
����������
�������

Citation: Park, K.; Jung, Y.; Seong, Y.;

Lee, S. Development of Deep

Learning Models to Improve the

Accuracy of Water Levels Time Series

Prediction through Multivariate

Hydrological Data. Water 2022, 14,

469. https://doi.org/10.3390/

w14030469

Academic Editor: Aldo Fiori

Received: 15 December 2021

Accepted: 29 January 2022

Published: 4 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Development of Deep Learning Models to Improve the
Accuracy of Water Levels Time Series Prediction through
Multivariate Hydrological Data
Kidoo Park 1 , Younghun Jung 2,*, Yeongjeong Seong 2 and Sanghyup Lee 2

1 Emergency Management Institute, Kyungpook National University, Sangju 37224, Gyeongbuk, Korea;
hydrol88@knu.ac.kr

2 Department of Advanced Science and Technology Convergence, Kyungpook National University,
Sangju 37224, Gyeongbuk, Korea; bnmjkl31@knu.ac.kr (Y.S.); niy1219@knu.ac.kr (S.L.)

* Correspondence: y.jung@knu.ac.kr; Tel.: +82-54-530-1253

Abstract: Since predicting rapidly fluctuating water levels is very important in water resource
engineering, Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) were used to
evaluate water-level-prediction accuracy at Hangang Bridge Station in Han River, South Korea, where
seasonal fluctuations were large and rapidly changing water levels were observed. The hydrological
data input to each model were collected from the Water Resources Management Information System
(WAMIS) at the Hangang Bridge Station, and the meteorological data were provided by the Seoul
Observatory of the Meteorological Administration. For high-accuracy high-water-level prediction, the
correlation between water level and collected hydrological and meteorological data was analyzed and
input into the models to determine the priority of the data to be trained. Multivariate input data were
created by combining daily flow rate (DFR), daily vapor pressure (DVP), daily dew-point temperature
(DDPT), and 1-hour-max precipitation (1HP) data, which are highly correlated with the water level.
It was possible to predict improved high water levels through the training of multivariate input
data of LSTM and GRU. In the prediction of water-level data with rapid temporal fluctuations in the
Hangang Bridge Station, the accuracy of GRU’s predicted water-level data was much better in most
multivariate training than that of LSTM. When multivariate training data with a large correlation with
the water level were used by the GRU, the prediction results with higher accuracy (R2 = 0.7480–0.8318;
NSE = 0.7524–0.7965; MRPE = 0.0807–0.0895) were obtained than those of water-level prediction
results by univariate training.

Keywords: water level; rapidly fluctuating water level; LSTM; GRU; correlation; multivariate input
data; univariate training

1. Introduction

South Korea is a monsoon climate where 60–70% of annual average precipitation is
concentrated from June to September. Therefore, flood damage in summer is concentrated,
and drought damage is caused in spring, making it difficult to manage water resources [1].
In the case of urban rivers, the watersheds are covered with impervious layers, resulting
in a series of urban flood damage due to the rapid increase in direct runoff caused by
heavy rain, so accurate flood-prediction technology is needed and is essential to prevent
flood disasters [2]. Therefore, local heavy rains caused by climate change frequently cause
extreme flood damage around urban rivers, so techniques for accurately predicting the
high water level or high flow rate of urban rivers are essential [3].

In the past, flow rates and water levels were calculated in the event of a flood, using
the physical numerical model that used the Computational Fluid Dynamics (CFD) method,
but there were limitations in obtaining sufficiently reliable results in terms of time, cost, and
accuracy of the prediction model [4]. Therefore, in the field of water resource engineering,
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as a way to replace the existing physical models and improve the prediction accuracy of
hydrological quantities, researchers have developed data-driven models that can predict
hydrological quantities only through the analysis of input data.

As a traditional data-driven model, the Auto-Regressive Integrated Moving Average
(ARIMA) model was used to analyze linear time-series data, such as prediction of monthly
mean water levels to perform water-level prediction [5]. In the case of the ARIMA model,
the prediction accuracy of the linear hydrological data was calculated with appropriate
prediction accuracy, whereas, in the case of hydrological time-series data with nonlinear char-
acteristics, the prediction accuracy of the nonlinear hydrological data was deteriorated [6]. In
addition, the ARIMA model was mainly used to predict time-series groundwater levels [7].
However, there was a limitation in that the correlation between hydrological variables,
including rainfall and groundwater level, could not be properly considered [8].

In the case of the Fuzzy and Neural Network (NN) system, it was effectively used for
reservoir operation [9]. In addition, the Adaptive Network-Based Fuzzy Inference System
(ANFIS) was used to predict the water level with the high reliability of the reservoir [10].
However, in the case of Neuro-Fuzzy model, in time-series groundwater prediction with
nonlinear characteristics, the prediction accuracy of the model significantly decreased as
the prediction period increased [8].

Accordingly, studies on data-driven models based on the Fourth Industrial Revolution
technology that can overcome and replace the limitations of existing physical models are
currently being actively studied [4]. A typical data-driven model is a Deep Neural Network
(DNN) model, and in contrast to the calculations of numerical solution according to the
initial and boundary conditions of the governing equation, accurate prediction results can
be obtained by repeatedly training input value data and calculating parameters of the
data-driven model. Recently, research on the prediction of time-series data, such as the flow
rate, water level, and flow velocity of rivers and reservoirs in the field of water resource
engineering, using the DNN model, is being actively conducted [11–19].

