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Abstract: Integrated hydrologic models solve coupled mathematical equations that represent natural
processes, including groundwater, unsaturated, and overland flow. However, these models are
computationally expensive. It has been recently shown that machine leaning (ML) and deep learning
(DL) in particular could be used to emulate complex physical processes in the earth system. In
this study, we demonstrate how a DL model can emulate transient, three-dimensional integrated
hydrologic model simulations at a fraction of the computational expense. This emulator is based
on a DL model previously used for modeling video dynamics, PredRNN. The emulator is trained
based on physical parameters used in the original model, inputs such as hydraulic conductivity and
topography, and produces spatially distributed outputs (e.g., pressure head) from which quantities
such as streamflow and water table depth can be calculated. Simulation results from the emulator
and ParFlow agree well with average relative biases of 0.070, 0.092, and 0.032 for streamflow, water
table depth, and total water storage, respectively. Moreover, the emulator is up to 42 times faster
than ParFlow. Given this promising proof of concept, our results open the door to future applications
of full hydrologic model emulation, particularly at larger scales.

Keywords: hydrology; modeling; machine learning; deep learning; LSTM; Upper Colorado; complex
system; groundwater; water storage

1. Introduction

Large-scale hydrologic model predictions can address many grand water challenges,
such as flood, drought, and climate change predictions. These modeling approaches are
constantly challenged by the need to represent smaller-scale processes and heterogeneities,
yet cover large relevant domains while being computationally efficient. As pointed out
recently [1,2], increases in model resolution are often needed to make large-scale predictions
relevant for a local policy decision. However, the computational cost of these models is
large [1], resulting in long run times even for modern supercomputers [3,4]. Several
approaches are being leveraged to accelerate this process, including graphical processing
unit (GPU) architectures [5,6]; however, further acceleration will enable more a locally
relevant simulation. In recent years, there have been tremendous developments in the
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use of machine learning emulators for complex physical problems as a way to accelerate
complex and high-fidelity physical models [7–9].

Deep learning (DL) tools are increasingly used in earth sciences and in hydrology in
particular to predict precipitation [10–14], streamflow [15–20], and groundwater [21–26].
These prior applications fall into two categories: spatially based and temporally based.
Spatially based approaches (e.g., convolutional neural network (CNN)) learn dynamical
features of hydrological component(s) from the surrounding dynamical fields by using a
hierarchical set of spatial convolution kernels. CNN models have been used, for example, to
simulate short- to medium-term precipitation events [27,28]. Temporally based approaches
(e.g., recurrent neural network (RNN)) learn the temporal dynamic behavior of a process
or event [15,16]. With these recurrent connections, temporally based approaches can
represent the long memory present in hydrologic systems; however, they are limited to
point-scale predictions.

For a DL approach to be a meaningful emulator of large-scale hydrologic models,
the spatially and temporally based approaches need to be combined. However, efforts to
combine these two approaches are still at an early stage. One such effort is the convolutional
long short-term-memory (ConvLSTM) method [29] that combines spatial and temporal
autocorrelations. ConvLSTM has demonstrated better performance than CNN [30] and
LSTM [29] individually, particularly on video interpolation and extrapolation. However,
as the lead in prediction time increases, the vanishing gradient problem (see Section 2.2) of
RNNs decreases the prediction accuracy [29], something overcome in recent applications:
predictive recurrent neural network (PredRNN [31,32]).

Here, we detail the development of a deep learning emulator for the integrated
hydrologic model ParFlow [33]. The emulator is built using the PredRNN model [31,32]. We
train the emulator based on simulation results from ParFlow. This emulator takes ParFlow
model parameters (e.g., topographic slopes, saturated hydraulic conductivity tensors,
and initial pressure) and rainfall information as inputs and produces three-dimensional
transient outputs (e.g., pressure head and saturation). We conduct simulations using
different rainfall–runoff scenarios in two realistic setups, the Taylor River basin in the
Rocky Mountains and the Little Washita basin in Southwestern Oklahoma.

2. Materials and Methods

In this section, we briefly introduce the ParFlow model and equations. Then we
present the DL model, PredRNN, used to construct the ParFlow emulator.

