sensing. At the same time, advances in artificial intelligence and machine learning, particularly deep learning models, have provided opportunities to advance wetland classification methods. However, the developed deep and very deep algorithms require a higher number of training samples, which is costly, logistically demanding, and time-consuming. As such, in this study, we propose a Deep Convolutional Neural Network (DCNN) that uses a modified architecture of the well-known DCNN of the AlexNet and a Generative Adversarial Network (GAN) for the generation and classification of Sentinel-1 and Sentinel-2 data. Applying to an area of approximately 370 sq. km in the Avalon Peninsula, Newfoundland, the proposed model with an average accuracy of 92.30% resulted in F-1 scores of 0.82, 0.85, 0.87, 0.89, and 0.95 for the recognition of swamp, fen, marsh, bog, and shallow water, respectively. Moreover, the proposed DCNN model improved the F-1 score of bog, marsh, fen, and swamp wetland classes by 4%, 8%, 11%, and 26%, respectively, compared to the original CNN network of AlexNet. These results reveal that the proposed model is highly capable of the generation and classification of Sentinel-1 and Sentinel-2 wetland samples and can be used for large-extent classification problems. Full article
(This article belongs to the Special Issue Mapping and Monitoring of Wetlands)
Show Figures

Figure 1

23 pages, 7591 KiB  
Article
Hydrogeochemical Assessment of Groundwater and Suitability Analysis for Domestic and Agricultural Utility in Southern Punjab, Pakistan
by Javed Iqbal, Chunli Su, Abdur Rashid, Nan Yang, Muhammad Yousuf Jat Baloch, Shakeel Ahmed Talpur, Zahid Ullah, Gohar Rahman, Naveed Ur Rahman, Earjh and Meer Muhammad Sajjad
Water 2021, 13(24), 3589; https://doi.org/10.3390/w13243589 - 14 Dec 2021
Cited by 46 | Viewed by 4536
Abstract
Groundwater is a critical water supply for safe drinking water, agriculture, and industry worldwide. In the Khanewal district of Punjab, Pakistan, groundwater has severely deteriorated during the last few decades due to environmental changes and anthropogenic activities. Therefore, 68 groundwater samples were collected [...] Read more.
Groundwater is a critical water supply for safe drinking water, agriculture, and industry worldwide. In the Khanewal district of Punjab, Pakistan, groundwater has severely deteriorated during the last few decades due to environmental changes and anthropogenic activities. Therefore, 68 groundwater samples were collected and analyzed for their main ions and trace elements to investigate the suitability of groundwater sources for drinking and agricultural purposes. Principal component analysis (PCA) and cluster analysis (CA) were employed to determine the major factors influencing groundwater quality. To assess the groundwater’s appropriateness for drinking and irrigation, drinking and agricultural indices were used. The pH of the groundwater samples ranged from 6.9 to 9.2, indicating that the aquifers were slightly acidic to alkaline. The major cations were distributed as follows: Na+ > Ca2+ > Mg2+ > K+. Meanwhile, the anions are distributed as follows: HCO3 > SO42− > Cl > F. The main hydrochemical facies were identified as a mixed type; however, a mixed magnesium, calcium, and chloride pattern was observed. The reverse ion exchange process helps in exchanging Na+ with Ca2+ and Mg2+ ions in the groundwater system. Rock weathering processes, such as the dissolution of calcite, dolomite, and gypsum minerals, dominated the groundwater hydrochemistry. According to the Weight Arithmetic Water Quality Index (WAWQI), 50% of the water samples were unsafe for drinking. The Wilcox diagram, USSL diagram, and some other agricultural indices resulted in around 32% of the groundwater samples being unsuitable for irrigation purposes. The Khanewal’s groundwater quality was vulnerable due to geology and the influence of anthropogenic activities. For groundwater sustainability in Khanewal, management strategies and policies are required. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

