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Abstract: A naval ship’s exhaust gas scrubber may discharge polycyclic aromatic hydrocarbons
(PAHs) into seawater. Due to the high lipophilicity and low water solubility of PAHs, their concen-
trations in seawater are extremely low, making them difficult to detect or accurately determine. To
accurately assess the impact of scrubber washwater effluent on the PAHs concentration of seawater,
appropriate analysis methods must be established. In this study, a large-volume pre-concentration
water sampler was used onboard to concentrate PAHs in surface seawater (100 L) from four sites
offshore of southern Taiwan. The quantitative and qualitative analysis of dissolved PAHs in seawater
and quality control samples were implemented using a GC/MS system with the aid of internal and
surrogate standards. Results showed that the field and equipment blank samples of quality control
samples were lower than twice the detection limit. The detection limit of individual PAHs is between
0.001 (naphthalene, NA) and 0.014 ng/L (dibenzo[a,h]anthracene, DBA), which meets the require-
ments for evaluating PAHs in seawater (that is, less than the maximum permissible concentrations
(MPCs)). The concentration of total PAHs (TPAHs) in the four seawater samples ranged from 2.297 to
4.001 ng/L and had an average concentration of 3.056 ± 0.727 ng/L. The concentrations of 16 PAHs
were determined in each seawater sample, indicating that the analytical method in this study is
suitable for the determination of low-concentration PAHs in seawater. Phenanthrene (PHE) is the
most dominant compound in seawater samples accounting for 59.6 ± 12.6% of TPAHs, followed
by fluorine (FL) accounting for 8.5 ± 3.7%. The contribution of high-ring PAHs to TPAHs is not
high (0.5–9.2%), but the observed concentrations can cause a higher risk to aquatic organisms than
low-ring PAHs. The diagnostic ratio showed that the sources of PAHs in the seawater collected
offshore of southern Taiwan may include mixed sources such as petrogenic, petroleum combustion,
and biomass combustion. The results can be used for regular monitoring, which contributes to
pollution prevention and management of the marine environment.

Keywords: seawater; polycyclic aromatic hydrocarbons (PAHs); maximum permissible concentrations
(MPCs); pre-concentration system

1. Introduction

Polycyclic aromatic hydrocarbons (PAHs) are a kind of persistent organic pollutants
which are ubiquitous in the marine environment. They are toxic, mutagenic, carcinogenic,
and bioaccumulative [1,2]. Therefore, the US Environmental Protection Agency (US EPA) has
identified 16 PAHs as priority environmental pollutants. The PAHs in the marine environment
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are mainly imported by human activities and can be divided into petrogenic and pyrogenic
sources [3–5]. PAHs of petrogenic sources are mainly low-ring PAHs (LPAHs), which are mainly
derived from petroleum, including the input of crude oil and its refined products. On the other
hand, PAHs of pyrogenic sources are mainly medium-ring (MPAHs) and high-ring (HPAHs)
PAHs. They are mainly produced by incomplete combustion of organic substances [3,5] and
enter the marine environment through atmospheric transport and deposition [4,6]. The high
lipophilicity and low water solubility of PAHs make them easy to adsorb on organic matter
and/or accumulate in the biota after entering the water environment [7]. Although most PAHs
may be deposited on the seafloor and stored in sediments, some still exist in the seawater
column. In addition, the deposited PAHs may be reintroduced into the water body due to
the biological disturbance process or the submarine ocean currents and be reused by the
organisms [8]. PAHs in a seawater column can be directly accumulated in marine organisms
through the gills or skin and cause potential hazards. PAHs dissolved in seawater are more
bioavailable than PAHs in the form of a composite, adsorptant, or particles [9]. Therefore,
understanding the concentration of dissolved PAHs in seawater and their potential ecological
risks are crucial for marine ecosystems research due to their potential harm even at lower
concentrations [7,10].

To reduce air pollution caused by ships burning high-sulfur fuel oil and for improve-
ment of air quality, a new regulation on the upper limit of sulfur content in marine fuel oils
in January 2020 was implemented by the International Maritime Organization (IMO). This
rule states that ships should use fuel oil with sulfur contents of less than 0.5% by weight,
seek for alternative fuels, or install an exhaust gas cleaning system (EGCS) called scrubbers.
According to the forecast of the International Energy Agency [11], to comply with this new
regulation, about 37% of ships will use low-sulfur fuels, about 40% will use alternative
fuels, and about 22% will choose to install scrubbers and continue to use high-sulfur fuels
by 2024 [11]. However, the sulfur, particulate matter, and other contaminants (including
carcinogens such as PAHs and heavy metals) removed by scrubbers from the ship’s exhaust
gases are eventually discharged to the sea in the form of scrubbing water [12–14]. This
may cause non-biodegradable contaminants (such as PAHs) in the washwater which can
accumulate in the marine environment and food web, causing biological hazards [13–15].
Moreover, Thor et al. [14] have shown that washwater from the marine scrubber system is
highly toxic to zooplanktonic organisms.