2.1. The Integrated Hydrologic Model, ParFlow

We use the integrated hydrologic model ParFlow [34–38] to simulate the response of a
pressure head resulting from synthetic rainfall scenarios. ParFlow computes subsurface
fluxes and surface fluxes by solving the three-dimensional Richards equation [39] and
two-dimensional kinematic wave equations. Subsurface and surface fluxes are integrated
using a free surface overland flow boundary condition.

The Richards equation for a variably saturated flow is given as [37]:

SsSw(h)
∂h
∂t

+ ϕSw(h)
∂Sw(h)

∂t
= ∇.(−Ks(x)kr(h)(∇(h + z) cos θx + sin θx)) + qr (1)

where h is the pressure head (L), z is the elevation (L), Ss is the specific storage (L−1),
Sw(h) is the relative saturation (–), ϕ is the porosity (–), Ks(x) is the saturated hydraulic
conductivity tensor (LT−1), kr(h) is the relative permeability (–), qr is a sink/source term
(T−1), and θx is the local angle of a topographic slope (S). The overland flow equation is
given as [36,38]:

∂‖h, 0‖
∂t

= ∇.‖h, 0‖vsw + λqr(x) (2)
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where k is the unit vector in the vertical (–), ‖h, 0‖ denotes the maximum of the two
quantities, vsw is the two-dimensional depth-averaged surface water velocity (LT−1), and λ
is a constant equal to the inverse of the grid scaling (L−1) [38].

The van Genuchten [40] equations are used to relate relative saturation to water head
given as:

Sw(h) =
ssat − sres(

1 + (αh)n)(1− 1
n )

+ Sres (3)

kr(h) =

(
1− (αh)n−1

(1+(αh)n)
(1− 1

n )

)2

(
1 + (αh)n) 1− 1

n
2

(4)

where α (L−1) and n (–) are soil parameters, ssat (–) is the relative saturated water content,
and sres (–) is the relative residual saturation.

2.2. The Emulator Version of ParFlow, ParFlow-ML

The emulator model (ParFlow-ML) is constructed using a predictive recurrent neural
network (PredRNN) developed by Wang et al. [31,32]. The PredRNN architecture has
two major components: (1) a new spatiotemporal memory mechanism, called causal LSTM,
to increase the short-term modeling capacity, and (2) the gradient highway recurrent unit
(GHU) to capture the influence of long-term information.

In a causal LSTM, the recurrence depth is increased along the spatiotemporal transition
pathway (Figure 1), which includes dual memories, the temporal memory Ck

t and the spatial
memory Mk

t . The GHU is based on a study by Srivastava et al. [41], which indicates that
highway layers can deliver gradients efficiently in deep feed-forward networks. The
structure of the GHU is shown with the final PredRNN architecture in Figure 2; equations
of the GHU are as follows:

Pt = tan h
(
Wpx ∗ Xt + Wpz ∗ Zt−1

)
(5)

St = σ(Wsx ∗ Xt + Wsz ∗ Zt−1) (6)

Zt = St � Pt + (1− St)� Zt−1 (7)

Water 2021, 13, x 3 of 18 
 

 

where 𝑘 is the unit vector in the vertical (–), ‖ℎ, 0‖ denotes the maximum of the two 
quantities, 𝑣  is the two-dimensional depth-averaged surface water velocity (LT−1), and 𝜆 is a constant equal to the inverse of the grid scaling (L−1) [38]. 

The van Genuchten [40] equations are used to relate relative saturation to water head 
given as: 𝑆 (ℎ) = 𝑠 − 𝑠(1 + (𝛼ℎ) ) + 𝑆  (3)

𝑘 (ℎ) = 1 − (𝛼ℎ)(1 + (𝛼ℎ) )( )
(1 + (𝛼ℎ) )  (4)

where α (L−1) and n (–) are soil parameters, ssat (–) is the relative saturated water content, 
and sres (–) is the relative residual saturation. 