In the past five years, DNN models have been used to predict various hydrological
quantities, such as water level, flow rate, and precipitation in water resource engineering.
However, most studies have mainly studied predicting water levels that change smoothly
over the entire time or predicting flow rates in rivers and reservoirs with little temporal
flow changes. Especially, DNN was widely used to predict groundwater levels [20], water
levels in the stream [21–23], wetlands [24,25], and reservoirs [26–28]. However, most of
these studies on water-level predictions correspond to cases where the water-level change
according to temporal changes is mild, and the accuracy of the prediction results could
not be guaranteed if the water-level change changes rapidly [4]. Therefore, the studies
on predicting water levels with high temporal variability in the rivers were recognized as
limitations of the DNN models and were rarely conducted, as compared to other research
areas. It is essential to predict the exact amount of hydrological quantities in the river
due to torrential rains or typhoons caused by climate change and urbanization, but it
was difficult to trust the prediction results of DNN models under high-water-level or
high-flow-rate conditions. Nevertheless, there was a study to predict river flow rates with
high accuracy by providing guidelines for input training data [4]. In addition, real-time
groundwater-level prediction [29], extreme water-level prediction by highest tide [30,31],
and real-time urban-river-flood-level prediction, using various DNN models, have been
effectively performed recently [32]. However, until recently, there were not many studies to
improve the accuracy of predicting water levels with very high temporal variability. This
study attempted to improve the prediction result of river water levels with high temporal
fluctuations by diversifying the input data by analyzing the correlation of input data, using
DNN models.

The main purpose of this study was to establish the multivariate training models that
can accurately predict daily water-level data under high-water-level conditions among
rapidly changing hydrological quantities by selecting DNN models that are effective
in predicting time-series hydrological data. Previous DNN studies in the field of water
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resource engineering focused on predicting gentle water level changes, but this study aimed
to predict high-water-level changes in a river that has very severe temporal fluctuations.
In addition, most previous studies used only univariate water-level data as input data to
predict the water level, so there was a limit to predicting the high water levels that rise
dramatically by season.

The purpose of this study is as follows. First, in order to predict the time-series water
levels that change rapidly over time, hydrological data and meteorological data that have
a large correlation with the water levels will be selected. Second, hydrological data or
meteorological data with a large correlation with the water level will be selected, and DNN
models suitable for predicting hydrological time series data (i.e., water level and flow rate)
will be selected. Third, the accuracy of the water-level prediction will be analyzed by using
hydrological data or meteorological data, which have a large correlation with the water
level, as input data of the DNN model. Finally, the DNN models will be proposed with
improved accuracy of water-level prediction according to multivariate input data effective
in predicting time-series levels that change rapidly from low to high levels. Therefore, it
is expected that the accuracy of predicting low and high water levels will be improved
through the types and numbers of multivariate training data.

2. Methods
2.1. Applied DNN Models

Among the DNN models that can be effectively used for time-series data analysis,
in this study, Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) were
selected and used as Recurrent Neural Network (RNN) models that can be appropriately
applied to past hydrological time-series data [4].

2.1.1. Long Short-Term Memory (LSTM)

LSTM is a sequential data model that improves the long-term memory loss problem of
Simple RNN [4,33]. As shown in Figure 1, LSTM consists of a forget gate, an input gate, and
an output gate. The key to LSTM is to have a cell state. The horizontal line from ct−1 to ct
located at the top of Figure 1 is called the cell state that penetrates the entire time-series
data through a simple linear operation. Because of this structure, time-series information
continues to be sent to the next time step without memory loss.

ft = σ
(

W f ·[ht−1, xt] + b f

)
(1)

it = σ(Wi·[ht−1, xt] + bi) (2)

ct = tanh(Wc·[ht−1, xt] + bc) (3)

ct = ft ct−1 + it ct (4)

ot = σ(Wo·[ht−1, xt] + bo) (5)

ht = ottanh(ct) (6)

where ft, it, and ot are the forget, input, and output gates at time, t, respectively; W f , Wi,
and Wo are weights mapped to hidden layers for forget, input, and output gates; b f , bi, and
bo are bias vectors; h is layer; σ(·) is an activation function; tanh(·) is hyperbolic tangent
function; ct−1 and ct are the cell states of the previous time step and the next time step.
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Figure 1. Long Short-Term Memory (LSTM).

2.1.2. Gated Recurrent Unit (GRU)

GRU plays a similar role as LSTM, but it is computationally efficient because it consists
of a simpler structure. This reduced the calculation of cell state used by the LSTM. GRU is
a simplified form of three gates of LSTM. As shown in Figure 2, the input gate and forget
gate are combined and simplified into an update gate [4,34]. There are only two types
of GRU: an update gate, a reset gate, and a removed cell state. GRU has two activation
functions and one tanh function. Therefore, GRU has fewer parameters and faster training
speed than LSTM, but long-term memory, such as LSTM, is possible.

rt = σ(Wr·[ht−1, xt] + br) (7)

zt = σ(Wz·[ht−1, xt] + bz) (8)

ht = tanh(W·[ht−1, xt] + b) (9)

ht = (1− zt)ht−1 + zt ht (10)

where r and z are the reset and update gates, respectively. Reset gate aims to reset past
data and outputs a value between 0 and 1, which is the value of how much past data will
be reset through the activation function. The update gate determines the rate of past and
present information updates and the output value, zt, determines the amount of data to be
exported at this point in time; 1− zt is the amount of data to be forgotten.

