Special Issue "Advances in Wastewater Treatment: Resources Recovery, Energy Neutralization, Water Reuse"

A special issue of Water (ISSN 2073-4441). This special issue belongs to the section "Wastewater Treatment and Reuse".

Deadline for manuscript submissions: 15 November 2022 | Viewed by 6109

Special Issue Editors

Dr. Weihua Zhao
E-Mail Website
Guest Editor
1. Department of Environmental and Civil Engineering, Qingdao University of Technology, Qingdao 266033, China
2. Harbin Institute of Technology (Weihai), Weihai 264209, China
Interests: biological nitrogen and phosphorus removal; resources recovery and Energy neutralization; water environment protection and water ecological restoration; rural wastewater treatment; sludge treatment
Dr. Kai Wang
E-Mail Website
Guest Editor
Department of Environmental and Civil Engineering, Shandong Jianzhu University, Jinan 250000, China
Interests: biological nitrogen and phosphorus removal; rural wastewater treatment
Dr. Shanyun Wang
E-Mail Website
Guest Editor
State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10085, China
Interests: microbial nitrogen cycle process and nitrogen pollution control in aquatic ecosystem; anammox; comammo); DNRA

Special Issue Information

Dear Colleagues,

Organic and nutrient removal from wastewater plays an important role in water environment and ecological protection. Meanwhile, conventional biological wastewater treatment processes consume a lot of energy, carbon sources and chemicals and produce greenhouse gases. It is of great significance to realize “carbon neutralization” in wastewater treatment, and resource recovery, energy neutralization and water reuse will be the goal of wastewater treatment in the future. Relevant research has developed rapidly in recent years, such as anaerobic ammonia oxidation, denitrifying phosphorus removal, shortcut nitrification, partial denitrification and endogenous denitrification; phosphorus recovery in the form of blue iron ore and guano crystallization; energy saving through precise aeration and process control; organic and energy recovery by sludge fermentation, anaerobic methane production and sewage heat source pumps; water reclaimed by advanced oxidation, adsorption and membrane filtration; and carbon capture and storage through symbiosis of bacteria, algae, etc. These new processes and technologies accelerate the realization of “carbon neutralization” in the field of wastewater treatment.

In order to trace the research progress of “carbon neutralization” in wastewater treatment, a Special Issue has been organized by Water. This Special Issue focuses on original articles or review articles related to “carbon neutralization” in wastewater treatment, including, but not limited to, the following:

  • Deep nitrogen and phosphorus removal from wastewater;
  • Recovery of resources and nutrients from wastewater;
  • Energy saving and recovery from wastewater treatment;
  • Directional conversion and recovery of organic matter, nitrogen and phosphorus in sludge;
  • Transformation and removal of new pollutants and refractory components;
  • Reclaimed water reuse;
  • Carbon capture and storage from wastewater treatment;
  • Other related topics.

Dr. Weihua Zhao
Dr. Kai Wang
Dr. Shanyun Wang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Water is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • carbon neutralization
  • anammox
  • denitrifying phosphorus removal
  • shortcut nitrification
  • partial denitrification
  • process control
  • sludge fermentation
  • advanced oxidation
  • adsorption
  • membrane filtration

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Article
Effective Removal of Humic Acid by Zr-MOFs with Surface Modification
Water 2022, 14(11), 1800; https://doi.org/10.3390/w14111800 - 02 Jun 2022
Viewed by 478
Abstract
Humic acid (HA) in makeup water is one of the important safety issues of high-parameter power plants. Herein, the Zr-based metal organic frameworks (Zr-MOFs) were applied to remove humic acid in water. The mesoporous and active sites of Zr-MOFs were controlled by different [...] Read more.
Humic acid (HA) in makeup water is one of the important safety issues of high-parameter power plants. Herein, the Zr-based metal organic frameworks (Zr-MOFs) were applied to remove humic acid in water. The mesoporous and active sites of Zr-MOFs were controlled by different ratios of ligands to increase the adsorption of HA. The maximum adsorption capacity was 150.15 mg g−1. The morphology and adsorption properties of the Zr-MOFs were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), surface charge, Fourier Transform infrared (FT-IR), N2 adsorption-desorption and adsorption test. The adsorption process of HA accorded with the pseudo-second-order kinetics, while the adsorption isotherm conformed to the Langmuir model and the adsorption was proved to be a spontaneous and endothermic process. Physical adsorption by the mesoporous materials and the hydrogen bonding interactions between the Zr-MOFs and HA were the driving forces of HA adsorption. These results provided useful information for the effective removal of HA and enhanced our understanding of the adsorption mechanism of HA on Zr-MOFs. Full article
Show Figures