At present, it is inappropriate for IMO to use the fluorescence signal characteristics
of a single compound phenanthrene as an indicator of all PAHs [12]. Therefore, the
Group of Experts on the Scientific Aspects of Marine Environmental Protection (GESAMP)
provided IMO with a report on EGCS; the “Report of the GESAMP task team on exhaust
gas cleaning systems”. The report suggests that a maximum permissible concentration
(MPC) [10] should be used as the scientific basis for assessing the hazards of PAHs to the
environment, ecology, and environmental quality. However, the MPC of the dissolved
phase in seawater is very low, especially for PAHs with higher ring numbers, such as
dibenzo[a,h]anthracene (DBA), whose MPC value is 0.014 ng/L. Due to the limitation of
the instruments, the detection limits using general traditional liquid-liquid extraction or
relatively low concentration factor may be higher than the MPC value. Therefore, it should
be a feasible way to collect large-volume water samples, increase the concentration factor,
and prepare samples with higher PAH concentrations for quantitative and qualitative
analysis [16–18].

In this study, a pre-concentration water sampler was used to collect surface seawa-
ters (100 L) from four different sites offshore southern Taiwan, and quantitatively and
qualitatively analysis of the dissolved-phase PAHs in the seawater samples was carried
out. In addition, relevant quality control was implemented to confirm that it has not been
contaminated during the sampling process, and the accuracy as well as recovery rate of the
analytical method were determined. The concentration, composition, and source of PAHs
in seawater offshore of southern Taiwan were also discussed. The results of this research
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can be used for routine monitoring and evaluation of PAHs in seawater, and contribute to
the management and prevention of PAHs pollution in the marine environment.

2. Materials and Methods
2.1. Chemicals and Materials

Standards of 16 PAHs (including acenaphthene (ACE), acenaphthylene (ACY), an-
thracene (AN), benzo[a]anthracene (BaA), benzo[a]pyrene (BaP), benzo[b]fluoranthene
(BbF), benzo[g,h,i]perylene (BP), benzo[k]fluoranthene (BkF), chrysene (CH), DBA, fluoran-
thene (FLU), fluorine (FL), indeno[1,2,3-cd]pyrene (IP), naphthalene (NA), phenanthrene
(PHE), and pyrene (PY)) in a 1000 mg/L mixture solution were obtained from AccuStan-
dard Chem. Co. (New Haven, CT, USA). Internal standard (IS) solutions (naphthalene-d8,
acenaphthene-d10, phenanthrene-d10, chrysene-d12, and perylene-d12) at 2000 mg/L and
surrogate standard (SS) solutions (2-fluorobiphenyl and 4-terphenyl-d14) at 1000 mg/L
were purchased from AccuStandard Chem. Co. (New Haven, CT, USA). PAH working
standard, IS mixture solutions and SS mixture solutions are appropriately diluted with
HPLC grade n-hexane and prepared daily before analysis. The IS and SS were used for
sample quantification and procedural recovery analysis. In this study, all solvents and
reagents used were chromatographic (HPLC) grade. The glasswares used were rinsed
with n-hexane (HPLC grade, Duksan Co., Gyeonggi Province, South Korea) before drying
in an oven. Glass fiber filter (GFF: Whatman GF/D, 142 mm id, 3 µm pore size, Cytiva,
Buckinghamshire, United Kingdom and Advantec GC-50, 142 mm id, 0.5 µm pore size,
Advantec Co., Tokyo, Japan) and polyurethane foam (PUF: Tisch TE1010, 63.5 mm id,
75 mm height, density 0.022 g/cm3, Tisch Environmental Inc., OH, USA) were Soxhlet
pre-extracted with acetone: n-hexane (1:1) for 24 h before sample collection to ensure
that there were no organic contaminant. All other materials used were pre-washed with
ultrapure water (>18.2 MΩ·cm) (Purity-SP; Lotun Technic CO., LTD., Taipei, Taiwan) and
acetone (HPLC grade, Duksan Co., Gyeonggi Province, South Korea).