Figure 2. Gated Recurrent Unit (GRU).
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2.2. Model Performance Indicators

Equations (11)–(17) were used as evaluation criteria for the RNN models to evaluate
the performance and accuracy of the models. The closer the Mean Absolute Error (MAE),
Mean Square Error (MSE), Root Mean Square Error (RMSE), and Mean Relative Peak
Error (MRPE) are to 0, the better the performance of the model. As the Nash–Sutcliffe
model Efficiency coefficient (NSE) and the determination coefficient (R2) are close to 1, the
performance of the model is improved.

(1) Mean Absolute Error (MAE)

MAE measures the average magnitude of the error in the prediction set without
considering the direction. This is the mean for the test sample for absolute differences
between predictions and actual observations where all individual differences have the
same weight [4,35]

MAE =
1
N

N

∑
i=1
|xi − yi| (11)

where xi is the observed values of the variables, yi is the predicted values, and N is the
number of data.

(2) Mean Squared Error (MSE)

MSE measures the mean of the squares of the errors, that is, the mean squared differ-
ence between the predictions and the actual observations [4,35].

MSE =
1
N

N

∑
i=1

(xi − yi)
2 (12)

(3) Root Mean Squared Error (RMSE)

RMSE is a quadratic scoring rule that also measures the average magnitude of an error.
It is the square root of the average of squared differences between predictions and actual
observations [4,35–37].

RMSE =

√
∑N

i=1(xi − yi)
2

N
(13)

(4) Coefficient of determination (R2)

The coefficient of determination, R2, is a measure of the goodness of fit of the statistical
model [4,35,38,39].

R2 = 1− ∑N
i=1(xi − ŷi)

2

∑N
i=1(xi − x)2 (14)

where ŷi are the predicted values from a statistical model, and x is the mean of observed
values of the variables.

(5) Nash–Sutcliffe model efficiency coefficient (NSE)

NSE is used to quantify how well model simulations can predict the outcome vari-
ables [4,35,36,38,39].

NSE = 1− ∑N
i=1(xi − yi)

2

∑N
i=1(xi − x)2 (15)

As shown in Table 1, it is not appropriate to adopt model results if R2 and NSE are less
than 0.5; model adoption is possible if R2 and NSE are greater than 0.5 and less than 0.65;
model adoption is good if R2 and NSE are greater than 0.65 and less than 0.75; and if R2

and NSE are over 0.75, it is very good to adopt a model [4,19,35,38,40].
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Table 1. Performance ratings for adopted statistics.

Performance Rating R2 NSE

Very good 0.75 < R2 ≤ 1.00 0.75 < NSE ≤ 1.00
Good 0.65 < R2 ≤ 0.75 0.65 < NSE ≤ 0.75

Satisfactory 0.50 < R2 ≤ 0.65 0.50 < NSE ≤ 0.65
Unsatisfactory R2 ≤ 0.50 NSE ≤ 0.50

(6) Mean Relative Peak Error (MRPE)

The Relative Peak Error (RPE) for each i-th event and MRPE are used to evaluate the
prediction accuracy for peak values:

RPEi =
ypi − xpi

xpi
(16)

MRPE =
∑N

i=1|RPEi|
M

(17)

where ypi are the predicted peak values for each i-th event, xpi are the observed peak values
for each i-th event, and M is the number of events. It means that, the closer the MRPE is to
zero, the better the peak values of the model are predicted [41].

2.3. Application of Models

As shown in Figure 3, in this study, a flowchart for predicting time-series water
levels by using LSTM and GRU models was presented. This study attempted to compare
the accuracy of rapidly varying water-level prediction and the performance of models,
using LSTM and GRU models. Data input and output to time-series models basically
use water levels. However, since the water-level data alone have limitations in accurately
predicting the rapidly changing water level, this study attempted to analyze the accuracy
of the predicted water levels by using hydrological data (i.e., flow rate, temperature, vapor
pressure, and precipitation) that are close to correlation with the water level as input data.

Figure 3. Flowchart on learning and prediction of water-level data, using LSTM and GRU models.

Considering the number of hydrological input data and the correlation between the
data, it is intended to overcome the limitation of not accurately providing rapidly changing
water levels, as in previous research cases, by using it as a single hydrological time-series
input data. Therefore, the purpose of this study was to accurately predict the water level by
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using not only the water level but also time-series hydrological data, which are multivariate
data, as additional input data.

3. Study Area and Data
3.1. Study Area

The Han River in the urbanized Han River basin was selected (Figure 4). The Han
River basin is located in the central part of the Korean Peninsula and spans 36◦30′ to
38◦55′ N latitude, 126◦24′ to 129◦02′ E longitude. As shown in Table 2, the Han River
is the largest river in South Korea, with a basin area of 25,953.60 km2, a total length of
494.44 km, an average width of 72.35 km, and a shape coefficient of 0.146. The Han River
basin is a multi-form basin mixed with dendritic and facsimile forms. Historically, the Han
River was destroyed as the channel was changed due to the urbanization of the Han River
basin [4,42]. In 2003, the primary land was 5.4% agricultural land, 25.6% forest, 8.8% river,
39.4% vacant land, 2.5% park land, and 18.3% urban land [4,42]. Table 2 summarizes the
channel characteristics. The channelized reach with an average river width of 1300 m has
an average slope of 0.0016% on the downstream distance of the Han River basin [4,43,44].

Table 2. Summary of site characteristics.

