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Abstract: The water components affecting turbidity are complex and changeable, and the spectral
response mechanism of each water quality parameter is different. Therefore, this study mainly
aimed at the turbidity monitoring by unmanned aerial vehicle (UAV) hyperspectral technology, and
establishes a set of turbidity retrieval models through the artificial control experiment, and verifies
the model’s accuracy through UAV flight and water sample data in the same period. The results of
this experiment can also be extended to different inland waters for turbidity retrieval. Retrieval of
turbidity values of small inland water bodies can provide support for the study of the degree of water
pollution. We collected the images and data of aquaculture ponds and irrigation ditches in Dawa
District, Panjin City, Liaoning Province. Twenty-nine standard turbidity solutions with different
concentration gradients (concentration from 0 to 360 NTU—the abbreviation of Nephelometric
Turbidity Unit, which stands for scattered turbidity.) were established through manual control and
we simultaneously collected hyperspectral data from the spectral values of standard solutions. The
sensitive band to turbidity was obtained after analyzing the spectral information. We established
four kinds of retrieval, including the single band, band ratio, normalized ratio, and the partial least
squares (PLS) models. We selected the two models with the highest R2 for accuracy verification. The
band ratio model and PLS model had the highest accuracy, and R2 was, respectively, 0.65 and 0.72.
The hyperspectral image data obtained by UAV were combined with the PLS model, which had the
highest R2 to estimate the spatial distribution of water turbidity. The turbidity of the water areas in
the study area was 5–300 NTU, and most of which are 5–80 NTU. It shows that the PLS models can
retrieve the turbidity with high accuracy of aquaculture ponds, irrigation canals, and reservoirs in
Dawa District of Panjin City, Liaoning Province. The experimental results are consistent with the
conclusions of the field investigation.

Keywords: UAV hyperspectral; turbidity; retrieval model; remote sensing; water body

1. Introduction

Turbidity is an important parameter to characterize water quality, especially the
transparency of the water area [1]. At the same time, there is a close relationship between
turbidity and other water quality parameters. The analysis of its change is helpful to
understand the distribution of sediment or total suspended solids in the water environment
and provides practical information for the study of pollutant deposition, decomposition,
and diffusion in the water [2]. Therefore, monitoring of spatial turbidity distribution is
significant for the water ecological environment and human production and living. The
intensity of incident light will be weakened after the absorption and scattering of light
by particles in water, because turbidity is a water quality parameter with optical activity.
Furthermore, the amount of attenuation and the effect of water on incident light can be
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well reflected in remote sensing images. Therefore, remote sensing can indirectly obtain the
spatial distribution of turbidity, which is expressed according to the amount of attenuation.

Remote sensing has the advantages of a wide range and fast speed, effectively sup-
plementing conventional water environment monitoring methods [3,4]. With the rapid
development of remote sensing and the in-depth study on the spectral characteristics and
algorithms of water quality parameters, the quantitative degree of water quality retrieval
by remote sensing methods has been continuously improved [5]. An inversion algorithm
is established by studying the relationship between water reflectance spectral characteris-
tics and water quality parameter concentration [6,7]. Due to the strong spatial-temporal
variation of turbidity and apparent seasonal variation, remote sensing is also needed for
long-term dynamic water turbidity monitoring. The use of UAV technology can be more
flexible monitoring of small inland water [8]. Establishing a turbidity retrieval model based
on remote sensing data, monitoring the change of water turbidity, and studying the change
characteristics of water turbidity provides new prospects for applying remote sensing
technology and supplies a new way to study water quality and water color.

