You are currently viewing a new version of our website. To view the old version click .

Symmetry

Symmetry is an international, peer-reviewed, open access journal covering research on symmetry/asymmetry phenomena wherever they occur in all aspects of natural sciences.
Symmetry is published monthly online by MDPI.
Quartile Ranking JCR - Q2 (Multidisciplinary Sciences)

All Articles (16,254)

In this paper, the half-logistic generalized power Lindley distribution, a new two-parameter lifetime model for positive and heavy-tailed data, is proposed and studied. Several mathematical properties are derived, including closed-form expressions for the density, distribution, survival, hazard, and the Lambert W quantile function, as well as series expansions for moments, skewness, kurtosis, and Rényi entropy. Parameter estimation is performed using maximum likelihood and Bayesian methods, where Bayesian estimation is implemented via the Metropolis–Hastings algorithm. A Monte Carlo simulation study is conducted to evaluate the estimators’ performance, showing decreasing bias and mean squared error with larger samples. Finally, three real-world datasets are analyzed to demonstrate that the proposed distribution provides superior fit compared to Lindley-type competitors and the Weibull distribution, based on likelihood values, information criteria, and empirical diagnostics.

12 November 2025

CDF 
  
    G
    (
    x
    ;
    θ
    ,
    β
    )
  
 of the THLGPL distribution for various parameter combinations. The curves demonstrate how 
  
    (
    θ
    ,
    β
    )
  
 jointly influence the distribution’s growth pattern and tail characteristics.

Symmetry-Based Evaluation of Tool Coating Effects on the Machining Behavior of Ti-6Al-4V Using Micro-EDM

  • Shailesh Shirguppikar,
  • Vaibhav Ganachari and
  • Marko Vulović
  • + 4 authors

Titanium alloy Ti-6Al-4V possesses excellent mechanical and corrosion-resistant properties; therefore, it is widely employed in aerospace, automotive, and biomedical fields. However, its poor machinability restricts traditional processing methods. To overcome this limitation, the current work presents a symmetry analysis approach to evaluate the effects of tool coating on the micro-electric discharge machining (micro-EDM) characteristics of Ti-6Al-4V. Tungsten carbide (WC) microelectrodes were fabricated in three forms: uncoated, copper-coated, and carbon-coated. The chemical vapor deposition (CVD) method was used to coat the carbon layer, and the integrity of the coating was confirmed by Energy-Dispersive X-ray Spectroscopy/Analysis (EDS/EDX). The effect of input variables—namely, voltage, capacitance, and spindle rotational speed—on two responses was studied—the machining depth (Z-axis displacement) and tool wear rate (TWR)—using a Taguchi L9 orthogonal array. Analysis conducted using Minitab statistical software 17 revealed that both voltage and capacitance contributed to the response parameters as optimized variables. The comparative study showed that the copper- and carbon-coated WC microtool could obtain a better Z coordinate and lower tool wear ratio compared with those of the uncoated tool. The findings confirm that applying thin conductive coatings to WC tools can significantly improve the stability, precision, and overall symmetry of the micro-EDM process when machining difficult-to-cut titanium alloys.

11 November 2025

Spindle of Hyper-10 EDM.

This study investigates the mechanical behavior and fatigue performance of orthotropic steel bridge decks, with a focus on rib-to-deck welded connections and the impact of geometric symmetry on stress distribution. Two full-scale models with full-penetration butt welds were tested under static compression loads, yielding failure forces of 27 kN (experimental) and 26 kN (analytical), with only a 3% difference. Finite element simulations using ANSYS 16.1 validated these results and enabled parametric studies. Rib plate thicknesses ranging from 5 mm to 9 mm were analyzed to assess their influence on stress distribution and deformation. The geometric ratio h′/tr, which reflects the symmetry of the trapezoidal rib web, was found to be a critical factor in stress behavior. At h′/tr = 38 (tr = 7 mm), compressive and tensile stresses are balanced, demonstrating a symmetric stress field; at h′/tr = 33 (tr = 8 mm), and fatigue performance at the RDW root drops by 47%. Increasing h′/tr improves fatigue life by increasing the number of load cycles to failure. Stress contours revealed that compressive stress concentrates in the rib plate above the weld toes, while tensile stress localizes at the RDW root. The study highlights how symmetric geometric configurations contribute to balanced stress fields and improved fatigue resistance. Multiple linear regression analysis (SPSS-25) produced predictive equations linking stress values to applied load and geometry, offering a reliable tool for estimating stress without full-scale simulations. These findings underscore the importance of optimizing h′/tr and leveraging structural symmetry to enhance resilience and fatigue resistance in welded joints. This research provides practical guidance for improving the design of orthotropic steel bridge decks and contributes to safer, longer-lasting infrastructure.

11 November 2025

The studied trapezoid rib–deck section in the negative region.

The biological accumulation of microcontaminants and associated antibiotic resistance in food poses significant threats to both human and environmental health. Therefore, it is particularly crucial to design and develop methods of efficient identification and detection. Recently, molecularly imprinted polymers (MIPs) and aptamers (Apts), as novel hybrid recognition elements, have received widespread attention from researchers. Because the dual recognition-based sensors have demonstrated enhanced performance and desirable characteristics, including high sensitivity, strong binding affinity, a low detection limit, and excellent stability under harsh environmental conditions, which are expected to be applied in food safety fields. This paper compares the characteristics of MIP and Apt, highlighting the significant advantages of molecularly imprinted polymer–aptamer (MIP-Apt) dual recognition in selectivity, sensitivity, and stability, which stems from their symmetric integration, akin to an extension of the ‘lock-and-key’ model. It then systematically discusses three synthetic strategies for MIP-Apt hybrid recognition systems and their applications for food safety detection, focusing on analyzing their detection strategies, sensing mechanisms, construction methodologies, performance evaluations, and potential application value. It also offers substantive perspectives on both the prevailing limitations and promising developmental pathways for MIP-Apt hybrid recognition-based sensing platforms.

11 November 2025

Comparison between MIP and Apt and advantages of MIP-Apt over single recognition.

News & Conferences

Issues

Open for Submission

Editor's Choice

Reprints of Collections

Electron Diffraction and Structural Imaging
Reprint

Electron Diffraction and Structural Imaging

Editors: Partha Pratim Das, Arturo Ponce-Pedraza, Enrico Mugnaioli, Stavros Nicolopoulos

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Symmetry - ISSN 2073-8994