Length of River
(km)

Basin Area
(km2)

Mean Rainfall
(mm/Year)

Mean Water Level
(EL.m)

Mean Streamflow
(m3/s)

494.44 25,953.60 1313.42 0.91 355.97
EL.: Elevation

3.2. Hydrologic Data

In this study, the hydrological data of Hangang Bridge Station observed by the Ministry
of Environment, Korea, were used (Figure 4). In order to utilize weather data, the Korea
Meteorological Administration (KMA) observatory closest to Hangang Bridge Station used
data from the Seoul Observatory (Figure 4). The flow rate and water-level data at the flow-
measuring station were obtained by using data from the Water Resources Management
Information System (WAMIS) website of the Ministry of Environment [45]. Meteorological
data from the Seoul observatory were obtained through the website of the KMA Na-
tional Climate Data Center [46]. The average annual precipitation from 2010 to 2019 was
1313.42 mm, and based on the precipitation data provided on the Meteorological Adminis-
tration website [46], 60% of the precipitation fell during the monsoon season between July
and September. Therefore, since seasonal rainfall is concentrated in summer, the runoff
also increases rapidly during this period.

Figure 4. Map of the Han River basin in Korea (Google Earth [47]).
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(1) Daily water level

In this study, the longer the data of the learning data, the better the prediction results
of the model generally, so the total length of the data used for learning and prediction
was 2 years and 7 months, and the relatively short data were used to verify the deep
learning models. As shown in Table 3 and Figure 5, the observed average water levels from
the Hangang Bridge Station were based on real-time observed data from 1 January 2018
to 31 July 2020. In Figure 5, training and prediction data were selected for the purpose
of evaluating the performance of DNN models that can sufficiently predict rapid water-
level fluctuations occurring between June and July 2020 by learning rapid water-level
fluctuations during the rainy season in 2018. In order to analyze the characteristics of
water levels, the average, the minimum, and the maximum water levels were statistically
analyzed as shown in Table 3. Prior to the construction of a multipurpose dam on the
Han River, the Coefficient of Flow Fluctuation (CFF) was 390: CFF is defined as the ratio
of the annual maximum flow rate to the annual minimum flow rate [4,48]. Large-scale
multipurpose dams were constructed at upstream: CFF was drastically lowered to 70.32
after constructing a multipurpose dam for flood control and securing water supply.

Table 3. Statistical characteristics of water levels at the Hangang Bridge Station (period: 2018–2020).

Minimum
Water Level

(EL.m)

Maximum
Water Level

(EL.m)

Average
Water Level

(EL.m)

Standard Deviation of
Water Level

(EL.m)

Coefficient of
Flow Fluctuation

(CFF)

0.504 3.606 0.915 0.336 70.32

Figure 5. Time-series daily water level at the Hangang Bridge (period: 2018–2020).

As shown in Figure 5, the selected daily average time-series water-level data were
divided into data for learning and prediction of the models. In the case of rapidly changing
hydrological time-series data, using previous research results [4], the best accuracy could
be obtained if the optimal length of learning data and predictive data were selected as
74.9% and 25.1%, respectively, from the length of all time-series data. Therefore, as shown
in Figure 5, data with black dotted lines were used as learning data for the models, and
solid-red-line data were used as forecast data for the models and used to evaluate the
accuracy of the models.

(2) Hydrological and meteorological data

In order to analyze the characteristics of meteorological and hydrological data, the
average (Ave), maximum (Max), minimum (Min), and standard deviation (SD) values of the
data were divided into training and predictive data and presented as shown in Table 4. In
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addition, for each dataset, the ratios of predictive data for training data (Train/predict) were
presented. Except for the daily water level (DWL), the shaded prediction data presented in
Table 4 were not actually used as prediction data for deep learning models in this study.
However, they were included in the prediction data for characteristic analysis between the
two datasets divided into prediction data and training data.

Table 4. Characteristics of hydrological and meteorological data.

Variable
Training Data Prediction Data Train/Predict

Ave Max Min SD Ave Max Min SD Ave Max Min SD

Daily Water Level (EL.m) 1.02 3.61 0.51 0.43 0.86 2.18 0.50 0.25 0.84 0.60 0.98 0.58

Daily Flow Rate
(m3/s)

451.66 5752.81 64.65 640.31 275.33 2923.08 59.25 240.95 0.61 0.51 0.92 0.38

Daily Vapor Pressure (hPa) 11.78 31.60 0.70 8.24 10.58 31.80 0.80 7.84 0.90 1.01 1.14 0.95

Daily Dew-Point Temperature
(◦C) 5.21 25.00 −27.60 12.45 3.59 25.00 −25.80 11.98 0.69 1.00 0.94 0.96

1-Hour-Max
Precipitation (mm) 1.35 43.50 0.00 4.65 0.84 29.40 0.00 3.19 0.62 0.68 0.00 0.69

Precipitation Duration (hour) 2.48 24.00 0.00 4.85 2.34 24.00 0.00 4.70 0.94 1.00 0.00 0.97

Daily Precipitation (mm) 3.76 96.50 0.00 12.42 2.60 103.10 0.00 9.14 0.69 1.07 0.00 0.74

Daily Temperature (◦C) 14.05 33.70 −14.80 11.09 12.69 31.60 −10.50 10.16 0.90 0.94 0.72 0.92

10-Minute-Max
Precipitation (mm) 0.59 25.50 0.00 2.11 0.34 11.90 0.00 1.24 0.58 0.47 0.00 0.59

Ave, average; Max, maximum; Min, minimum; SD, standard deviation; Train/Predict: the ratio of prediction data
to training data.