2.2. Sample Collection

In order to accurately measure the low concentrations of PAHs in seawater, large-
volume water samples were collected and pre-concentrated on site. Field sampling was
carried out from R/V (New Ocean Researcher 3, NOR3-0018) from 9 to 10 August 2020. The
surface water from four sampling sites (T1–T4) within 12 nautical miles offshore southern
Taiwan were collected (Figure 1). Surface seawater temperature and salinity were measured
at all sites, using a SCTD Sea–Bird SBE 21 SeaCAT Thermosalinograph.
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About 115 L of seawater was collected by a stainless steel pump and stored in a
polished stainless steel airtight container. The 100 L of seawater samples collected in
each site were concentrated onboard using a pre-concentration water sampler (Machine
Shop, Model G23-027III, Fortelice International Co., Ltd., New Taipei, Taiwan). The pre-
concentration water sampler system consists of stainless steel, glass fiber filter case, foam
holder, water pump, pressure control switch, liquid level sensor, buffer tank, flow meter and
computer controller [19]. The seawater sample passes through the coarse GFF (3 µm pore
size), the fine GFF (0.5 µm pore size), and the two PUFs connected in series at a flow rate of
about 1 L/min and then discharged. The particles in the seawater are removed by GFF, and
the PAHs in the dissolved phase are adsorbed and captured by PUF. All PUF samples were
wrapped in aluminum foil paper, placed in a sealed glass jar, and temporarily stored in the
refrigerator until they were brought back to the laboratory for further processing. At the
sampling site, equipment blank samples, field blank samples, and duplicate samples were
prepared respectively. Equipment blank: After each seawater sample was concentrated,
5 L of deionized water was filtered as the equipment blank sample to confirm whether
the sampling equipment is contaminated. Field blank: A set of PUF were placed into the
sampler without sampling treatments. The PUF were taken out after 100 minutes and
placed back into a sealed glass bottle as field blank sample. Duplicate samples: Duplicate
(2 × 115 L) samples were collected at T1, T2, and T4 sites for repeated analysis to confirm
the precision of the sampling and analytical methods.

2.3. Sample Pretreatment and Analysis

All PUF samples (including 4 seawater samples, 3 replicate samples, 3 field, and
5 equipment blanks) were freeze-dried and extracted by Soxhlet extraction method for
PAHs. PUF were placed into the Soxhlet extraction device and extracted with 250 mL
acetone: n-hexane (1:1) for 24 h. A 100 ng SS were added before extraction. After the
extraction was completed, samples were let to stand at room temperature. Extracts were
concentrated to near dryness with a vacuum rotary evaporator, and anhydrous sodium
sulfate was added to remove water. A glass dropper was used to transfer the extracts to a
sample bottles and blown with nitrogen to concentrate to 0.2 mL. A 100 ng IS was added,
and 16 PAHs were qualitatively and quantitatively analyzed by GC/MS.

A GC/MS system (Agilent 7890B GC/5977A MS; Agilent Technologies, Santa Clara, CA,
USA) was used to analyze the PAH compounds. The GC/MS system and operating conditions
for PAHs analysis are listed in Table 1, and the selected ion mass program used for quantification
is detailed in Table 2. Figure 2 shows the selected quantification ion chromatogram of the T4
seawater sample in this study, indicating that 16 PAHs can be clearly separated. The identity
of PAHs in the samples were confirmed by the retention time and the relative intensities of
confirmation ions of the PAHs standards. The internal standard calibration method was used to
quantify the 16 PAHs. In the laboratory, this study carried out calibration standards, laboratory
blanks, control standards, repeated analyses and quantification of detection limits to ensure the
accuracy and precision of the PAHs analysis process.
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Figure 2. GC/MS selected quantification ion chromatograms of 16 PAHs in the T4 seawater sample.
The definitions of compound abbreviations see Table 2.
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Table 1. The GC/MS system and operating conditions for PAHs analysis.

Instrument Parameter Condition Setting

Autosampler Agilent 7693A
Injection volume 1 µL

Gas chromatography (GC) Agilent 7890B
Carrier gas Helium (≥99.999%)

Injection mode Splitless
Column HP-5MS (30 m, 0.25 mm, 0.25 µm)

Column flow rate 1 mL/min
Temperature of inlet 300 ◦C

Oven temperature program 40 ◦C (hold for 1 min), 120 ◦C (35 ◦C/min), 160 ◦C
(10 ◦C/min), 300 ◦C (5 ◦C/min, hold for 10 min)

Mass selective detector (MSD) Agilent 5977A
Temperature of ion source 230 ◦C

Temperature of quadrupole 150 ◦C
Temperature of transfer line 280 ◦C

Electronic energy 70 eV
Ionization mode Electron ionization (EI)

Type of mass scan Selective ion monitoring (SIM) (see Table 2)

Table 2. Selected ion monitoring of individual PAH in the GC/MS system.