2.2. The Emulator Version of ParFlow, ParFlow-ML 
The emulator model (ParFlow-ML) is constructed using a predictive recurrent neural 

network (PredRNN) developed by Wang et al. [31,32]. The PredRNN architecture has two 
major components: (1) a new spatiotemporal memory mechanism, called causal LSTM, to 
increase the short-term modeling capacity, and (2) the gradient highway recurrent unit 
(GHU) to capture the influence of long-term information. 

In a causal LSTM, the recurrence depth is increased along the spatiotemporal transi-
tion pathway (Figure 1), which includes dual memories, the temporal memory 𝐶  and 
the spatial memory 𝑀 . The GHU is based on a study by Srivastava et al. [41], which 
indicates that highway layers can deliver gradients efficiently in deep feed-forward net-
works. The structure of the GHU is shown with the final PredRNN architecture in Figure 
2; equations of the GHU are as follows: 𝑃 = tanh (𝑊 ∗ 𝑋 + 𝑊 ∗ 𝑍 ) (5)𝑆 = 𝜎(𝑊 ∗ 𝑋 + 𝑊 ∗ 𝑍 ) (6)

𝑍 = 𝑆 ⊙ 𝑃 + (1 − 𝑆 ) ⊙ 𝑍  (7)

 

 
Figure 1. From Wang et al. [31], schematic of the causal LSTM, in which the temporal and spatial 
memories are connected in a cascaded way through gated structures. Colored parts are newly de-
signed operations, concentric circles denote concatenation, and σ is the element-wise Sigmoid func-
tion. 

Figure 1. From Wang et al. [31], schematic of the causal LSTM, in which the temporal and spatial mem-
ories are connected in a cascaded way through gated structures. Colored parts are newly designed
operations, concentric circles denote concatenation, and σ is the element-wise Sigmoid function.
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parts indicate the gradient highway connecting the current timestep directly with previous inputs,
while the red parts show the deep transition pathway.

Here, Wxx are the convolutional filters, Pt are the transformed inputs, and Zt−1 are
the hidden states. St is named as switch gate, which enables an adaptive learning between
the transformed inputs and the hidden states [31]. In the final PredRNN architecture, the
GHU enables an alternative quick route from the first to the last timestep (the blue line in
Figure 2). These two components enable the PredRNN to learn complex video sequence
dynamics and predict state-of-the-art results [31,32]. The first component, the causal LSTM
with a cascade dual memory structure, enhances the ability of the PredRNN to capture
short-term dynamics. The second component, the GHU, which links future predictions to
distant inputs, alleviates the vanishing gradient problem.

2.3. Experiment Design

We train the emulator on two different river basins, the Taylor and Little Washita. In
this section, we discuss the study areas, the emulator setup, the hydrologic model setup,
and the rainfall–runoff scenarios.

2.3.1. Study Areas

The two modeling domains used in this study are the Taylor River basin and the Little
Washita basin (Figure 3). The Taylor River basin, located in the Rocky Mountains, has an
area of 1236 km2 and a mean elevation of 3500 m (Figure 3). The outlet of the basin is
located at Almont, Colorado, USA. The Little Washita basin, located in the Southwestern
Oklahoma, has an area of 600 km2 and is characterized by rolling terrain. The outlet of the
basin is located at Smithville, Oklahoma, USA.
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2.3.2. The Emulator Setup

The emulator, ParFlow-ML, is trained with ParFlow’s inputs to predict ParFlow
outputs of the pressure head and relative saturation. There are two types of ParFlow inputs:
static inputs (discussed in Section 2.3.3) and dynamic inputs (discussed in Section 2.3.4).
Static inputs include surface and subsurface information, such as topographic slopes,
Manning’s roughness values, saturated hydraulic conductivity tensors, and domain’s initial
pressure. Static inputs are used as the initial spatial memory Mk

0 for ParFlow-ML. ParFlow’s
rainfall information is used as the dynamic input for ParFlow-ML. For each dynamic input
timestep, ParFlow-ML outputs the corresponding pressure head and relative saturation.