In previous studies, researchers concluded that the reflectance of the red band is closely
related to turbidity, which is the key band for turbidity retrieval. Most models are built
around the red band in the single band model, such as the turbidity model constructed
by Xu [9], Douglas [10], etc. In addition, in the study of turbidity retrieval using UAV
hyperspectral images, the near-infrared (NIR) band is often used for model building and
has a high band sensitivity, as Kornelia [11], concluded that red light band was used
to identify low-medium turbidity waters, and the NIR band was used to identify high-
turbidity waters when studying sediment-rich glacial meltwater plumes. Jiang [12] used
the data of headwall hyperspectral imager to build a variety of multiple linear regression
models and PLS models for comparison. Eventually, the accuracy of the PLS model was
significantly better than the other models. Many researchers have established the ratio
model between the NIR band or the red band and the green band, which can obtain higher
retrieval accuracy. Xiao [2] used three kinds of domestic satellite—HJ-1A/1B CCD, GF-1
WFV, and ZY-3 MUX—data for water turbidity retrieval and constructed the ratio model of
red and green bands as the turbidity retrieval model. In addition, Song [13] and Feng [14]
used blue, green, red, and NIR bands to highlight the spectral characteristics of turbidity.
However, it is challenging to combine the bands, due to the large number of bands and a
large amount of data. So, the combination method is often used in the research of turbidity
retrieval with multispectral data.

The UAV remote sensing system has flexibility, rapid response, simple structure, and
good real-time performance. The remote sensing image data, with high spatial resolution,
high temporal resolution, and high spectral resolution, can be acquired at low altitude,
which effectively makes up for the deficiency of traditional satellite remote sensing technol-
ogy [15]. When the weather conditions permit, using UAVs anytime and anywhere can
provide a valuable monitoring scheme for water quality monitoring and water pollution
prediction. This can be used to timely discover the pollution situation of small and micro
water areas, which is difficult to be considered by traditional water quality monitoring
methods. Nowadays, as a new and brand-new remote sensing platform, UAV has been
widely used and gradually shows its importance [16,17]. The emergence and development
of UAV hyperspectral technology provide a new technical means for large-scale water
quality monitoring and research. It makes up for any defects of satellite remote sensing
water quality monitoring [18]. It has excellent guiding significance for water environment
monitoring of small and micro water areas such as rivers.

In this study, we collected the reflectance data of the hyperspectral imager based on
the standard turbidity solutions of twenty-nine concentrations. The retrieval model of
turbidity standard solution was constructed after reflectance processing. Instead of the
traditional method of constructing turbidity retrieval model by collecting data in the field,
a set of retrieval models from low to high turbidity water areas was established, and the
accuracy of retrieval was verified by UAV data. It measured data in the same period, and
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the best retrieval model suitable for aquaculture ponds, irrigation canals, and reservoirs in
Dawa District of Panjin City, Liaoning Province was obtained.

2. Data Acquisition
2.1. Manual Control Experiment
2.1.1. Solution Concentration Configuration

In this manual control experiment, we used the turbidity solution with a concentration
of 4000 NTU for different concentration configurations. We set a total of twenty-nine gradi-
ents of turbidity solution with different interval gradients from 0 to 360 NTU. Moreover, a
black box with a volume of 13 L was prepared as a container (38.5 cm × 29.5 cm × 20.5 cm).
To reduce the influence of the reflection of the box bottom and the box wall on the water
spectral measurement, the black light-absorbing paper, and the light-absorbing adhesive
tape were pasted on the bottom and wall before the experiment. However, the effect on
water reflectance still cannot be ignored, especially when the concentration of turbidity
standard solution is low. Owing to the limited amount of simulated water volume, inho-
mogeneity of turbidity distribution via volume, and because the water in ponds, irrigation
canals, and reservoirs is not perfectly smooth, waves are present. These reasons will limit
the ability to use the regression equation obtained in this experiment in natural waters to
a certain extent. Therefore, this experiment cannot completely simulate the actual river
environment and accuracy estimates are required. To ensure the accuracy of the experi-
ment, we calculated the milliliter required for each adjustment of solution concentration
in advance. For the convenience of calculation, we used 12 L distilled water as the initial
water sample for the experiment (the turbidity was 0 NTU). We added the corresponding
milliliter in turn to adjust the concentration gradient and measured the readings of the
configured solution with HACH 2100 q turbidimeter from HACH Company in America to
ensure that the error between the concentration of the prepared turbidimetric solution and
the set gradient was within 5 NTU. During the experiment, assuming that the background
spectrum remains unchanged, the change of water reflection spectrum is caused by the
change of turbidity concentration.