Compounds Ring Retention Time
(min)

Quantitative Ion
(m/z)

Time Window
(min)

Selected Ions
(m/z)

Naphthalene-ds (IS1) 2 5.653 136
4.00–8.00 127, 128, 129, 136,

172
Naphthalene (NA) 2 5.676 128

2-Fluorobiphenyl (SS1) 2 7.372 172

Acenaphthylene (ACY) 3 8.363 152

8.00–11.00
151, 152, 153, 154,
164, 165, 166, 167

Acenaphthene-d10 (IS2) 3 8.713 164
Acenaphthene (ACE) 3 8.782 154

Fluorene (FL) 3 10.077 166

Phenanthrene-d10 (IS3) 3 12.986 188

11.00–19.00
101, 176, 178, 179,
188, 200, 202, 203

Phenanthrene (PHE) 3 13.062 178
Anthracene (AN) 3 13.221 178

Fluoranthene (FLU) 4 17.702 202
Pyrene (PY) 4 18.582 202

4-Terphenyl-d14 (SS2) 4 19.733 244

19.00–27.00 226, 228, 229, 240,
244

Benzo[a]anthracene (BaA) 4 23.978 228
Chrysene-d12 (IS4) 4 24.043 240

Chrysene (CH) 4 24.155 228

Benzo[b]fluoranthene (BbF) 5 28.612 252

27.00–45.29
125, 138, 139, 252,
253, 264, 276, 277

Benzo[k]fluoranthene (BkF) 5 28.723 252
Benzo[a]pyrene (BaP) 5 29.833 252

Perylene-d12 (IS5) 5 30.072 264
Indeno[1,2,3-c,d]pyrene (IP) 6 33.919 276

Dibenz[a,h]anthracene (DBA) 5 34.094 278
Benzo[g,h,i]perylene (BP) 6 34.719 276

2.4. Analytical Characteristics

The response factors based on the five-point (10, 50, 100, 200, and 500 µg/L) calibration
curve for individual PAHs showed an acceptable coefficient of variation (CV) of 4.4 to
16.3%. The results of the laboratory blank samples were always below the detection limit.
The individual PAHs recovery in check standards ranged from 94 ± 4.5% to 117 ± 6.1%
(n = 3) and the relative percent differences of repeated analysis ranged from 2.8 ± 7.7%
to 9.8 ± 5.0% (n = 5) for all of the target analyses (Table 3). The recoveries of SS were
63.1 ± 16.1% for 2-fluorobiphenyl and 78 ± 19.6% for 4-terphenyl-d14 with seawater
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samples (n = 16). The method detection limit (MDL) was estimated based on the triple
standard deviation of the repeated (n = 7) analysis of 16 PAHs (10 µg/L) and the amount of
sample extracted. The detection limits were 0.001 (NA)–0.014 (DBA) ng/L for individual
PAHs. All PAHs blew the 2x MDL detected in any of the field blank sample and equipment
blank samples. The relative percent differences of sample duplicates ranged from 4.0% to
25.7% for 16 PAHs and 2 SS (Table 3).

Table 3. Quality assurance and quality control for PAHs analysis in this study.

PAHs a

Response Factor (RF)
(n = 5)

Check
Standard

(n = 3)
R b (%)

Repeat
Analysis

(n = 5)
RPD b (%)

Duplicate
Sample
(n = 3)

RPD b (%)

Detection
Limits
(ng/L)

Field Blank
(n = 3)
(ng/L)

Equipment
Blank
(n = 5)
(ng/L)

Average ±
SD a CV b (%)

NA 1.01 ± 0.16 15.7 94 ± 4.5 5.3 ± 5.1 15.5 ± 3.0 0.001 0.001 ± 0.001 0.001 ± 0.000
ACY 0.75 ± 0.08 10.2 101 ± 2.9 3.7 ± 3.2 17.0 ± 5.2 0.001 0.001 ± 0.001 0.001 ± 0.000
ACE 0.46 ± 0.05 12.0 106 ± 1.3 7.2 ± 5.1 15.8 ± 4.2 0.006 0.003 ± 0.001 0.004 ± 0.002
FL 0.58 ± 0.07 11.5 100 ± 7.9 4.1 ± 8.4 11.4 ± 3.2 0.002 0.003 ± 0.001 0.002 ± 0.001

PHE 0.74 ± 0.08 11.0 110 ± 3.3 2.8 ± 5.8 13.5 ± 3.4 0.004 0.002 ± 0.001 0.003 ± 0.001
AN 0.87 ± 0.12 13.3 106 ± 4.1 4.1 ± 4.2 7.5 ± 3.8 0.009 0.002 ± 0.002 0.002 ± 0.003
FLU 0.97 ± 0.14 14.4 101 ± 12.0 5.4 ± 8.2 12.7 ± 5.4 0.007 0.002 ± 0.002 0.003 ± 0.002
PY 1.01 ± 0.17 16.3 107 ± 10.0 6.1 ± 7.1 14.1 ± 10.6 0.012 0.002 ± 0.001 0.005 ± 0.004