2.3.3. Model Setup

In this study, the model setups are the same for the Taylor River basin and the Little
Washita River basin. Both model setups include five vertical layers that are 0.1, 0.3, 0.6, 1.0,
and 100 m thick. The two basins are implemented with a lateral resolution of 1 km. Model
inputs consist of two types of data: surface and subsurface.

The surface inputs, topographic slopes and land cover, are evaluated as follows.
Topographic slopes are calculated from the elevation input from the hydrological data and
maps based on shuttle elevation derivatives at multiple scales (HydroSHEDS) using the
priority flow toolbox [42]. The land cover characteristic is upscaled from the original 30 m
resolution National Land Cover Database (NLCD).

The subsurface inputs include four soil layers at the top and one geological layer at
the bottom, including soil and geological layer characteristics, such as saturated hydraulic
conductivity and van Genuchten parameters [43]. Soil and geological layer categories were
taken from the Soil Survey Geographic Database (SSURGO) and from a global permeability
map developed by Gleeson et al. [44]. More details about the subsurface inputs and their
configuration can be found in Maxwell et al. [38] and Maxwell and Condon [45].

2.3.4. Rainfall–Runoff Scenarios

To simulate rainfall–runoff simulations using ParFlow, we specify a “rainfall–recession”
cycle as a boundary condition for the top of the simulation domain. Rain length and rain
frequency can be specified by setting two ParFlow input keys, Cycle.rainrec.rain.Length
and Cycle.rainrec.rec.Length, respectively. Rain values can be specified by setting the
Patch.top.BCPressure.rain.Value input key. ParFlow outputs the pressure head, and rel-
ative saturation files consist of five layers.
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To have random boundary conditions as forcing of the simulation, the 24 rainfall
scenarios with varying rain intensities (I), rain lengths (RL), and rain frequencies (RecL)
(Table 1) were divided into three sets, namely, the train set (scenarios 1–16; Figure 4a), the
validation set (scenarios 17–20; Figure 4b), and the test set (scenarios 21–24; Figure 4c). I,
RL, and RecL are chosen uniformly from three respective ranges of 0.01–0.08 m/h, 5–30 h,
15–60 h. Each rainfall–runoff scenario is unique and independent from one another. With a
rainfall length ranging between 5 and 30 h and a simulation period of 120 h, there would
be 1 to 3 rainfall events and 1 to 4 peak flows in each scenario. Scenarios included in the
train set have both single and multiple peak flows whose magnitudes vary from 5000 m3/s
(scenario 8) to 22,000 m3/s (scenarios 15). Scenarios included in the validation and test sets
also have multiple peak flows whose magnitudes vary from 7000 m3/s (scenario 18) to
21,000 m3/s (scenario 23).

Table 1. Intensity, length, and recession for the rainfall scenarios. Note that the scenarios are
color-coded for train (1–16), validation (17–20), and test (21–24).

Scenarios Rain Intensity (m/h) Rain Length (h) Recession Length (h)
1 0.0619 14 22
2 0.0557 28 30
3 0.0283 22 17
4 0.0631 7 33
5 0.0334 18 36
6 0.0569 28 21
7 0.0532 21 54
8 0.0119 7 52
9 0.0331 12 35
10 0.0668 29 21
11 0.0344 25 30
12 0.0161 10 47
13 0.0389 16 24
14 0.0775 13 41
15 0.0797 22 57
16 0.0213 12 56
17 0.0677 26 36
18 0.0451 12 15
19 0.0765 13 26
20 0.0792 10 26
21 0.0474 11 25
22 0.0215 28 16
23 0.0357 29 54
24 0.0539 29 38

2.4. Training Process

We use both the train and the validation sets in the training process. While the train
set is used for the ParFlow-ML model to learn, the validation set is used for providing an
unbiased evaluation during training and for avoiding overfitting. ParFlow-ML is evaluated
with the validation set every 20 iterations. If the validation loss does not change for the
consecutive 200 iterations, the training process will be terminated. The training processes
for the Taylor River basin and the Little Washita River basin are similar. Here, we only
describe the training process for the Taylor River basin.