2.1.2. Water Reflection Spectrum Acquisition

The hyperspectral imager used was the Gaiasky-mini2-VN from Sichuan Dualix Spec-
tral Imaging Technology Company, with a spectral range of 400–1000 nm and 176 spectral
channels. The imager is often carried on rotor UAVs for image acquisition. The collected
data are used in the corresponding research of small-scale features [19]. In this experiment,
we selected the data acquisition time of the hyperspectral imager to be 10 a.m. with suffi-
cient light. The acquisition time of each gradient was strictly controlled so that the total
acquisition time did not exceed two hours. We ensured sufficient illumination intensity
and synchronization of data acquisition, and settled on a better foundation for subsequent
data processing. The hyperspectral imager was fixed on a tripod about 2 m high. A black
box containing solution and a standard gray board with the same height were placed on
the box. We used the hyperspectral imager to synchronously collect the water and gray
board spectra after adjusting the concentration of the solution. To ensure the accuracy of
data collection, we kept the lens height unchanged during the experiment.

The obtained hyperspectral raw data were processed as reflectance data. The low-pass
filtering could smooth and denoise the image effectively. After that, the spectral information
collected by the hyperspectral imager was processed with reflectance. The average value of
the same region of 5 × 5 pixels range was selected in the frame of the hyperspectral images
with different turbidity. The relationship between the digital value (DN) and reflectivity is
as follows:

RefHyp =
DNwater

DNgreyboard
× Refgreyboard (1)
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where, RefHyp is the reflectance value of the image after reflectance correction, DNwater is
the DN value of the original image, DNgreyboard is the original DN value of the gray board,
and Refgreyboard is the standard reflectance of the gray board.

Based on the spectral data of the gray board collected in the same period of the
experiment, the DN value was transformed into the absolute reflectance data to obtain the
hyperspectral reflectance data of different concentrations.

2.2. UAV Field Data Acquisition
2.2.1. Image Acquisition and Sampling

Figure 1 shows the study areas of field data acquisition in this experiment. The field
flight tests were conducted in September 2019 and October 2020, respectively, and the
images were collected using the Gaiasky-mini2-VN hyperspectral imager, carried by the
DJI M600 pro UAV. We obtained three hyperspectral data sets of UAVs. The flight area is
located in Dawa District, Panjin City, Liaoning Province. The assignment included a flying
area of 0.25 km2 for the Rongxing reservoir and two flying areas of 0.95 km2 for breeding
ponds and irrigation canals. Before the UAV took off, a standard gray cloth with reflectivity
of 20% and an area of 2 × 2 m had been placed in the aerial photography area. In-flight,
the altitude was set at 200 m, the course overlap was set at 55%, the side overlap was set at
40%, and the flight speed was 12.8 m/s.
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Figure 1. The location of the study area.

During the flight, synchronous sampling was carried out to record the longitude and
latitude of the sampling point, the water quality of the river, and to take photos. A total
of 18 water samples were collected, and the location information of the sampling point
was recorded. After the water sample was collected, it was brought back to the laboratory
in time. The turbidity value was read by the HACH 2100 q portable turbidimeter. The
turbidity range was 3.2–56.37 NTU, and the average value was 22.34 NTU. The statistical
data are shown in Table 1.



Water 2022, 14, 128 5 of 15

Table 1. Turbidity statistics of sampling points.

Sampling Time Location Numbers Max/NTU Min/NTU Average/NTU

2019.09 121◦59′44”–121◦59′51” E,
40◦48′38”–40◦48′51” N 10 40.47 3.26 18.32

2020.10 121◦57′8”–121◦57′15” E,
40◦47′14”–40◦47′20” N 8 56.37 3.2 25.42

2.2.2. Image Preprocessing and Water Extraction

a. Reflectivity calibration and radiometric correction
Firstly, the original image aberration and distortion were corrected through SpecView

software to complete the lens correction of the UAV image, eliminate the color difference,
and correct the aperture. Secondly, in the flight process of UAVs, due to different light and
weather conditions, the acquired image will be distorted in the spectral dimension, and the
data need to be radiometric corrected [20]. In this study, the radiometric correction was also
operated by SpecView software. To eliminate the errors caused by the performance of the
UAV sensor, we obtained the reflectivity value of the image, and eliminated the influence
of the atmosphere, water vapor, and other factors when the UAV flies to a certain altitude,
we adopted black-and-white correction and atmospheric correction. The atmospheric
correction formula is as follows:

Reffixed =
DNHyp × Refstandard

DNgray
(2)

where Reffixed is the spectral reflectance of the image after eliminating water vapor and
atmosphere. RefHyp is the reflectance of the image after reflectance correction. Refstandard is
the spectral reflectance of the gray cloth calibrated by the National Institute of Metrology.
Refgray is the reflectance of the gray cloth in the image after reflectance correction.

b. Geometric correction
Due to the influence of external factors such as airflow, wind direction, and wind speed

in the flight process of UAVs, there is an inevitable error between the image geographic
coordinates and the actual coordinates [21]. At the same time, to eliminate the system
error caused by UAV sensors, it is necessary to carry out a geometric correction for UAV
images. The geometric distortion of the UAV image was simulated with the data of control
points selected on the ground in the field flight test. The flight data of the UAV after image
preprocessing is shown in Figure 2.
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Figure 2. UAV flight data in the study area, according to the R, G, B band, the corresponding bands
are the 77th, 50th, and 26th bands, and the wavelengths are 642, 551, and 472 nm, respectively.

c. Water mask extraction
The method of extracting water from remote sensing images is a hot research topic

at present, which has been widely developed in the aspects of water body index and
classification. The normalized difference water index (NDWI) method [22] extracts the
water body from the three UAV flight data obtained after preprocessing, so that the land,
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vegetation, and other surface features outside the water area which have interference are
removed from the image and do not participate in the quantitative retrieval. The calculation
formula is as follows:

NDWI =
Ref547nm − Ref863nm

Ref547nm + Ref863nm
(3)

After the calculation, the region of interest was extracted to collect the water samples.
After the NDWI value was calculated, it was found that when the threshold value was 0.06,
the water could be separated from other land types. Because the study area was located
in the plain area, there was no influence of mountain shadow, so the threshold method
is feasible. The segmentation threshold is set to 0.06 to realize the automatic extraction
of water.

d. Spectral smoothing
In order to solve the influence of the external environment in the process of collecting

ultraviolet spectrum and NIR spectrum data, that is, to eliminate the characteristic spectral
noise outside the band with a high standard deviation of the noise, especially the serious
spectral overlap in the NIR spectrum [23], and reduce the impact of error, low-pass filtering
is used for data smoothing, we used the low-pass filter for image smoothing. The window
width of 5 * 5 pixels centered on the water sampling point was selected to weaken the
positioning error. It can eliminate noise interference and avoid the loss of image local
information due to excessive smoothing. The processed spectrum can better retain the
peak–valley characteristics [24].

3. Methods
3.1. Experimental Process

The research process is shown in Figure 3. Given the artificial control experiment on
the ground, the turbidity retrieval model of the hyperspectral imager was established. The
reflectance data was obtained by preprocessing hyperspectral imager data. The correlation
analysis method selects the best retrieval band according to the relationship between
ground experiment spectral data and turbidity. The R2 and root mean square error (RMSE)
models were used to evaluate. After various forms of model construction and screening,
the model with a higher determination coefficient was selected as the preliminary model for
turbidity retrieval. Then, the spectral information of the field sampling points was extracted
according to the field flight hyperspectral image data, and the synchronous sampling data
verified the model accuracy. Finally, the model with the highest retrieval accuracy was
obtained, and the model was applied to draw the turbidity retrieval map of the flight image
in the study area.