BaA 0.69 ± 0.06 8.5 108 ± 5.6 9.8 ± 5.0 9.8 ± 4.5 0.013 0.004 ± 0.002 0.007 ± 0.004
CH 0.90 ± 0.08 9.0 102 ± 8.3 2.1 ± 7.5 14.5 ± 4.6 0.013 0.002 ± 0.001 0.009 ± 0.004
BbF 0.69 ± 0.07 9.9 110 ± 5.8 6.2 ± 9.0 12.5 ± 4.4 0.011 0.003 ± 0.001 0.013 ± 0.004
BkF 1.01 ± 0.10 8.9 106 ± 5.8 4.4 ± 6.0 12.9 ± 3.7 0.011 0.002 ± 0.001 0.004 ± 0.004
BaP 0.77 ± 0.03 4.4 117 ± 6.1 2.8 ± 7.7 16.4 ± 7.8 0.015 0.004 ± 0.002 0.008 ± 0.005
IP 0.77 ± 0.08 10.7 103 ± 1.4 3.2 ± 3.4 14.8 ± 6.7 0.011 0.004 ± 0.001 0.010 ± 0.004

DBA 0.83 ± 0.12 13.9 102 ± 0.8 6.1 ± 6.1 15.8 ± 5.9 0.014 0.004 ± 0.002 0.008 ± 0.005
BP 0.95 ± 0.11 11.6 109 ± 5.3 7.5 ± 4.6 14.5 ± 5.0 0.009 0.002 ± 0.001 0.004 ± 0.003
SS1 1.22 ± 0.08 1.6 103 ± 5.4 6.1 ± 3.1 8.3 ± 0.5 - - -
SS2 1.40 ± 0.06 9.2 103 ± 2.4 3.7 ± 6.5 9.1 ± 2.5 - - -

a See Table 2 for the definitions of compound abbreviations; b SD: standard deviation; CV: coefficient of variation;
R: recoveries of check standard; RPD: relative percent differences.

3. Results and Discussion
3.1. PAHs Concentrations in the Surface Seawater

The water depth of the four seawater sampling points in this study were between 587
and 852 m, and the surface seawater temperature and salinity ranged between 30.4 and
30.6 °C and between 33.9 and 34.0 psu, respectively (Table 4). There were no significant
differences in temperature and salinity between the four areas, indicating that the hydro-
logical conditions are similar. The concentration of total PAHs (TPAHs) in the dissolved
phase of seawater at the four sampling points ranged from 2.297 to 4.001 ng/L, with an
average concentration of 3.056 ± 0.727 ng/L. The concentrations of 16 individual PAHs in
each seawater sample were determined, indicating the suitability of the method used in
the measurement of low PAHs concentrations in seawater. The composition and source of
PAHs in seawater and their biological and physicochemical effects in the environment can
be further explored.

Verbruggen [10] derived 16 PAH maximum allowable concentrations (MPCs) for
the ecosystem. This MPCs value were derived using ecotoxicology and environmental
chemistry data, and represents the potential risk of the substance to the ecosystem. It is
recognized as a scientific reference for evaluating PAH’s harm to the ecology and environ-
mental quality [20]. In addition, generally negligible concentrations (NCs) can be defined as
one percent of MPCs (MPC/100) [21]. Therefore, the NCs value of 16 PAHs are calculated
based on MPCs. The comparison of dissolved phase PAHs with NCs and MPCs at four
sites is shown in Figure 3. The concentrations of NA, ACY, ACE, FL, PHE, AN, FLU, PY,
BkF, and BaP in the dissolved phases of seawater at each site were lower than NCs, which
means that the risk of adverse effects on aquatic organisms is negligible. The concentrations
of CH and BbF in one water sample were higher than NCs value but lower than MPCs
value, while BaA, IP and BP in four water samples were higher than NCs value but also
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lower than MPCs value. These results indicate that the risk of adverse effects on aquatic
organisms is acceptable. The DBA concentration of three water samples were between
the NCs value and the MPCs value, and one water sample was higher than the MPCs
value, which represents the risk of possible negative effects on aquatic organisms [21,22]. It
is worth noting that although five-ring (DBA) and six-ring (IP and BP) PAHs contribute
little to TPAHs (0.5–9.2%), the observed concentration was higher than that of NCs in a
higher proportion than low-ring PAHs (Figure 3). High-ring PAHs are generally more
hydrophobic, with a higher Kow value (log Kow = 6.13–6.91) and lower water solubility
(<1 µg/L), so the dissolved phase concentration in water is extremely low. Some studies
may fail to measure the concentration of some high-ring PAH due to the small sampling
volume and low concentration factor, and ignore their influence [23–25]. However, the
results of this study indicate that the potential pollution source and ecological impact of
the dissolved phase high-ring PAHs in seawater require further attention. High-ring PAHs
are generally more toxic and may be mainly caused by traffic emissions and burning of
fossil fuels [26].