For each rainfall–runoff scenario, ParFlow outputs the pressure head and relative
saturation at all model layers at each simulation timestep. These model outputs are used
as targets for the ML model, and ParFlow’s rainfall information is used as an input. In
addition to rainfall information, other ParFlow model input parameters are also used
but as static input: topographic slopes, Manning’s roughness values, saturated hydraulic
conductivity tensors, and domain’s initial pressure. The static inputs are the same for all
rainfall–runoff scenarios.
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Figure 4. Rainfall–runoff scenarios in the Taylor River basin for the train (a), validation (b), and test
(c) sets. Rain is represented by an upside-down horizontal bar; outflow is represented by a line with
a corresponding color.

We configured ParFlow-ML with 8 stacked CausalLSTM layers, each including 1024 nodes.
The total number of trainable parameters in ParFlow-ML was approximately 210 million.
We choose to train the model for 2000 iterations (for each iteration, the model has to run
through the whole training batch of 16 scenarios) initially, then assess the loss. We choose
the Adam optimizer [46] with an initial learning rate of 1 × 10−3. After 2000 iterations,
loss (mean squared error) of the model compared with both the train and the validation sets
decreased to 2.55 × 10−3 and 2.57 × 10−3, respectively (Figure 5). Since both training and
validation losses did not change over the last 200 iterations, we decided to impose early
stopping after 2000 iterations.
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In the training process, the time for ParFlow-ML to predict one scenario is roughly 5.4 s.
Since there are 16 scenarios in the train set, the training batch size is 16. For 2000 iterations,
the whole training progress takes around 50 h. All simulations were undertaken in the
Princeton Hydrologic Data Center (PHDC), and the training was conducted on NVIDIA
A100 GPUs.

2.5. Performance Metrics

Predictions of the pressure head and relative saturation from ParFlow and ParFlow-ML
are used to compute streamflow, water table depth (WTD), and total water storage (TWS)
and then compared. These three derived variables are evaluated in the test dataset using
four metrics, namely, Spearman’s rho, total absolute relative bias, Kling–Gupta efficiency
(KGE [47,48]) and the volumetric hit index (VHI [49]). Spearman’s rho assesses the dif-
ferences in timing for variables resulting from ParFlow and PredRNN with values closer
to one indicating good agreement. The relative bias measures the differences in volume
for variables predicted from ParFlow and PredRNN. The KGE coefficient provides an
aggregation metric of mean, standard deviation, and correlation between the “simulated”
and the “observed” variables. Lastly, the VHI compares the volume of correctly detected
simulations with the total volume of correctly detected simulations and missed observations.

3. Results

The test set is used to provide an unbiased assessment of ParFlow-ML. As stated
above, the pressure and saturation output from both ParFlow and PredRNN are used to
compute streamflow (m3/s), water table depth (m), and total water storage (m3). Below is
an evaluation for each of the variables.

3.1. Streamflow Evaluation

Outflows at gauge locations predicted by ParFlow-ML are evaluated against the
ones simulated by ParFlow for all testing scenarios. For the Taylor River basin, the KGE
values are 0.747, 0.96, 0.97, and 0.787 for scenarios 21, 22, 23, and 24, respectively (Table 2).
We show two representative testing scenarios, 22 and 23, with different peak times and
magnitudes in Figure 6a. Predicted outflows from ParFlow-ML (dashed lines) closely
match (average KGE of 0.97) the ones simulated by ParFlow in both scenarios (Figure 6a).
The ParFlow-ML results compare well with those of ParFlow for the three small rainfall
events (scenario 2) and for one large rainfall event (scenario 3).

Table 2. Outflow statistics.