Figure 1

Article
Bacterial Community Composition and Function in a Tropical Municipal Wastewater Treatment Plant
Water 2022, 14(10), 1537; https://doi.org/10.3390/w14101537 - 11 May 2022
Viewed by 412
Abstract
Bacterial diversity and community composition are of great importance in wastewater treatment; however, little is known about the diversity and community structure of bacteria in tropical municipal wastewater treatment plants (WWTPs). Therefore, in this study, activated sludge samples were collected from the return [...] Read more.
Bacterial diversity and community composition are of great importance in wastewater treatment; however, little is known about the diversity and community structure of bacteria in tropical municipal wastewater treatment plants (WWTPs). Therefore, in this study, activated sludge samples were collected from the return sludge, anaerobic sludge, anoxic sludge, and aerobic sludge of an A2O WWTP in Haikou, China. Illumina MiSeq high-throughput sequencing was used to examine the 16S ribosomal RNA (rRNA) of bacteria in the samples. The microbial community diversity in this tropical WWTP was higher than in temperate, subtropical, and plateau WWTPs. Proteobacteria, Bacteroidota, Patescibacteria, and Chloroflexi were the dominant phyla. Nitrification bacteria Nitrosomonas, and Nitrospira were also detected. Tetrasphaera, instead of Candidatus Accumulibacter, were the dominant polyphosphate accumulating organisms (PAOs), while, glycogen accumulating organisms (GAOs), such as Candidatus Competibacter and Defluviicoccus were also detected. The bacterial community functions predicted by PICRUSt2 were related to metabolism, genetic information processing, and environmental information processing. This study provides a reference for the optimization of tropical municipal WWTPs. Full article
Show Figures

Figure 1

Article
Degradation of 2-Naphthol in Aqueous Solution by Electro-Fenton System with Cu-Supported Stainless Steel Electrode
Water 2022, 14(7), 1007; https://doi.org/10.3390/w14071007 - 22 Mar 2022
Viewed by 666
Abstract
For the treatment of 2-naphthol wastewater, the homogeneous electro-Fenton process was considered as an effective method but some disadvantages greatly restrict its application. The three-dimensional electro-Fenton (3D-EF) system using a nano zero-valent iron-supported biochar (NZVIs-BC) particle electrode and a Cu-supported stainless steel electrode [...] Read more.
For the treatment of 2-naphthol wastewater, the homogeneous electro-Fenton process was considered as an effective method but some disadvantages greatly restrict its application. The three-dimensional electro-Fenton (3D-EF) system using a nano zero-valent iron-supported biochar (NZVIs-BC) particle electrode and a Cu-supported stainless steel electrode (Cu-SSE) was proposed to avoid the disadvantages of the homogeneous electro-Fenton. In this work, the 3D-EF system was developed, which consisted of a Cu-SSE (cathode), a graphite rod (anode) and a NZVIs-BC particle electrode. The effect of the ratio of ferrous sulfate heptahydrate (FS) to rice straw (RS), CuSO4•5H2O amount, initial pH of 2-naphthol wastewater and current intensity (the output current of the power supply) on the removal rate of 2-naphthol were investigated. It is noteworthy that more than 98.36% of the 2-naphthol in aqueous solution was removed by the 3D-EF system, and only about 60.09% of 2-naphthol was removed by the homogeneous electro-Fenton system. Furthermore, naphthalene, benzoic acid, β-naphthoquinone, 1, 2-naphthalenedione, phenol and aromatic hydrocarbon were the main degradation products of 2-naphthol by the 3D-EF system; the toxicity of 2-naphthol wastewater was also greatly reduced. Full article
Show Figures