Table 4. Concentrations of dissolved polycyclic aromatic hydrocarbons in seawater collected offshore
of southern Taiwan.

Item MDL a MPCs b T1 T2 T3 T4

Water depth (m) – – 683 626 852 587
Water temp (◦C) – – 30.4 30.5 30.6 30.5

Salinity (psu) – – 34.0 34.0 34.0 33.9
PAHs (ng/L)

Naphthalene (NA) 0.001 2000 0.030 0.037 0.043 0.092
Acenaphthylene (ACY) 0.001 130 0.012 0.013 0.017 0.022
Acenaphthene (ACE) 0.006 380 0.026 0.016 0.019 0.406

Fluorene (FL) 0.002 300 0.137 0.179 0.235 0.552
Phenanthrene (PHE) 0.004 1100 1.215 1.624 2.208 2.169

Anthracene (AN) 0.009 100 0.135 0.098 0.134 0.160
Fluoranthene (FLU) 0.007 120 0.087 0.078 0.120 0.014

Pyrene (PY) 0.012 23 0.130 0.102 0.167 0.048
Benzo[a]anthracene (BaA) 0.013 1.2 0.058 0.016 0.028 0.021

Chrysene (CH) 0.013 7 0.114 0.017 0.029 0.021
Benzo[b]fluoranthene (BbF) 0.011 17 0.094 0.018 0.033 0.221
Benzo[k]fluoranthene (BkF) 0.011 17 0.078 0.012 0.014 0.033

Benzo[a]pyrene (BaP) 0.015 10 0.094 0.020 0.029 0.025
Indeno[1,2,3-c,d]pyrene (IP) 0.011 0.27 0.202 0.016 0.026 0.148

Dibenz[a,h]anthracene (DBA) 0.014 0.14 0.253 0.040 0.065 0.046
Benzo[g,h,i]perylene (BP) 0.009 0.82 0.075 0.012 0.020 0.025

Total PAHs (sum of 16 PAHs) – – 2.740 2.297 3.187 4.001
a MDL: method detection limit; b MPCs: maximum allowable concentrations.

Comparing the concentrations of dissolved PAHs in surface seawater reported in
different regions of the world (Table 5), the concentration of dissolved PAHs in the offshore
southern Taiwan (3.06 ± 0.73 ng/L) is slightly higher than that of the Southern Ocean
(2.3 ± 0.52 ng/L), Indian Ocean (2.7 ± 1.0 ng/L) [17], Atlantic Ocean (1.4 ng/L), and
North Pacific Ocean (1.3 ng/L) [18]. It is slightly lower than the adjacent seas such as
the South China Sea (4.7 ng/L) [23] and the south eastern Japan Sea (6.0 ± 1.8 ng/L) [27].
However, it is lower than the Gulf of Mexico (35.5 ± 9.0 ng/L) [28], the Xiamen coast,
China (62 ng/L) [29], the Hainan Island coast, China (104 ± 38 ng/L) [30], and the Taiwan
Strait (62 ± 8.3 ng/L) [31]. The distribution of PAHs concentrations in seawater in different
regions of the world shows that nearshore seas with anthropogenic influence are higher
than the adjacent sea and oceanic areas. The concentrations of dissolved PAHs in seawater
are gradually diluted and diffused into the offshore and far seas with the input of land and
coastal anthropogenic activities [32–34].
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Table 5. Comparing the concentrations of dissolved PAHs in surface seawater reported in different
regions of the world.