3.2. Model Construction
3.2.1. Model Selection

a. Single-band model
Similar to other water quality parameter retrieval, the single-band model is often used

in turbidity retrieval. The single-band model is a remote sensing retrieval method based
on statistical analysis. The basic principle is to find the band with the highest correlation
with turbidity and establish the retrieval model. Due to the strong optical response of
turbidity index, high reflectivity can fully obtain the information in the water [25,26], so
the single band quantitative model of turbidity can be established. For example, Joshi
used the optimized and atmospheric corrected b3 band (the red band) of Landsat 5 TM to
build the turbidity retrieval model and proposed a seasonal threshold for different seasonal
applications [27].
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b. Band ratio model
The band ratio model is used to select the most remarkable combination with the

measured turbidity from all possible band models and calculate the ratio to build the
retrieval model [28]. When compared with the single-band model, the band ratio model
can eliminate the interference of background noise, such as water surface smoothness and
surrounding environment, and reduce the influence of other pollutants to a certain extent,
to improve the retrieval accuracy [29–34]. The band selection range of the ratio model
is narrow, and the optimal band combination can be found through band iteration after
analyzing the optical characteristics [35]. Fu [36] found that logarithm conversion of spectral
reflectance ratio is helpful for quantitative remote sensing retrieval of turbidity content.

c. Normalized ratio model
Normalization of the spectrum can improve the correlation between turbidity and

remote sensing reflectance. The original spectral reflectance of the hyperspectral imager
is normalized, and the correlation between the normalized spectral reflectance and the
measured turbidity is analyzed. The normalized reflectance model is established by using
the band reflectance and turbidity with the largest correlation coefficient. Cao used the
surface spectrometer data to complete the quantitative hyperspectral retrieval of Nansi
Lake water and finally established the NIR and green band’s normalized ratio model [37].

d. Partial least squares regression model
Partial least squares regression (PLS) is a multiple linear regression modeling method.

In modeling, it integrates three analysis methods: principal component analysis, linear
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regression analysis, and canonical correlation analysis, suitable for data processing and
modeling with complex variables and high correlation. He Yong used NIR sensors to
obtain spectral information of samples and used the PLS method to establish a prediction
model of soil nitrogen content. The prediction effect of the PLS model was outstanding
and stable [38]. Wang used the PLS model based on four machine learning methods to test
the relationship between the total nitrogen concentration extracted from the hyperspectral
images from UAVs during plant growth and the measured total nitrogen concentration [39].

The PLS modeling principle is: Suppose P independent variables {x1, . . . , xp} and the
dependent variables {y1, . . . , yq}, data table X = {x1, . . . , xp} and Y = {y1, . . . , yq}. t1 and
u1 are extracted, the regression of X to t1 and Y to u1 is carried out, respectively. If the
regression equation has reached satisfactory accuracy, then the components are determined.
Otherwise, the residual information after X is interpreted by t1 and Y by u1 will be used
for the second round of extraction components t2 and u2. The regression of X and Y to t2
and u2 will be continued. The above process will be iterated until the accuracy meets the
requirements. In that case, they can be converted into Y’s regression on the original variable
x1, . . . , xp regression equation completed the partial least squares regression modeling.

3.2.2. Modeling through Artificial Control Experiment

We selected the above four models to model the turbidity standard solution data
collected by the hyperspectral imager. Among them, the PLS regression model of hyper-
spectral imager selected the first 161 bands in the range of 400–1000 nm as the research
data. After the standard solution was measured by a hyperspectral imager, the spectral
data were processed; the last 15 bands after 940 nm had a 0 value. The independent
variable matrix X dimension was 29 × 161, where 29 represents turbidity concentrations
and 161 represents the number of bands. The dependent variable was the turbidity value
for each gradient. X and Y were standardized, respectively, and a partial least squares
regression was performed.

3.3. Accuracy Assessment

We used four indicators to evaluate the modeling effect, including the coefficient
of determination R2, mean bias error (MBE), root mean square error (RMSE), and mean
absolute percentage error (MAPE). The basic statistical indicators formula is shown in
Table 2.

Table 2. Basic Statistical Indicators.

Name Formula

Determination coefficient (R2) R2 =
∑n

i=1(y′i −yi)
2

∑n
i=1(yi−yi)

2

Root mean square error (RMSE) RMSE =

√
1
n

n
∑

i=1

(
yi − y′i

)2

Mean bias error (MBE) MBE = 1
n

[
∑n

i=1
(y′i −yi)

2

n

]
Mean absolute percent error (MAPE) MAPE = 1

n

n
∑

i=1

∣∣∣∣ yi−y′i
yi

∣∣∣∣× 100%

where i represents the serial number of validation sample points, and n represents the number of validation
samples, yi is the predicted turbidity value, y′i is the observed turbidity value, yi is the mean of the observed
turbidity value.