Graphical abstract

Article
Responses of Nitrogen Removal, Extracellular Polymeric Substances (EPSs), and Physicochemical Properties of Activated Sludge to Different Free Ammonia (FA) Concentrations
Water 2022, 14(4), 620; https://doi.org/10.3390/w14040620 - 17 Feb 2022
Viewed by 416
Abstract
To investigate the effect of free ammonia (FA) on the nitrogen removal performance, extracellular polymeric substances (EPSs), and physicochemical properties of activated sludge, four laboratory-scale sequencing batch reactors (SBRs) were operated at FA concentrations of 0.5, 5, 10, and 15 mg/L (R0.5 [...] Read more.
To investigate the effect of free ammonia (FA) on the nitrogen removal performance, extracellular polymeric substances (EPSs), and physicochemical properties of activated sludge, four laboratory-scale sequencing batch reactors (SBRs) were operated at FA concentrations of 0.5, 5, 10, and 15 mg/L (R0.5, R5, R10, and R15, respectively). Results showed that nitrogen removal and the production of EPSs and their components (including polysaccharides, proteins, and nucleic acid) significantly increased with the increased FA concentration from 0.5 to 10 mg/L; however, they decreased with a further increase in FA to 15 mg/L. Moreover, the capillary suction time (CST), specific resistance of filtration (SRF), and sludge volume index (SVI) decreased when FA concentration increased, indicating that better settleability and dewaterability of activated sludge was obtained. Additionally, a path diagram showed that Nitrosomonas was positively correlated, while Denitratisoma was negatively correlated with EPSs and their components. Thauera was positively correlated, while Zoogloea was negatively correlated with the settleability and de-waterability of activated sludge. Full article
Show Figures

Figure 1

Article
Pretreatment of Rubber Additives Processing Wastewater by Aluminum–Carbon Micro-Electrolysis Process: Process Optimization and Mechanism Analysis
Water 2022, 14(4), 582; https://doi.org/10.3390/w14040582 - 15 Feb 2022
Cited by 1 | Viewed by 565
Abstract
The pretreatment of rubber additives processing wastewater was performed by Al/AC micro-electrolysis (ME). The single-factor experiments for the removal of COD and chroma were investigated. The Box-Behnken Design (BBD) was also applied to optimize the experimental conditions, and the fitted response surface model [...] Read more.
The pretreatment of rubber additives processing wastewater was performed by Al/AC micro-electrolysis (ME). The single-factor experiments for the removal of COD and chroma were investigated. The Box-Behnken Design (BBD) was also applied to optimize the experimental conditions, and the fitted response surface model supplied highly significant quadratic models for the process. The COD removal efficiency reached 51.6% at an initial pH of 9.8, Al scrap dosage of 98.6 g L−1, Al/AC mass ratio of 0.26, and reaction time of 176 min, which was reasonably consistent with the predicated value of 51.9%. Moreover, we proposed a reaction mechanism of the process for the degradation of organic contaminants, and found that the removal of COD and chroma were mainly ascribed to the combination of active hydrogen [H] with strong chemical reactivity and flocculation of aluminum hydroxide. All these results showed that Al/AC ME is a promising pretreatment technique for this wastewater. Full article
Show Figures

Figure 1

Article
Anaerobic Digestion for Biogas Production from Municipal Sewage Sludge: A Comparative Study between Fine Mesh Sieved Primary Sludge and Sedimented Primary Sludge
Water 2021, 13(24), 3532; https://doi.org/10.3390/w13243532 - 10 Dec 2021
Cited by 4 | Viewed by 699
Abstract
Two different types of primary sewage sludge have been used as feedstock for production of biogas through anaerobic digestion (AD): the one type was sludge from a typical primary clarifier (PC), while the other type of sludge produced by a rotating belt filter, [...] Read more.
Two different types of primary sewage sludge have been used as feedstock for production of biogas through anaerobic digestion (AD): the one type was sludge from a typical primary clarifier (PC), while the other type of sludge produced by a rotating belt filter, commonly called microsieve (MS). Initially the main physicochemical characteristics of the sludges, such as total solids (TS), volatile solids (VS), VS/TS, pH and carbon to nitrogen ratio (C/N) were determined, for MS: 37.86 ± 0.08%, 83.00 ± 0.41%, 0.83 ± 0.00, 6.67 ± 0.08 and 19.68 ± 0.69, respectively, and for PC: 2.61 ± 0.08%, 78.77 ± 1.91%, 0.79 ± 0.02, 6.61 ± 0.10 and 14.46 ± 1.23, respectively. Then, calculated amounts of the sludges were inserted into airtight vials and were inoculated using anaerobic sludge. The daily biogas production was measured over a period of 30 days. PC sludge maximized the daily biogas production (44.20 mlbiogas/gvsd) 11 days after inoculation, while the MS sludge reach a peak (37.74 mlbiogas/gvsd) 14 days after inoculation. The cumulative biogas production over the 30 days of AD was in the same laver (442.29 mlbiogas/gvs for PC versus 434.73 mlbiogas/gvs for MS). However, PC sludge indicated higher daily biogas production, compared to MS sludge, while the opposite was observed for the period following the peak point. The Volatile Solids Reduction for PC and MS sludges was recorded as 46.06% and 32.39%, respectively. Full article
Show Figures