As shown in Table 4, when calculating the ratio of the maximum predicted data to
learning data through statistical analysis, DWL was 0.60, daily flow rate (DFR) was 0.51,
daily vapor pressure (DVP) was 1.01, daily dew-point temperature (DDPT) was 1.00, and
1-hour-max precipitation (1HP) was 0.68, respectively. In addition, the ratio of standard
deviation representing the distribution of data was 0.58 for DWL, 0.38 for DFR, 0.95 for
DVP, 0.96 for DDPT, and 0.69 for 1HP, respectively. Therefore, it was found that DWL,
DFR, and 1HP were smaller than the maximum values of the prediction data than those of
the training data, and the ratio of maximum values was almost no difference in DVP and
DDPT. The ratio of standard deviation representing the distribution range of data was 0.38
in DFR, which was the narrowest distribution range of prediction data than training data,
and the prediction data gradually increased to the distribution range of training data in the
order of DWL, 1HP, DVP, and DDPT.

As shown in Table 5, in order to select appropriate input data for DWL prediction,
the correlation between meteorological and hydrological data was analyzed. First, the
hydrological variables with the greatest correlation with the daily water level were analyzed.
The hydrological variable with the greatest correlation with the daily water level to be
predicted was the DFR, which was 0.7731, which had a very high correlation between
the two data. However, unexpectedly, the correlation coefficient of daily precipitation
(DP) was 0.2993, which was judged to have little direct correlation with the daily water
level. As shown in Figure 4, the data from the Seoul Observatory of the Meteorological
Administration were used for the provided precipitation data. The Seoul Observatory of
the Meteorological Administration is about 6 km away from the Hangang Bridge Station,
the prediction point of the model, and the Namsan Mountain is located in the middle of the
two points, which may cause heterogeneity in weather phenomena, due to topographical
factors. Among the collected meteorological data, the data that can be used through
correlation analysis with water level are DVP and DDPT. The daily vapor pressure had a
correlation coefficient of 0.3622 with the water level, and daily dew-point temperature had
a correlation coefficient of 0.3444 with the water level, respectively. Although both data do
not have a large correlation with the water level, the predictive performance analysis of
LSTM and GRU models was conducted by using multivariate input data (i.e., daily vapor
pressure and daily dew-point temperature). Second, the correlation between hydrological
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data and meteorological data was analyzed for the correlation between daily flow rate,
which has a large direct correlation with daily water level. In the correlation analysis with
daily flow rate, the correlation coefficient of 1 HP was 0.3563, the next highest after the
daily water level, and the correlation coefficient of 10-minute-max precipitation (10 MP)
was 0.3470, the third highest. However, in this study, 10-minute-max precipitations were
not used as multivariate data to predict the level, but only 1-hour-max precipitations were
used as input data to predict the daily water level.

Table 5. Correlation between hydrological and meteorological data.

Variable Daily Water Level
(EL.m)

Daily Flow Rate
(m3/s)

Daily Vapor
Pressure (hPa)

Daily Dew-Point
Temperature (◦C)

1-Hour-Max
Precipitation

(mm)

Daily Water Level
(EL.m) 1.0000 0.7731 0.3622 0.3444 0.3305

Daily Flow Rate
(m3/s) 0.7731 1.0000 0.3397 0.3112 0.3563

Daily Vapor Pressure
(hPa) 0.3622 0.3397 1.0000 0.9465 0.3746

Daily Dew-Point
Temperature (◦C) 0.3444 0.3112 0.9465 1.0000 0.3140

1-Hour-Max
Precipitation (mm) 0.3305 0.3563 0.3746 0.3140 1.0000

Precipitation Duration
(hour) 0.2271 0.2641 0.2934 0.2800 0.5210

Daily Precipitation
(mm) 0.2993 0.3203 0.3118 0.2741 0.8263

Daily Temperature
(◦C) 0.3038 0.2656 0.8964 0.9509 0.2198

10-Minute-Max
Precipitation (mm) 0.3226 0.3470 0.3836 0.3160 0.9522

3.3. Composition of Models

(1) Composition of LSTM and GRU models

In this study, Python version 3.7.7 [49], an open-source program language, and Tensor-
Flow version 2.1.0 [50], a machine learning library, were used. As shown in Table 6, the DNN
models were LSTM and GRU. For each model, the shape of the neuron and the number of
units constituting each layer of the neuron are shown in Table 6 [4]. The configuration of
the models consists of 1 input layer, 2 hidden layers, 1 dropout, and 2 dense layers, and the
detailed configuration and hyperparameters of each model are presented in Table 6 [4].

One-time learning of the entire training data input to the models was defined as
epoch, and the model calculation results were sufficiently converged after 600 epochs
of training [4]. In the two deep learning models, Sequence Length (SL) used 14 days to
improve the accuracy of prediction, and 74.9% of the total hydrological and meteorological
data were used as training data, and the remaining 25.1% were used as prediction data [4].
While the models were performing training, convergence results were obtained by using
Adam optimizer, and the cost function was Mean Square Error (MSE).
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Table 6. Configuration and hyperparameters of models.

Model Activation
Function Input Layer Hidden

Layer 1 Dropout Hidden
Layer 2 Dense Layer 1 Dense Layer 2

LSTM ReLU LSTM LSTM
50 units 0.25 LSTM

50 units 25 units 1 unit

GRU ReLU GRU GRU
50 units 0.25 GRU

50 units 25 units 1 unit

(2) Composition of training data in LSTM and GRU models

Through correlation analysis with water level, we composed input variables necessary
for learning, focusing on data that have a large correlation with DWL among hydrological
and meteorological data, as shown in Table 7. DWL, DFR, DVP, DDPT, and 1HP were
selected as variables used for learning as input data. The input variables used in the
learning data ranged from one variable to five variables, and each model (i.e., LSTM and
GRU) was trained to predict the DWL and evaluate the accuracy.