Locations No. of PAHs Sample Volume (L) Total PAHs (ng/L) Reference

Pacific Ocean 21 200 4.0 ± 1.4 [17]
Southern Ocean 21 200 2.3 ± 0.52

Indian Ocean 21 200 2.7 ± 1.0
East Asia 15 45–181 3.0–3.7 (3.3) [18]

North Pacific 15 120–166 1.0–1.6 (1.3)
Arctic Ocean 15 49–142 0.82–2.1 (1.4)

Northwestern Pacific Ocean 15 60–100 5.5–15.6 (9.4) [35]
East China Sea 16 3 380–4000 [36]

Northern South China Sea 15 4 0.98–13 (4.7) [23]
South eastern Japan Sea 13 3 3.7–10 (6.0 ± 1.8) [27]

East and South China Seas 15 765–1080 30.4–120.3 (66 ± 32) [16]
Taiwan Strait 15 8 53–79 (62 ± 8.3) [31]

Gulf of Mexico 43 20 24.2–58 (35.5 ± 9.0) [28]
Xiamen coast, China 13 4 18–250 (62) [29]

Hainan Island coast, China 15 12–18 28–207 (104 ± 38) [30]
Kaohsiung Harbor and
adjacent areas, Taiwan 15 1 1.25–9.39 (3.85 ± 2.43) [24]

Kenting coast, Taiwan 22 40 0.9–8.0 (2.17 ± 1.19) [37]
Offshore southern Taiwan 16 100 2.30–4.00 (3.06 ± 0.73) This study

3.2. Composition Patterns of PAHs

In this study, PHE was the most dominant PAHs in the surface water collected off-
shore of southern Taiwan, accounting for about 59.6 ± 12.6% of TPAHs, followed by FL,
accounting for about 8.5 ± 3.7% of TPAHs, and the remaining 14 types of PAHs accounting
for about 0.5–4.3% of TPAHs. These results are consistent with that in the coastal areas
of Taiwan [24,37], southeastern Japan Sea [27], Bransfield Strait, Antarctica [38], Arctic
fjords [7], Pacific Ocean, the Indian Ocean, and the Southern Ocean [17]. Szatyłowicz and
Skoczko [5] pointed out that the PHE of soot from burning coal and wood accounts for
55–67% of the total low-ring PAHs. In addition, unburned coal also contains high PHE,
accounting for 44–69% of the TPAHs [39]. Coal is the most commonly used energy source
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in industries such as steel plants, power plants, etc. The PAHs generated during the coal
combustion process can be transported through atmospheric, wet and dry deposition, and
surface runoff into the coast and ocean. Thor et al. [14] showed that PHE (5690 ng/L) is
the most dominant component in the washwater of marine open-loop scrubbers, which
accounts for about 35.5% of TPAHs, followed by NA (4790 ng/L), which accounts for about
29.9%. The concentration of PHE and NA in washwater is about 5000 and 1000 times that
of background seawater. Moreover, it is known that a predominance of low-ring PAHs
was observed in urban wastewater where PHE, NA, FLU, and PY are usually the most
abundant compounds [40]. Based on the above, it seems not surprising that PHE is the most
important PAH compound in seawater. According to the structure of PAHs, 16 PAHs can
be divided into two-, three-, four-, five-, and six-ring PAHs. The composition percentage
of two- to six-ring PAHs in the dissolved phase of seawater offshore southern Taiwan is
shown in Figure 4. The dissolved phase of PAHs is dominated by three-ring PAHs, which
account for about 55.7–84.0% of TPAHs, with an average of 76.1 ± 13.6% (Figure 4). The
average composition percentages of two-, four-, five-, and six-ring PAHs were 1.6 ± 0.5%,
9.2 ± 4.9%, 8.8 ± 7.0%, and 4.3 ± 4.1%, respectively. The lowest percentage of two-ring
PAH in seawater may be due to its high volatility and bioavailability. The medium- and
high-ring PAHs (four- to six-ring) may be easily combined with particles and deposited
on the seafloor due to their relatively high hydrophobicity and low water solubility [7].
The advantages of three-ring PAH reflect the presence of combustion products from low-
temperature pyrolysis processes and/or petroleum sources [41,42]. PAHs in most seawaters
are also mainly composed of three-ring PAH, such as southeastern Japan Sea [27], Northern
South China Sea [23], and East China Sea [36]. Petroleum sources and coal/wood burning
sources of PAHs may be the main contributors to 3-ring PAH [17].
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3.3. Identification of PAHs Sources

This study used the diagnostic ratio to assess the potential source of PAHs. The
AN/(AN + PHE), FLU/(FLU + PY), BaA/(BaA + CH), and IP/(IP + BP) were used to
evaluate the potential sources of PAHs in seawater based on their calculated ratio [26].
When AN/(AN + PHE) < 0.1, it is regarded as the petrogenic source, while >0.1 represents
the pyrogenic source +[43]. FLU/(FLU + PY) < 0.4 means petroleum source, FLU/(FLU
+ PY) between 0.4 and 0.5 means petroleum combustion (including traffic emissions and
burning crude oil), FLU/(FLU + PY) > 0.5 means grass, wood, and coal combustion. The
ratio of BaA/(BaA + CH) < 0.2 is the source of petroleum, between 0.2 and 0.35 is the mixed
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source of petroleum and combustion, and >0.35 is the source of combustion. When the
pollution source is combustion plants and coal, its IP/(IP + BP) is greater than 0.5. If it
is the combustion products of gasoline, diesel, kerosene, etc., the ratio of IP/(IP + BP) is
between 0.2 and 0.5, and IP/(IP + BP) < 0.2, the pollution source may be petroleum.