Figure 1

Article
Comparative Study on Advanced Nitrogen Removal of Landfill Leachate Treated by SBR and SBBR
Water 2021, 13(22), 3240; https://doi.org/10.3390/w13223240 - 16 Nov 2021
Cited by 1 | Viewed by 666
Abstract
In order to achieve advanced nitrogen removal from landfill leachate without the addition of external carbon sources, a Sequencing Batch Reactor (SBR) and a Sequencing Biofilm Batch Reactor (SBBR) were proposed for the treatment of actual landfill leachate with ammonia nitrogen ( [...] Read more.
In order to achieve advanced nitrogen removal from landfill leachate without the addition of external carbon sources, a Sequencing Batch Reactor (SBR) and a Sequencing Biofilm Batch Reactor (SBBR) were proposed for the treatment of actual landfill leachate with ammonia nitrogen (NH4+-N) and chemical oxygen demand (COD) concentrations of 1000 ± 100 mg/L and 4000 ± 100 mg/L, respectively. The operating modes of both systems are anaerobic–aerobic–anoxic. After 110 days of start-up and biomass acclimation, the effluent COD and the total nitrogen (TN) of the two systems were 650 ± 50 mg/L and 20 ± 10 mg/L, respectively. The removal rates of COD and total nitrogen could reach around 85% and above 95%, respectively. Therefore, advanced nitrogen removal was implemented in landfill leachate without adding any carbon sources. After the two systems were acclimated, nitrogen removing cycles of SBR and SBBR were 24 h and 20 h, respectively. The nitrogen removing efficiency of SBBR was improved by 16.7% in comparison to SBR. In the typical cycle of the two groups of reactors, the nitrification time of the system was the same, which was 5.5 h, indicating that although the fiber filler occupied part of the reactor space, it had no significant impact on the nitrification performance of the system. At the end of aeration, the internal carbon source content of sludge of SBBR was equivalent to that of the SBR system. However, the total nitrogen concentration of SBBR was only 129 mg/L, which is 33.8% lower than that of SBR at 195 mg/L. The main reason was that biofilm enhanced the simultaneous nitrification and denitrification (SND) effect of the system. Full article
Show Figures

Figure 1

Article
Solvothermal Synthesis of ZnO Nanoparticles for Photocatalytic Degradation of Methyl Orange and p-Nitrophenol
Water 2021, 13(22), 3224; https://doi.org/10.3390/w13223224 - 13 Nov 2021
Cited by 1 | Viewed by 644
Abstract
The photocatalytic degradation of organic pollutants is an effective method of controlling environmental pollution. ZnO nanoparticles (ZnO NPs) were prepared by the solvothermal method and characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and [...] Read more.
The photocatalytic degradation of organic pollutants is an effective method of controlling environmental pollution. ZnO nanoparticles (ZnO NPs) were prepared by the solvothermal method and characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV–visible diffuse reflectance spectroscopy (UV–Vis DRS). The results showed that the ZnO NPs had a uniform size of 25–40 nm, hexagonal wurtzite structure, and a band gap of 2.99 eV. The photocatalytic degradation of methyl orange (MO) and p-nitrophenol (PNP) was used as a model reaction to evaluate the photocatalytic activity of ZnO NPs. The photocatalytic degradation rates (pseudo-first-order kinetics) of MO and PNP were 92% (0.0128 min1) and 56.2% (0.0042 min1), respectively, with a 25 W ultraviolet lamp, MO/PNP concentration = 20 mg/L, ZnO NPs dose = 1.5 g/L, and time = 180 min. The photocatalytic mechanism of ZnO NPs and degradation pathways of MO and PNP were also proposed. The results provide valuable information and guidance for the treatment of wastewater via photocatalytic methods. Full article
Show Figures

Figure 1

Back to TopTop