4. Results and Discussion
4.1. Spectral Characteristic Analysis

Hyperspectral images have a large amount of data. The signal should be retained in
the band selection process, and the noise should be compressed as much as possible [40].
According to the average spectral image, identify and mark the noise bands in the hyper-
spectral image. Furthermore, apply the PIE software (Pixel Information Expert) to evaluate
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the noise of the water area extracted from the image to find out the noise bands without
changing the coherent bands of the hyperspectral image [41].

Figure 4 shows the estimated noise standard deviation of the hyperspectral reflectance
image. According to the noise shown, the noise corresponds to the blue band near 436 nm
and the NIR band after 863 nm. Consider the following modeling process to avoid using
the bands in the above range for model building.
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According to the reflectance curve in Figure 5, there is a strong reflection peak in the
range of 391–460 nm in the blue band and 770–830 nm in the NIR band. The reflection value
decreases in the range of 720–770 nm due to the strong absorption, and the absorption peak
appears. Due to the fact that the water set in the ground control experiment is single water
with different turbidity concentrations and no other water quality parameters, the change
of water spectral reflectance is relatively consistent. Combined with the results of noise
estimation, it is considered that the blue band of hyperspectral imager should be avoided
in the modeling process. Therefore, it can be confirmed that the regression equation with a
good correlation coefficient can be established in the NIR band.

4.2. Model Retrieval of Turbidity Standard Solution
4.2.1. Manual Control Experimental Models for Hyperspectral Image

According to the correlation between the band of the hyperspectral imager and turbid-
ity standard solution, the high correlation range of the band reflectance is between 800 nm
and 900 nm. Moreover, the single band model with the highest accuracy, 809 nm, as the
independent variable is established.

Figure 6a shows a high correlation between the hyperspectral 700 nm and 500 nm
bands. After calculation, the ratio model of hyperspectral bands with 707 nm and 541 nm
as independent variables was obtained, that is, the ratio model of red and green bands.
This result is also consistent with Xiao’s research results [2]. Figure 6b shows the result of
the normalized ratio correlation. The normalized ratio calculation in the red and NIR band
ranges has a higher correlation with the concentration. Finally, the normalized ratio model
consisting of 669 nm and 551 nm bands was obtained.
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Figure 7a shows that the regression coefficients of each band in the PLS model can
reflect the importance of each variable to the model. Different bands have different effects
on the model [42]. The regression coefficient of each band in the hyperspectral band
450–550 nm is negative, those of 550 nm–800 nm are positive, and those of 850 nm–1000 nm
are negative and then positive. The regression coefficients of all bands in the hyperspectral
band are the same, and before 750 nm band, the regression coefficients fluctuate slightly
around zero plus or minus. It shows that the contribution of each band of hyperspectral to
the final model is relatively balanced.
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According to the analysis, there are 27 principal components, and the contribution rate
of principal component five reached 98%. The contribution rate from principal components
6 to 27 is less than 10%. Moreover, the slope of contribution rate from principal component
five tended to be gentle, as shown in Figure 7b. This result demonstrates that when the
principal component is five, it contains the most original data information. Therefore, select
comps = 5 to build the model. The final model can be expressed as y= 4.8856 x1 + 1.2681x2 +
0.6599x3 + 0.7141x4 + 0.4754x5. Finally, the single-band, band ratio, normalized ratio, and
PLS models of the hyperspectral imager are shown in Table 3.

Table 3. Hyperspectral imager model and modeling accuracy.

Model Type Equation Form R2 RMSE/NTU MBE MAPE/%

Single band T = 17.9 × e19.5 × Rrs (809) 0.86 4 5.66 28.54
Band ratio T = 1305.1× In Rrs (707)

Rrs (541) )+876.2 0.92 3.67 5.23 12.93

Normalized ratio T = 4633.6× Rrs (669)−Rrs (551)
Rrs (669)+Rrs (551)+936.7 0.87 8.82 3.61 20.26

PLS 0.98 6.09 3.81 15.4

where T is the abbreviation of turbidity.