Testing Scenarios
KGE Relative Bias Spearman’s Rho

Taylor LW Taylor LW Taylor LW

21 0.747 0.975 0.177 0.020 0.947 0.994

22 0.960 0.882 0.022 0.082 0.976 0.992

23 0.970 0.854 0.005 0.103 0.776 0.872

24 0.787 0.973 0.135 0.019 0.937 0.970

For the Little Washita River basin, the Spearman’s rho values are 0.994, 0.992, 0.872,
and 0.970 for scenarios 21, 22, 23, and 24, respectively (Table 2). Two representative test
scenarios, 21 and 24, with different peak times and magnitudes are shown in Figure 7a.
In scenario 24 (blue lines), ParFlow-ML can predict the peak timing accurately (average
Spearman’s rho value of 0.98). However, ParFlow-ML underestimates the first peak and
overestimates the second peak.
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Figure 7. (a) shows the streamflow timeseries at the outlet of the Little Washita River basin for
ParFlow simulations (solid lines) and ParFlow-ML predictions (dash lines) for scenarios 1 and 4
of the testing set. (b,c) show a snapshot of the stream network of ParFlow simulations (left) and
ParFlow-ML predictions (right) for scenario 1 at timestep # 42 (b) and scenario 4 at timestep # 65 (c).

The spatially distributed outputs of overland flow for baseflow (Figures 6b and 7b) and
peak flow (Figures 6c and 7c) from ParFlow-ML and ParFlow also agree well. ParFlow-ML
captures the stream network location and change in magnitude through time, agreeing
with the flow routing physics (i.e., flow increases from upstream to downstream cells).
Outside of the stream networks, ParFlow-ML exhibits some prediction artifacts and several
points where pressure values are predicted as high by ML but as very low in ParFlow. For
these locations, ParFlow-ML appears to be predicting a timeseries with a mean close to the
predicted values in ParFlow but with much more noise, resulting in pressure fluctuations
around a low mean.
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3.2. Water Table Depth (WTD) Evaluation

Figure 8a,b displays the log-scale WTD for scenario 23 at timestep 30. The prediction
of river and stream cells (blue cells where the WTD is zero) by ParFlow-ML matches those
in ParFlow quite closely. The average VHI over the simulation period for scenarios 21, 22,
23, and 24 are 0.81, 0.84, 0.78, and 0.86, respectively. This is consistent with the stream
network comparisons in Figure 6b,c. Shallower (green; WTD, 0–30 m) and deep (yellow;
WTD, >30 m) cells also show similar patterns between ParFlow and ParFlow-ML.
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Figure 8. (a) Water table depth from ParFlow simulations for scenario 3 of the testing set at timestep # 20 for the Taylor River
basin. (b) Water table depth from ParFlow-ML predictions for scenario 3 of the testing set at timestep # 20 for the Taylor
River basin. Locations for three points: A, B, and C are denoted in (a,b). (c) Water table depth from ParFlow simulations
(solid lines) and ParFlow-ML predictions (dash lines) for all the scenarios of the testing set at Point A. (d) Water table depth
from ParFlow simulations (solid lines) and ParFlow-ML predictions (dash lines) for all the scenarios of the testing set at
Point B. (e) Water table depth from ParFlow simulations (solid lines) and ParFlow-ML predictions (dash lines) for all the
scenarios of the testing set at Point C.

For the WTD timeseries evaluation, over the Taylor River basin, we choose three rep-
resentative points (shown in Figure 8 as A, B, and C) to represent the behavior of the
stream, shallow, and deep WTD cells, respectively (Figure 8a,b). Point A starts with a deep
WTD, which then decreases rapidly as rain is applied to the domain, becoming overland
flow. A decrease in WTD also happens at point B, however, with a smaller magnitude.
The WTD at point C remains constant during the simulation period. For points A and
B, ParFlow-ML captures the temporal change in WTD for all the scenarios (Figure 8c,d).
For point C, similar behaviors for ParFlow-ML in streamflow prediction can also be seen
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here with WTD where ParFlow-ML fluctuates around the mean (true) value from ParFlow
(Figure 8e).