Table 7. Composition of input and output data of LSTM and GRU models.

Number of
Input Variables Training Data Prediction Data

1 Daily Water Level (DWL)

Daily Water Level
(DWL)

2 Daily Water Level (DWL),
Daily Flow Rate (DFR)

3
Daily Water Level (DWL),

Daily Flow Rate (DFR),
Daily Vapor Pressure (DVP)

4

Daily Water Level (DWL),
Daily Flow Rate (DFR),

Daily Vapor Pressure (DVP),
1-Hour-Max Precipitation (1HP)

4

Daily Water Level (DWL),
Daily Flow Rate (DFR),

Daily Vapor Pressure (DVP),
Daily Dew-Point Temperature (DDPT)

5

Daily Water Level (DWL),
Daily Flow Rate (DFR),

Daily Vapor Pressure (DVP),
Daily Dew-Point Temperature (DDPT),

1-Hour-Max Precipitation (1HP)

4. Results
4.1. Results on Training and Prediction Using Water Levels as Univariate Input Data

The learning and prediction results for the two deep learning models (LSTM and GRU)
that use univariate time-series learning data are shown in Figure 6 and Table 8. The red
circles in Figure 6(a1,b1) represent the learning results of the models, and the green circles
in Figure 6(a1,b1) and the red circles in Figure 6(a2,b2) represent the prediction results of
the models. The training and prediction accuracy evaluations of the two models are shown
in R2 and are displayed in Figure 6(a3,a4,b3,b4).
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Figure 6. Observed and computed total time series water levels (a1) and (b1) as univariate input data,
prediction (a2) and (b2) as univariate input data, R2 for training (a3) and (b3), and R2 for prediction
(a4) and (b4): (a1–a4) Long Short-Term Memory (LSTM); and (b1–b4) Gated Recurrent Unit (GRU).
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Table 8. Comparison of univariate model performance.

Model Computational State MAE
(EL.m)

MSE
(EL.m)

RMSE
(EL.m) R2 NSE MRPE

(EL.m)

LSTM
Training 0.0136 0.0003 0.0179 0.9950 0.9975 0.0126

Prediction 0.0824 0.0181 0.1344 0.7542 0.7345 0.0919

GRU
Training 0.0158 0.0004 0.0207 0.9940 0.9966 0.0158

Prediction 0.0796 0.0171 0.1306 0.7591 0.7362 0.0719

The training results of the LSTM and GRU models were very well learned, with an R2

of 0.9950 and 0.9940, respectively. As for the prediction results of the two models (LSTM
and GRU), R2 was 0.7542 and 0.7591, respectively. The prediction results of the GRU
were evaluated slightly higher in accuracy than those of the LSTM. However, as shown
in Figure 6(a2,b2) and Figure 6(a4,b4), the prediction results at high water levels were
calculated to be much larger than the observed values for both models. As shown in Table 8,
the NSE of the LSTM prediction result is 0.7345, and that of the GRU prediction result is
0.7362. The range of NSEs for the predictions presented in Table 1 was not “very good” but
“good”, and the accuracy was predicted to be lower than that of the model’s training results.
The MRPE presented in Equation (17) was used as an index representing the accuracy of
peak values. The learning accuracy at peak water levels was 0.0126 for MRPE in LSTM and
0.0158 for that of GRU. In addition, the peak-water-level prediction accuracy was 0.0719 for
MRPE of GRU, which was higher than 0.0919 for that of LSTM.

4.2. Results on Training and Prediction Using Water Levels and Flow Rates as Bivariate Input Data

As shown in Figure 7 and Table 9, these are the training and prediction results of the
two models that use DWL and DFR as bivariate training variables. In both models (LSTM
and GRU), the R2s of the training results (Figure 7(a3,b3)) were 0.9924 and 0.9926, which
corresponded to “very good” (Table 1). As a result of prediction of the LSTM and GRU
models (Figure 7(a4,b4)), R2s were 0.7546 and 0.8318, respectively, and it was confirmed
that the accuracy was significantly improved in the bivariate training results considering
DFR, for which the data have a greater correlation with DWL than the univariate prediction
results. As shown in Figure 7(a2,b2), the predictions of the low water levels in both models
were relatively very consistent with the observed values. In addition, in high-water-level
predictions, as shown in Figure 7(a2,b2),(a4,b4), the training results of bivariate GRU model
including DFR, which correlated with DWL, significantly improved the performance of
the prediction. As shown in Table 9, the improvement effect of the bivariate learning result
was significantly improved in the prediction result of GRU (R2 = 0.8318; NSE = 0.7965)
compared to that of LSTM (R2 = 0.7546; NSE = 0.6694). As shown in Table 9, MRPE for
peak-water-level training and prediction of the bivariate model showed values similar to
those of the univariate models in Table 8.

Table 9. Comparison of bivariate model performance.