12 pages, 3146 KiB  
Article
Anaerobic Digestion for Biogas Production from Municipal Sewage Sludge: A Comparative Study between Fine Mesh Sieved Primary Sludge and Sedimented Primary Sludge
by Phillimon T Odirile, Potlako M Marumoloa, Anthoula Manali and Petros Gikas
Water 2021, 13(24), 3532; https://doi.org/10.3390/w13243532 - 10 Dec 2021
Cited by 13 | Viewed by 3578
Abstract
Two different types of primary sewage sludge have been used as feedstock for production of biogas through anaerobic digestion (AD): the one type was sludge from a typical primary clarifier (PC), while the other type of sludge produced by a rotating belt filter, [...] Read more.
Two different types of primary sewage sludge have been used as feedstock for production of biogas through anaerobic digestion (AD): the one type was sludge from a typical primary clarifier (PC), while the other type of sludge produced by a rotating belt filter, commonly called microsieve (MS). Initially the main physicochemical characteristics of the sludges, such as total solids (TS), volatile solids (VS), VS/TS, pH and carbon to nitrogen ratio (C/N) were determined, for MS: 37.86 ± 0.08%, 83.00 ± 0.41%, 0.83 ± 0.00, 6.67 ± 0.08 and 19.68 ± 0.69, respectively, and for PC: 2.61 ± 0.08%, 78.77 ± 1.91%, 0.79 ± 0.02, 6.61 ± 0.10 and 14.46 ± 1.23, respectively. Then, calculated amounts of the sludges were inserted into airtight vials and were inoculated using anaerobic sludge. The daily biogas production was measured over a period of 30 days. PC sludge maximized the daily biogas production (44.20 mlbiogas/gvsd) 11 days after inoculation, while the MS sludge reach a peak (37.74 mlbiogas/gvsd) 14 days after inoculation. The cumulative biogas production over the 30 days of AD was in the same laver (442.29 mlbiogas/gvs for PC versus 434.73 mlbiogas/gvs for MS). However, PC sludge indicated higher daily biogas production, compared to MS sludge, while the opposite was observed for the period following the peak point. The Volatile Solids Reduction for PC and MS sludges was recorded as 46.06% and 32.39%, respectively. Full article
Show Figures

Figure 1

14 pages, 4730 KiB  
Article
Forest Fires Reduce Snow-Water Storage and Advance the Timing of Snowmelt across the Western U.S.
by Emily E. Smoot and Kelly E. Gleason
Water 2021, 13(24), 3533; https://doi.org/10.3390/w13243533 - 10 Dec 2021
Cited by 15 | Viewed by 3687
Abstract
As climate warms, snow-water storage is decreasing while forest fires are increasing in extent, frequency, and duration. The majority of forest fires occur in the seasonal snow zone across the western US. Yet, we do not understand the broad-scale variability of forest fire [...] Read more.
As climate warms, snow-water storage is decreasing while forest fires are increasing in extent, frequency, and duration. The majority of forest fires occur in the seasonal snow zone across the western US. Yet, we do not understand the broad-scale variability of forest fire effects on snow-water storage and water resource availability. Using pre- and post-fire data from 78 burned SNOTEL stations, we evaluated post-fire shifts in snow accumulation (snow-water storage) and snowmelt across the West and Alaska. For a decade following fire, maximum snow-water storage decreased by over 30 mm, and the snow disappearance date advanced by 9 days, and in high severity burned forests snowmelt rate increased by 3 mm/day. Regionally, forest fires reduced snow-water storage in Alaska, Arizona, and the Pacific Northwest and advanced the snow disappearance date across the Rockies, Western Interior, Wasatch, and Uinta mountains. Broad-scale empirical results of forest fire effects on snow-water storage and snowmelt inform natural resource management and modeling of future snow-water resource availability in burned watersheds. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