We observe a different performance in the Little Washita River domain (Figure 9),
mainly due to the differences in the domain. The Little Washita has a more gentle topogra-
phy and does not demonstrate the large differences in overall water table depth seen in
the more mountainous Taylor River system. The average VHI over the simulation period
for scenarios 21, 22, 23, and 24 are 0.85, 0.89, 0.82, and 0.90, respectively. The two points
(A, more shallow; B, deeper) chosen in the Little Washita domain both undergo rapid
changes as rain is applied, and this behavior is captured well by the ParFlow-ML results.
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Figure 9. (a) Water table depth from ParFlow simulations for scenario 2 of the testing set at timestep #
10 for the Little Washita River basin. (b) Water table depth from ParFlow-ML predictions for scenario
2 of the testing set at timestep # 10 for the Little Washita River basin. Locations for three points: A and
B are denoted in (a,b). (c) Water table depth from ParFlow simulations (solid lines) and ParFlow-ML
predictions (dash lines) for all the scenarios of the testing set at Point A. (d) Water table depth from
ParFlow simulations (solid lines) and ParFlow-ML predictions (dash lines) for all the scenarios of the
testing set at Point B.

3.3. Total Water Storage Evaluation

We evaluate the TWS predicted by ParFlow and ParFlow-ML over both simulation
domains to evaluate the ability of ParFlow-ML to capture the water balance over the
catchment. This is an important evaluation as while the ParFlow model is both globally and
locally mass conserving, there is no such intrinsic mass conservation in the ML emulator.
Other than being trained on the loss function of total pressure for the given inputs, no
external criteria that enforce water balance are imposed. The four test scenarios (21–24) have
different TWSs during the simulation period. While scenarios 21 and 22 in the Taylor River
basin show flashier TWS behaviors resulting from shorter rainfall events, TWS changes in
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scenarios 23 and 24 are slower and exhibit higher magnitudes from longer rainfall events
(Figure 10).

Water 2021, 13, x 13 of 18 
 

 

 
Figure 10. Total water storage in the Taylor River basin evaluation between ParFlow simulations 
(solid lines) and ParFlow-ML predictions (dash lines) for all the scenarios of the testing set. 

In general, the predicted TWS from ParFlow-ML (dashed lines) respect the overall 
water balance in both peak time and magnitude with bias values of 0.006, 0.002, 0.001, and 
0.003 for scenarios 21, 22, 23, and 24, respectively. The best matching scenarios are 22 and 
23 with KGE values of 0.968 and 0.983, respectively. There is only a slight overestimation 
of TWS in scenarios 21 and 24 during runoff events. The results from the Little Washita 
test cases (Figure 11) are similar to those of the Taylor River cases. The four cases per-
formed more similarly, with high Spearman’s Rho and KGE values for both high and low 
rainfall events. 

 
Figure 11. Total water storage in the Little Washita River basin evaluation between ParFlow simu-
lations (solid lines) and ParFlow-ML predictions (dash lines) for all the scenarios of the testing set. 

Figure 10. Total water storage in the Taylor River basin evaluation between ParFlow simulations
(solid lines) and ParFlow-ML predictions (dash lines) for all the scenarios of the testing set.

In general, the predicted TWS from ParFlow-ML (dashed lines) respect the overall
water balance in both peak time and magnitude with bias values of 0.006, 0.002, 0.001,
and 0.003 for scenarios 21, 22, 23, and 24, respectively. The best matching scenarios
are 22 and 23 with KGE values of 0.968 and 0.983, respectively. There is only a slight
overestimation of TWS in scenarios 21 and 24 during runoff events. The results from the
Little Washita test cases (Figure 11) are similar to those of the Taylor River cases. The four
cases performed more similarly, with high Spearman’s Rho and KGE values for both high
and low rainfall events.
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3.4. Execution Time

An important consideration of an emulation is the reduction in time compared with
the original model. We compare the execution times of ParFlow and ParFlow-ML for each
of the 24 scenarios in the Taylor River basin. For one scenario prediction, ParFlow uses
four CPU cores, while ParFlow-ML uses an A100 GPU.