Model Computational State MAE
(EL.m)

MSE
(EL.m)

RMSE
(EL.m) R2 NSE MRPE

(EL.m)

LSTM
Training 0.0181 0.0006 0.0245 0.9924 0.9951 0.0177

Prediction 0.0787 0.0163 0.1278 0.7546 0.6694 0.0887

GRU
Training 0.0200 0.0007 0.0268 0.9926 0.9945 0.0221

Prediction 0.0719 0.0117 0.1081 0.8318 0.7965 0.0895
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Figure 7. Observed and computed total time series water levels (a1) and (b1) as bivariate input data,
prediction (a2) and (b2) as bivariate input data, R2 for training (a3) and (b3), and R2 for prediction
(a3) and (b3): (a1–a4) LSTM; and (b1–b4) GRU.
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4.3. Results on Training and Prediction Using Water Levels and Flow Rates as Multivariate Input Data

Figure 8 and Table 10 showed the training and prediction results of LSTM and GRU
with two or more input variables that are highly correlated with DWL. As shown in Table 10,
the R2s of the two or more multivariate training results of the two models correspond to
“very good” in the range of 0.9857–0.9951. In both models (LSTM and GRU), except for
the case of training of five variables (Figure 8(d1-2),(d2-2)), in two or more multivariate
training models, the prediction results of the low water levels were relatively consistent
with the observed data (Figure 8(a1-2)–(c2-2)).

As shown in Figure 8(a1-1)–(a2-2), when trivariate training including DFR and DVP,
which are data that are directly correlated with DWL, was performed, the prediction
accuracy was high not only in the results of GRU (NSE = 0.7558) but also in those of LSTM
(NSE = 0.7447). In addition, similar to the bivariate training result, the trivariate training
result was well matched with the observed data in the high-water-level-prediction result.

As shown in Table 7, the results of the four-variant training were compared with
the prediction results including 1HP data that are not directly correlated with DWL in
the training data Figure 8(b1-1)–(b2-2) and the prediction results including DDPT data
that are directly correlated with DWL (Figure 8(c1-1)–(c2-2)). First, the prediction results
in the case of including 1HP data were relatively well matched with the observed val-
ues at the low water level, but were underestimated at the high-water-level prediction
(Figure 8(b1-2)–(b2-2)). In both LSTM and GRU prediction results, NSEs were 0.6547 and
0.6688, respectively, and the prediction performance was significantly reduced. Therefore, it
was determined that the 1HP data were difficult to use as appropriate input data for predict-
ing DWL. Second, when the DDPT data were included in the four-variable training data,
the prediction accuracy of DWL in both models was greatly improved to NSE = 0.7580. In
high-water-level prediction, selecting DDPT data with a large correlation with DWL could
improve the accuracy of high-water-level prediction more than selecting 1HP data with a
large correlation with DFR (Figure 8(c1-2),(c2-2)).

Finally, as shown in Table 10, when all five input data are used for learning, the
accuracy of predicting high water levels of LSTM was rapidly lowered to NSE = 0.6489.
However, that of GRU was significantly improved to NSE = 0.7524. However, as shown in
Figure 8(d1-2),(d2-2), both models tended to be overestimated compared to the observed
values in the low-water-level prediction.

Figure 8. Cont.
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Figure 8. Cont.
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Figure 8. Observed and training total time-series water levels as multivariate input data: (a1-)–(d1-)
LSTM; and (a2-)–(d2-) GRU.

Table 10. Comparison of multivariate model performance.

Model Variables Computational State MAE
(EL.m)

MSE
(EL.m)

RMSE
(EL.m) R2 NSE MRPE

(EL.m)

LSTM DWL, DFR
Training 0.0181 0.0006 0.0245 0.9924 0.9951 0.0177

Prediction 0.0787 0.0163 0.1278 0.7546 0.6694 0.0887

GRU DWL, DFR
Training 0.0200 0.0007 0.0268 0.9926 0.9945 0.0221

Prediction 0.0719 0.0117 0.1081 0.8318 0.7965 0.0895

LSTM DWL, DFR,
DVP

Training 0.0254 0.0012 0.0342 0.9917 0.9914 0.0239

Prediction 0.0812 0.0153 0.1235 0.7846 0.7447 0.0966

GRU DWL, DFR,
DVP

Training 0.0261 0.0012 0.0351 0.9887 0.9898 0.0287

Prediction 0.0710 0.0129 0.1137 0.8033 0.7558 0.1019

LSTM
DWL, DFR,
DVP, 1HP

Training 0.0233 0.0011 0.0332 0.9902 0.9919 0.0256

Prediction 0.0802 0.0157 0.1254 0.7625 0.6547 0.0953
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Table 10. Cont.

Model Variables Computational State MAE
(EL.m)

MSE
(EL.m)

RMSE
(EL.m) R2 NSE MRPE

(EL.m)

GRU
DWL, DFR,
DVP, 1HP

Training 0.0294 0.0016 0.0396 0.9853 0.9883 0.0324

Prediction 0.0815 0.0166 0.1287 0.7480 0.6688 0.0999

LSTM
DWL, DFR,
DVP, DDPT

Training 0.0267 0.0008 0.0283 0.9895 0.9936 0.0228

Prediction 0.0766 0.0154 0.1240 0.7686 0.7131 0.1104

GRU
DWL, DFR,
DVP, DDPT

Training 0.0267 0.0013 0.0359 0.9875 0.9892 0.0232

Prediction 0.0766 0.0123 0.1110 0.8135 0.7580 0.0882

LSTM
DWL, DFR,

DVP,
DDPT, 1HP

Training 0.0234 0.0009 0.0303 0.9897 0.9928 0.0217

Prediction 0.0882 0.0169 0.1301 0.7437 0.6489 0.1271

GRU
DWL, DFR,

DVP,
DDPT, 1HP

Training 0.0331 0.0019 0.0435 0.9846 0.9857 0.0305

Prediction 0.0826 0.0129 0.1135 0.8120 0.7524 0.0807

As mentioned in previous research results [4], a more effective model in predicting
hydrological time series was GRU. In the results of this study, as shown in Table 10, the
prediction result of GRU was higher in prediction accuracy than that of LSTM. The prediction
results using two or more multivariate input data of GRU corresponded to “very good”, with
NSE ranging from 0.7524 to 0.7965. As shown in Table 10, MRPEs, indexes of peak-water-
level-prediction accuracy, were calculated to be more accurate in the range of 0.0807–0.0895
in most cases of GRU than in the case of LSTM.