21 pages, 6212 KiB  
Article
Development of Boosted Machine Learning Models for Estimating Daily Reference Evapotranspiration and Comparison with Empirical Approaches
by Saeid Mehdizadeh, Babak Mohammadi, Quoc Bao Pham and Zheng Duan
Water 2021, 13(24), 3489; https://doi.org/10.3390/w13243489 - 7 Dec 2021
Cited by 21 | Viewed by 3082
Abstract
Proper irrigation scheduling and agricultural water management require a precise estimation of crop water requirement. In practice, reference evapotranspiration (ETo) is firstly estimated, and used further to calculate the evapotranspiration of each crop. In this study, two new coupled models were developed for [...] Read more.
Proper irrigation scheduling and agricultural water management require a precise estimation of crop water requirement. In practice, reference evapotranspiration (ETo) is firstly estimated, and used further to calculate the evapotranspiration of each crop. In this study, two new coupled models were developed for estimating daily ETo. Two optimization algorithms, the shuffled frog-leaping algorithm (SFLA) and invasive weed optimization (IWO), were coupled on an adaptive neuro-fuzzy inference system (ANFIS) to develop and implement the two novel hybrid models (ANFIS-SFLA and ANFIS-IWO). Additionally, four empirical models with varying complexities, including Hargreaves–Samani, Romanenko, Priestley–Taylor, and Valiantzas, were used and compared with the developed hybrid models. The performance of all investigated models was evaluated using the ETo estimates with the FAO-56 recommended method as a benchmark, as well as multiple statistical indicators including root-mean-square error (RMSE), relative RMSE (RRMSE), mean absolute error (MAE), coefficient of determination (R2), and Nash–Sutcliffe efficiency (NSE). All models were tested in Tabriz and Shiraz, Iran as the two studied sites. Evaluation results showed that the developed coupled models yielded better results than the classic ANFIS, with the ANFIS-SFLA outperforming the ANFIS-IWO. Among empirical models, generally the Valiantzas model in its original and calibrated versions presented the best performance. In terms of model complexity (the number of predictors), the model performance was obviously enhanced by an increasing number of predictors. The most accurate estimates of the daily ETo for the study sites were achieved via the hybrid ANFIS-SFLA models using full predictors, with RMSE within 0.15 mm day−1, RRMSE within 4%, MAE within 0.11 mm day−1, and both a high R2 and NSE of 0.99 in the test phase at the two studied sites. Full article
Show Figures

Figure 1

21 pages, 15505 KiB  
Article
Block-Greedy and CNN Based Underwater Image Dehazing for Novel Depth Estimation and Optimal Ambient Light
by Fayadh Alenezi, Ammar Armghan, Sachi Nandan Mohanty, Rutvij H. Jhaveri and Prayag Tiwari
Water 2021, 13(23), 3470; https://doi.org/10.3390/w13233470 - 6 Dec 2021
Cited by 61 | Viewed by 3516
Abstract
A lack of adequate consideration of underwater image enhancement gives room for more research into the field. The global background light has not been adequately addressed amid the presence of backscattering. This paper presents a technique based on pixel differences between global and [...] Read more.
A lack of adequate consideration of underwater image enhancement gives room for more research into the field. The global background light has not been adequately addressed amid the presence of backscattering. This paper presents a technique based on pixel differences between global and local patches in scene depth estimation. The pixel variance is based on green and red, green and blue, and red and blue channels besides the absolute mean intensity functions. The global background light is extracted based on a moving average of the impact of suspended light and the brightest pixels within the image color channels. We introduce the block-greedy algorithm in a novel Convolutional Neural Network (CNN) proposed to normalize different color channels’ attenuation ratios and select regions with the lowest variance. We address the discontinuity associated with underwater images by transforming both local and global pixel values. We minimize energy in the proposed CNN via a novel Markov random field to smooth edges and improve the final underwater image features. A comparison of the performance of the proposed technique against existing state-of-the-art algorithms using entropy, Underwater Color Image Quality Evaluation (UCIQE), Underwater Image Quality Measure (UIQM), Underwater Image Colorfulness Measure (UICM), and Underwater Image Sharpness Measure (UISM) indicate better performance of the proposed approach in terms of average and consistency. As it concerns to averagely, UICM has higher values in the technique than the reference methods, which explainsits higher color balance. The μ values of UCIQE, UISM, and UICM of the proposed method supersede those of the existing techniques. The proposed noted a percent improvement of 0.4%, 4.8%, 9.7%, 5.1% and 7.2% in entropy, UCIQE, UIQM, UICM and UISM respectively compared to the best existing techniques. Consequently, dehazed images have sharp, colorful, and clear features in most images when compared to those resulting from the existing state-of-the-art methods. Stable σ values explain the consistency in visual analysis in terms of sharpness of color and clarity of features in most of the proposed image results when compared with reference methods. Our own assessment shows that only weakness of the proposed technique is that it only applies to underwater images. Future research could seek to establish edge strengthening without color saturation enhancement. Full article
(This article belongs to the Special Issue AI and Deep Learning Applications for Water Management)
Show Figures