Since each scenario is characterized by rain intensity (I), rain length (RL), and rain
frequency (RecL), for the purposes of execution time comparison, we come up with a
combined value, rainfall intensity-duration (RID), computed as follows:

RID = I ∗ RL
RecL

(8)

As in Figure 12, the higher the value of RID is, the longer it takes for ParFlow to solve.
This is typical for physical hydrologic models as the nonlinear problem becomes more
difficult to solve with greater water input necessitating more linear and nonlinear iterations
of the solver. We see in this figure, however, that the execution time for ParFlow-ML is
independent from RID; it is constant for all the scenarios with a value of 5.4 s. We also see
that the execution times are sped up from 5 to 42 times. This is an advantage of the DL
models in general and ParFlow-ML since DL treats the hydrological input purely as images.
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4. Discussion

In this manuscript, we presented the first emulator of a complex surface–subsurface
hydrologic model evaluated over two watersheds. The agreement in prediction from the
ParFlow-ML emulator and the original ParFlow hydrologic model is good both spatially
and temporally. The temporal behavior is captured by the ParFlow-ML well, with stream-
flow and water storage peak times predicted by ParFlow-ML matching the output from
ParFlow closely for both basins (Figures 6 and 7). The average Spearman’s rho values in
all the test scenarios for the Taylor River and the Little Washita River basins are 0.909 and
0.957, respectively (Table 2). The average VHI for the Taylor and the Little Washita River
basins are 0.82 and 0.87, respectively. This match in peak timing indicates that ParFlow-
ML is able to learn the dynamics of both surface and subsurface water routing correctly.
However, there are some biases in streamflow volume and total water storage predicted by
ParFlow-ML. The scenario that has the highest streamflow volume or total water storage
bias is different between the Taylor and the Little Washita River basins (Table 2).

Grid cells that have constant values over time are also challenging for ParFlow-ML
to predict. ParFlow-ML tends to yield noisy values that fluctuate around the true near-
steady values simulated by ParFlow. These near-steady value grid cells do not provide
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much information for the recurrent module of ParFlow-ML to interpret. However, the
magnitudes of these fluctuations are in some cases quite small (Figure 8).

In general, ParFlow-ML’s predictions are comparable to the ones from ParFlow in both
the Taylor River and the Little Washita River basins. The two basins have different sizes,
topographies, and land covers, and thus different hydrologic behaviors. The average TWS
KGE values of ParFlow-ML for the Taylor River and the Little Washita River basins are
0.931 and 0.957, respectively. ParFlow-ML performs well without imposing mass balance
conservation. Beucler et al. [50] suggesting that applying strict conservations of mass and
energy to the machine learning model architecture might reduce the risk of unreliable
predictions. By performing well in two different basins, ParFlow-ML shows promise in
being transferable to other basins or to larger systems.

The ParFlow simulation time is dependent on the characteristics of the rainfall
(Figure 12). The more intense the rainfall is, the more time it takes for ParFlow to complete
a simulation. The ParFlow-ML simulation time is constant and is independent from the
rainfall intensity. This enables ParFlow-ML to predict up to 42 times faster than the original
ParFlow (Figure 12).

5. Conclusions

In this study, we discuss the development of an emulator of a complex integrated
hydrologic model, ParFlow, based upon the PredRNN deep learning model. By training
the ParFlow-ML model on direct inputs and outputs of ParFlow, the emulator was able to
predict the evolution of the pressure head and the relative saturation for all grid cells of the
model domain over time. We compare the simulation results of ParFlow-ML with those of
ParFlow for models of the Taylor River and the Little Washita River basins. Streamflow,
water table depth, and total water storage were calculated from the pressure fields for both
ParFlow and the emulator.

Spearman’s rho, relative bias, and Kling–Gupta efficiency were used as metrics of
comparison. The emulator and ParFlow outputs matched well: the average relative biases
of streamflow, water table depth, and total water storage were 0.070, 0.092, and 0.032,
respectively. The simulation time of the emulator is up to 42 times smaller than the ones
of ParFlow.

While the results are promising, this study still only serves as a proof of concept
with synthetic data over two relatively small domains. Nevertheless, this proof of concept
demonstrates the ability of an ML emulator that duplicates an entire set of hydrologic
model inputs and outputs. This novel study is a step toward constructing larger and more
comprehensive ML emulator models that may ultimately ingest meteorological forcing as
input and predict land surface states and fluxes in addition to pressure head. Our work
provides an additional path to a more efficient hydrologic simulation over large domains
at a high resolution.
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