5. Discussion

The composition of the DNN models input to the model used the calculation conditions
of the same model based on the previous results of studying the flow-rate-prediction
method with large temporal fluctuations [4]. Based on the results of previous studies, SL,
the training unit of data optimally applied to the prediction of hydrological time-series
data, used 14 days. In addition, the distribution ratio of learning and prediction data was
74.9% to 25.1%, which was composed and used. Therefore, the water levels were predicted
by using 74.9% of the total size of the data as training data.

As seen in previous studies [6,8], despite the training of multivariate data in the cases
of multivariate models, it was determined that the rapidly changing water-level-prediction
accuracy decreased when predicting the hydrological data without correlation analysis of
input data. In this study, DP, which was expected to show a very close correlation with
the water level, was analyzed to have a very low correlation coefficient of 0.2993. The
reason for this was that the distance between the Seoul Observatory and the Hangang
Bridge Station was considerably great, and it was determined that the hydrological and
meteorological characteristics were somewhat different. Therefore, in order to generate
multivariate training data, it is necessary to first check the homogeneity with the data by
analyzing the correlation with the water-level data, which are a prediction target variable.

Other previous data-driven models [5–10,20–28] significantly degraded predictive
performance for rapidly changing high-water-level fluctuations, whereas, in this study,
high-water-level predictive-performance evaluations of LSTM and GRU were conducted
based on previous study results [4]. The prediction results of the water level using uni-
variate training data in LSTM were more accurate than those using bivariate or trivariate
training. The LSTM prediction result did not significantly affect the accuracy improvement
of the training result using multivariate input. The prediction results using the trivari-
ants and pentavariants of LSTM deteriorated NSE from 0.6489 to 0.6694. However, in
the GRU model, the accuracy was significantly improved in high-water-level predictions
as compared to those using univariate (NSE = 0.7362) in all multivariate predictions
(NSE = 0.7524–0.7965), except for one case that used tetravariants (i.e., DWL, DFR, DVP,
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and 1HP) (NSE = 0.6688). In contrast to previous studies [4–30], MRPE, a quantitative
indicator for evaluating peak-water-level accuracy, was used to grasp the rapidly changing
water-level-prediction accuracy. In the case of the GRU, not only the univariate model but
also the multivariate models with large correlation had high accuracy of peak-water-level
prediction (MRPE = 0.0807–0.0895).

The prediction results of the LSTM and GRU were as follows by selecting training data
that were close to the correlation of water-level data. The prediction results of the LSTM
were very effective in predicting by using univariate input data, and the accuracy was high,
but high-water-level predictions tended to be overestimated compared to observations.
The prediction results of the GRU were predicted with high accuracy in both the univariate
and multivariate inputs, but the overestimation of the high water level in the prediction
using only the univariate input data was the same as that of the LSTM. Therefore, even
with the GRU model, in order to increase the accuracy of the high-water-level predictions,
other hydrological and meteorological data that are highly correlated with the water levels
were supplemented with input data to improve the accuracy of time-series water-level
prediction over the entire range.

6. Conclusions

This study looked at the development of flood-prediction technology in response to
the rapid increase in direct runoff to urban rivers that results from both climate change
and urban development projects around rivers. In particular, in the case of rivers with
severe temporal fluctuations, accurate water-level prediction should be possible. Therefore,
using data-driven models (i.e., LSTM and GRU), it was possible to propose an effective and
accurate data model for predicting water levels with severe temporal changes.

In this study, DWL, DFR, DVP, DDPT, and 1HP were selected as hydrological and
meteorological input data to the model in the order of data that correlated with the water
level to be predicted. The input dataset of LSTM and GRU was generated by combining
the selected hydrological and meteorological data. The accuracy of water-level prediction
was evaluated by applying LSTM and GRU, which are suitable deep-learning techniques
for predicting time-series hydrological data for accurate high-water-level prediction. In
the case of LSTM, the accuracy of high-water-level prediction by univariate water-level
input was higher than that of the multivariate model. On the other hand, GRU was able
to select a model suitable for predicting multivariate time-series water levels because the
high-water-level-prediction accuracy of multivariate models was evaluated higher than
prediction accuracy under univariate input conditions.

The results of this study showed that the accuracy of the predicted water level could
be improved in the GRU when multivariate hydrological and meteorological data were
secured in urban rivers with high-water-level fluctuations. Therefore, the multivariate
learning result, which has a greater correlation with the water level than the univariate
learning result using only the water level, could accurately predict the water level as “very
good” (NSE = 0.7524–0.7965; MRPE = 0.0807–0.0895).

In this study, the selected RNNs (i.e., LSTM and GRU) were data-driven models that
analyzed the numerical variability of data rather than the physical characteristics of data.
In addition, learning only univariate data greatly reduces the prediction accuracy of time-
series data with rapidly temporal fluctuations, so if there is a multivariate model that uses
variables with high correlation with predictive data as input data, it can be expanded to
rapidly changing hydrological-data-prediction studies.
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