Figure 1

21 pages, 4783 KiB  
Article
Characteristics of Turbulence in the Downstream Region of a Vegetation Patch
by Masoud Kazem, Hossein Afzalimehr and Jueyi Sui
Water 2021, 13(23), 3468; https://doi.org/10.3390/w13233468 - 6 Dec 2021
Cited by 14 | Viewed by 2369
Abstract
In presence of vegetation patches in a channel bed, different flow–morphology interactions in the river will result. The investigation of the nature and intensity of these structures is a crucial part of the research works of river engineering. In this experimental study, the [...] Read more.
In presence of vegetation patches in a channel bed, different flow–morphology interactions in the river will result. The investigation of the nature and intensity of these structures is a crucial part of the research works of river engineering. In this experimental study, the characteristics of turbulence in the non-developed region downstream of a vegetation patch suffering from a gradual fade have been investigated. The changes in turbulent structure were tracked in sequential patterns by reducing the patch size. The model vegetation was selected carefully to simulate the aquatic vegetation patches in natural rivers. Velocity profile, TKE (Turbulent Kinetic Energy), turbulent power spectra and quadrant analysis have been used to investigate the behavior and intensity of the turbulent structures. The results of the velocity profile and TKE indicate that there are three different flow layers in the region downstream of the vegetation patch, including the wake layer, mixing layer and shear layer. When the vegetation patch is wide enough (Dv/Dc > 0.5, termed as the patch width ratio, where Dv is the width of a vegetation patch and Dc is the width of the channel), highly intermittent anisotropic turbulent events appear in the mixing layer at the depth of z/Hv = 0.7~1.1 and distance of x/Hv = 8~12 (where x is streamwise distance from the patch edge, z is vertical distance from channel bed and Hv is the height of a vegetation patch). The results of quadrant analysis show that these structures are associated with the dominance of the outward interactions (Q1). Moreover, these structures accompany large coherent Reynolds shear stresses, anomalies in streamwise velocity, increases in the standard deviation of TKE and increases in intermittent Turbulent Kinetic Energy (TKEi). The intensity and extents of these structures fade with the decrease in the size of a vegetation patch. On the other hand, as the size of the vegetation patch decreases, von Karman vortexes appear in the wake layer and form the dominant flow structures in the downstream region of a vegetation patch. Full article
(This article belongs to the Special Issue Fluvial Hydraulics Affected by River Ice and Hydraulic Structures)
Show Figures

Figure 1

15 pages, 2687 KiB  
Article
Quantile-Based Hydrological Modelling
by Hristos Tyralis and Georgia Papacharalampous
Water 2021, 13(23), 3420; https://doi.org/10.3390/w13233420 - 3 Dec 2021
Cited by 16 | Viewed by 3313
Abstract
Predictive uncertainty in hydrological modelling is quantified by using post-processing or Bayesian-based methods. The former methods are not straightforward and the latter ones are not distribution-free (i.e., assumptions on the probability distribution of the hydrological model’s output are necessary). To alleviate possible limitations [...] Read more.
Predictive uncertainty in hydrological modelling is quantified by using post-processing or Bayesian-based methods. The former methods are not straightforward and the latter ones are not distribution-free (i.e., assumptions on the probability distribution of the hydrological model’s output are necessary). To alleviate possible limitations related to these specific attributes, in this work we propose the calibration of the hydrological model by using the quantile loss function. By following this methodological approach, one can directly simulate pre-specified quantiles of the predictive distribution of streamflow. As a proof of concept, we apply our method in the frameworks of three hydrological models to 511 river basins in the contiguous US. We illustrate the predictive quantiles and show how an honest assessment of the predictive performance of the hydrological models can be made by using proper scoring rules. We believe that our method can help towards advancing the field of hydrological uncertainty. Full article
Show Figures