4.2.2. Verification of Model Accuracy

According to the establishment of the above model, we compared the multiple linear
regression models. According to the principle of maximum R2 and minimum RMSE [43],
the band ratio model and the PLS hyperspectral model were selected to verify the accuracy
of the measured and predicted values. We extracted the reflectance of the hyperspectral
image of 18 sampling points and substituted the required band into two models to obtain
the turbidity retrieval value. When compared with the measured turbidity, we obtained
the correlation analysis scatter diagram of the measured and predicted turbidity value, as
shown in Figure 8.

Comparing the predicted values with the measured values of the retrieval model
shows that the predicted values were higher than the actual turbidity values. The MAPE
was 22.46 and 19.35%, respectively, but the relative trend is consistent with the y = x
standard line, R2 is 0.65 and 0.72, respectively. It shows that the two models can retrieve
the turbidity of ponds, irrigation canals, and reservoirs in Dawa District of Panjin City,
Liaoning Province, and the accuracy is good.
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4.3. UAV Image Turbidity Retrieval Using the Optimal Model

The determination coefficient R2 and the RMSE index of the standard solution turbidity
PLS model constructed by the experiment are excellent. Therefore, the hyperspectral image
data obtained by UAVs in the study area were combined with the model for retrieval, and
the water turbidity distribution map was drawn. As shown in Figure 9, the retrieval results
show that the turbidity of the water area in the study area was 5–300 NTU, and most of
them were 5–80 NTU. The overall water area was relatively straightforward, and there was
no apparent pollution phenomenon in the pond and ditch water area. The turbidity at the
boundary of the aquaculture pond was relatively high. The high value in some areas may
be due to the muddy water caused by road water and sediment. The retrieval results agree
with the field water conditions, which are in line with the field investigation results.
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5. Conclusions

In this study, the manual control experiment prepared twenty-nine gradients of tur-
bidity solutions with different concentrations from 0 to 360 NTU. The hyperspectral imager
collected the turbidity solution of each concentration. After that, the field UAV flight data
and simultaneous sampling were carried out to obtain the field turbidity value as the
verification data of this study. After analyzing the spectral characteristics and selecting
the optimal band to establish the model, the single band, band ratio, normalized ratio,
and PLS models were obtained, and R2 were 0.86, 0.92, 0.87, and 0.98, respectively. After
comparison, the band ratio and PLS model were selected to verify the accuracy.

According to the spectral analysis of turbidity solutions with different concentrations,
it can be concluded that the NIR band belongs to the sensitive band of water turbidity,
which is also consistent with the previous research conclusions. In addition, the logarithmic
form of the band ratio model and the PLS model R2 was higher, and the modeling accuracy
was 0.92 and 0.98, respectively, which can be used in the future for further verification
of sampling point accuracy. When combined with the field flight data and synchronous
sampling data, the model obtained by the PLS method had a higher accuracy after being
verified by sampling points, R2 is 0.72, and the band ratio model established by the red
band (707 nm) and green band (541 nm) is 0.65. It can be seen that the PLS method is
more accurate than the traditional modeling method. The modeling results of the artificial
control experiment of the hyperspectral imager can also be used to retrieve turbidity data
collected by the same instrument with high retrieval accuracy.

From the turbidity retrieval model established in this paper, the water quality pa-
rameters of small and medium-sized waters can be quickly monitored through UAV
hyperspectral technology, and the retrieval results are in line with the actual situation. At
the same time, the results of this study can also be used as the basis for the follow-up water
quality research of similar water bodies in the Liaohe estuary. In the future, the actual water
environment can be simulated by manual control experiments, such as adding a variety of
water quality parameters, configuring different solution standard solutions by adjusting
the concentration of various water quality parameters, collecting the corresponding hyper-
spectral information, and establishing the water quality retrieval model of a mixed water
environment. The model established by manual control makes the experiment closer to the
actual situation of a field water body. UAVs can obtain real-time image data with a high
spatial and temporal resolution, which can be used for the monitoring and early warning
of aquaculture and irrigation water pollution and has essential reference significance for
wetland environmental protection.
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