The AN/(AN + PHE) ratios of four seawater samples (T1–T4) in the offshore waters of
southern Taiwan ranged from 0.06 to 0.10, indicating that PAH may come from petroleum
sources (Figure 5). The FLU/(FLU + PY) ratios of the four seawater samples were 0.40, 0.43,
0.42, and 0.22, respectively. Except for the oil source at the T4 station, the other three stations
belonged to the oil burning sources (Figure 5A). The BaA/(BaA + CH) ratios of the four (T1–T4)
seawater samples were 0.34, 0.49, 0.49, and 0.50, respectively. Except for the T1 station which is
a mixture of oil and combustion sources, the other three stations belong to combustion sources
(Figure 5B). The ratio of IP/(IP + BP) ranged between 0.57 and 0.86, indicating that PAHs may
come from the combustion source of liquid fuels (Figure 5C). In summary, the PAHs source
of the four seawater samples include petroleum, combustion petroleum, and combustion
biomass sources. This may be due to the mixing of PAHs generated by human activities on
land and nearshores, including ship traffic, untreated and/or treated wastewater, river input,
and atmospheric deposition, distributed through ocean currents and the atmosphere, resulting
in a mixture of PAHs sources. It would be interesting to know the contribution of each possible
source, but it is not easy to obtain. However, based on the PAHs concentration in ship scrubber
washwater reported by Thor et al. [14], the ratios of AN/(AN + PHE), FLU/(FLU + PY),
BaA/(BaA + CH) and IP/(IP + BP) are calculated to be 0.02, 0.50, 0.45, and 0.26. Among
them, the ratio of IP/(IP + BP) shows that the washed PAHs is mainly from combustion
petroleum, which corresponds to the actual situation, that is, ships combustion heavy oil. This
result indicates that IP/(IP + BP) may be a suitable indicator for the contribution of seawater
PAHs from washwater. In addition, the diagnostic ratio of the washwater also needs to be
established in the future, which is of great help in evaluating the impact of the discharges on
the PAHs concentration of seawater.
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Figure 5. Diagnostic ratios of PAHs and possible sources in surface seawater collected offshore of
southern Taiwan. AN/(PHE + AN) vs (A) FLU/(FLU + PY), (B) BaA/(BaA + CH), and (C) IP/(IP + BP).

4. Conclusions

This study developed an on-site large-volume pre-concentration method for the deter-
mination of low-concentration PAH in seawater. The detection limits were 0.001 (NA)–0.014
(DBA) ng/L for individual PAHs. The field blank, equipment blank, and laboratory blank
samples were all below the two times value of the detection limit, indicating that the
sampling and analysis process were not significantly contaminated. The concentrations
of 16 PAHs were measured in surface seawaters collected from the offshore, which means
that the method in this study is suitable for the measurement of low-concentration PAHs in
seawater. Although the large-volume pre-concentration method takes time (about 1.7 h per
sample) to concentrate the water sample, it can detect low-concentration PAHs in seawater,
especially PAHs with high ring numbers that are often ignored. The concentration of
dissolved phase TPAHs in surface seawater samples collected offshore of southern Taiwan
ranged from 2.297 to 4.001 ng/L, with an average of 3.056 ± 0.727 ng/L. The concentration
of TPAHs in the offshore waters of southern Taiwan is higher than that of adjacent seas and
oceanic areas, but lower than that of coastal waters. Among the 16 PAHs, PHE is the most
important compound (59.6 ± 12.6% of TPAHs), followed by FL (8.5 ± 3.7% of TPAHs).
Although the concentration of high-ring PAHs in seawater is relatively lower than that
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of low-ring PAHs, the observed concentration of high-ring PAHs poses a higher risk to
aquatic organisms than low-ring PAHs. Diagnostic ratio shows that the sources of PAHs
in offshore seawater is a mixture of multiple sources. The IP/(IP + BP) may be a suitable
indicator for the contribution of seawater PAHs from ship scrubber washwater. In addition,
the diagnostic ratio of the washwater also needs to be established in the future. The results
of this study can be used to establish a baseline of the PAHs concentration in seawater,
including ports and coastal waters. The method is conducive to assess the impacts of
washwater discharged from scrubbers on the marine ecological and environmental health.
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