Figure 1

16 pages, 5237 KiB  
Article
Development of a Deep Learning Emulator for a Distributed Groundwater–Surface Water Model: ParFlow-ML
by Hoang Tran, Elena Leonarduzzi, Luis De la Fuente, Robert Bruce Hull, Vineet Bansal, Calla Chennault, Pierre Gentine, Peter Melchior, Laura E. Condon and Reed M. Maxwell
Water 2021, 13(23), 3393; https://doi.org/10.3390/w13233393 - 1 Dec 2021
Cited by 19 | Viewed by 4694
Abstract
Integrated hydrologic models solve coupled mathematical equations that represent natural processes, including groundwater, unsaturated, and overland flow. However, these models are computationally expensive. It has been recently shown that machine leaning (ML) and deep learning (DL) in particular could be used to emulate [...] Read more.
Integrated hydrologic models solve coupled mathematical equations that represent natural processes, including groundwater, unsaturated, and overland flow. However, these models are computationally expensive. It has been recently shown that machine leaning (ML) and deep learning (DL) in particular could be used to emulate complex physical processes in the earth system. In this study, we demonstrate how a DL model can emulate transient, three-dimensional integrated hydrologic model simulations at a fraction of the computational expense. This emulator is based on a DL model previously used for modeling video dynamics, PredRNN. The emulator is trained based on physical parameters used in the original model, inputs such as hydraulic conductivity and topography, and produces spatially distributed outputs (e.g., pressure head) from which quantities such as streamflow and water table depth can be calculated. Simulation results from the emulator and ParFlow agree well with average relative biases of 0.070, 0.092, and 0.032 for streamflow, water table depth, and total water storage, respectively. Moreover, the emulator is up to 42 times faster than ParFlow. Given this promising proof of concept, our results open the door to future applications of full hydrologic model emulation, particularly at larger scales. Full article
Show Figures

Figure 1

22 pages, 2250 KiB  
Article
Improving Drought Modeling Using Hybrid Random Vector Functional Link Methods
by Rana Muhammad Adnan, Reham R. Mostafa, Abu Reza Md. Towfiqul Islam, Alireza Docheshmeh Gorgij, Alban Kuriqi and Ozgur Kisi
Water 2021, 13(23), 3379; https://doi.org/10.3390/w13233379 - 1 Dec 2021
Cited by 38 | Viewed by 3332
Abstract
Drought modeling is essential in water resources planning and management in mitigating its effects, especially in arid regions. Climate change highly influences the frequency and intensity of droughts. In this study, new hybrid methods, the random vector functional link (RVFL) integrated with particle [...] Read more.
Drought modeling is essential in water resources planning and management in mitigating its effects, especially in arid regions. Climate change highly influences the frequency and intensity of droughts. In this study, new hybrid methods, the random vector functional link (RVFL) integrated with particle swarm optimization (PSO), the genetic algorithm (GA), the grey wolf optimization (GWO), the social spider optimization (SSO), the salp swarm algorithm (SSA) and the hunger games search algorithm (HGS) were used to forecast droughts based on the standard precipitation index (SPI). Monthly precipitation data from three stations in Bangladesh were used in the applications. The accuracy of the methods was compared by forecasting four SPI indices, SPI3, SPI6, SPI9, and SPI12, using the root mean square errors (RMSE), the mean absolute error (MAE), the Nash–Sutcliffe efficiency (NSE), and the determination coefficient (R2). The HGS algorithm provided a better performance than the alternative algorithms, and it considerably improved the accuracy of the RVFL method in drought forecasting; the improvement in RMSE for the SPI3, SP6, SPI9, and SPI12 was by 6.14%, 11.89%, 14.14%, 24.5% in station 1, by 6.02%, 17.42%, 13.49%, 24.86% in station 2 and by 7.55%, 26.45%, 15.27%, 13.21% in station 3, respectively. The outcomes of the study recommend the use of a HGS-based RVFL in drought modeling. Full article
Show Figures

Figure 1

15 pages, 3448 KiB  
Article
Citizen Science for Marine Litter Detection and Classification on Unmanned Aerial Vehicle Images
by Silvia Merlino, Marco Paterni, Marina Locritani, Umberto Andriolo, Gil Gonçalves and Luciano Massetti
Water 2021, 13(23), 3349; https://doi.org/10.3390/w13233349 - 25 Nov 2021
Cited by 30 | Viewed by 4785
Abstract
Unmanned aerial vehicles (UAV, aka drones) are being used for mapping macro-litter in the environment. As drone images require a manual processing task for detecting marine litter, it is of interest to evaluate the accuracy of non-expert citizen science operators (CSO) in performing [...] Read more.
Unmanned aerial vehicles (UAV, aka drones) are being used for mapping macro-litter in the environment. As drone images require a manual processing task for detecting marine litter, it is of interest to evaluate the accuracy of non-expert citizen science operators (CSO) in performing this task. Students from Italian secondary schools (in this work, the CSO) were invited to identify, mark, and classify stranded litter items on a UAV orthophoto collected on an Italian beach. A specific training program and working tools were developed for the aim. The comparison with the standard in situ visual census survey returned a general underestimation (50%) of items. However, marine litter bulk categorisation was fairly in agreement with the in situ survey, especially for sources classification. The concordance level among CSO ranged between 60% and 91%, depending on the item properties considered (type, material, and colour). As the assessment accuracy was in line with previous works developed by experts, remote detection of marine litter on UAV images can be improved through citizen science programs, upon an appropriate training plan and provision of specific tools. Full article
(This article belongs to the Special Issue Pattern Analysis, Recognition and Classification of Marine Data)
Show Figures

Graphical abstract

20 pages, 3508 KiB  
Article
Antibiotic Resistance Genes and Potentially Pathogenic Bacteria in the Central Adriatic Sea: Are They Connected to Urban Wastewater Inputs?
by Viviana Fonti, Andrea Di Cesare, Jadranka Šangulin, Paola Del Negro and Mauro Celussi
Water 2021, 13(23), 3335; https://doi.org/10.3390/w13233335 - 24 Nov 2021
Cited by 12 | Viewed by 3404
Abstract
Despite last decades’ interventions within local and communitarian programs, the Mediterranean Sea still receives poorly treated urban wastewater (sewage). Wastewater treatment plants (WWTPs) performing primary sewage treatments have poor efficiency in removing microbial pollutants, including fecal indicator bacteria, pathogens, and mobile genetic elements [...] Read more.
Despite last decades’ interventions within local and communitarian programs, the Mediterranean Sea still receives poorly treated urban wastewater (sewage). Wastewater treatment plants (WWTPs) performing primary sewage treatments have poor efficiency in removing microbial pollutants, including fecal indicator bacteria, pathogens, and mobile genetic elements conferring resistance to antimicrobials. Using a combination of molecular tools, we investigated four urban WWTPs (i.e., two performing only mechanical treatments and two performing a subsequent conventional secondary treatment by activated sludge) as continuous sources of microbial pollution for marine coastal waters. Sewage that underwent only primary treatments was characterized by a higher content of traditional and alternative fecal indicator bacteria, as well as potentially pathogenic bacteria (especially Acinetobacter, Coxiella, Prevotella, Streptococcus, Pseudomonas, Vibrio, Empedobacter, Paracoccus, and Leptotrichia), than those subjected to secondary treatment. However, seawater samples collected next to the discharging points of all the WWTPs investigated here revealed a marked fecal signature, despite significantly lower values in the presence of secondary treatment of the sewage. WWTPs in this study represented continuous sources of antibiotic resistance genes (ARGs) ermB, qnrS, sul2, tetA, and blaTEM (the latter only for three WWTPs out of four). Still, no clear effects of the two depuration strategies investigated here were detected. Some marine samples were identified as positive to the colistin-resistance gene mcr-1, an ARG that threatens colistin antibiotics’ clinical utility in treating infections with multidrug-resistant bacteria. This study provides evidence that the use of sole primary treatments in urban wastewater management results in pronounced inputs of microbial pollution into marine coastal waters. At the same time, the use of conventional treatments does not fully eliminate ARGs in treated wastewater. The complementary use of molecular techniques could successfully improve the evaluation of the depuration efficiency and help develop novel solutions for the treatment of urban wastewater. Full article
Show Figures

Figure 1

Back to TopTop