Emerging Contaminants in Coastal Landscape Park, South Baltic Sea Region: Year-Round Monitoring of Treated Wastewater Discharge into Czarna Wda River
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling Details
2.1.1. Characteristics of the Chosen Research Object
2.1.2. Sampling
2.2. Analytical Methods
2.2.1. Pharmaceuticals and Personal Care Products Determination
2.2.2. Risk Assessment
2.2.3. Statistical Analysis
3. Results
3.1. Temporal Variation of Selected PPCPs
3.2. Multivariate Data Correlation
3.3. Risk Assessment Results
4. Discussion
4.1. Temporal Variation of Selected PPCPs
4.1.1. UV Filters
4.1.2. β-Blockers
4.1.3. Antibiotics
4.1.4. Analgesic and Antipyretic Drug
4.1.5. Anticonvulsants and Metabolites
4.2. Correlation and Compositional Analysis of PPCPs
4.3. Risk Assessment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
APAP | Acetaminophen (paracetamol) |
ATE | Atenolol |
BP-1 | Benzophenone 1 |
BP-3 | Benzophenone 3 |
CAS | Conventional Activated Sludge |
CBZ | Carbamazepine |
CBZ-epoxide | Carbamazepine 10,11 epoxide |
DIC | Diclofenac |
EHMC | Ethylhexyl methoxycinnamate |
HCA | Hierarchical Cluster Analysis |
HRT | Hydraulic Retention Time |
LI-CBZ | Licarbazepine |
MBRs | Membrane Bioreactors |
MET | Metoprolol |
OTC | Over-the-Counter (non-prescription drugs) |
PAC | Powdered-Activated Carbon |
PCA | Principal Component Analysis |
PE | Population Equivalent |
PPCP | Pharmaceuticals and Personal Care Products |
PROP | Propranolol |
RQ | Risk Quotient |
SMX | Sulfamethoxazole |
SRT | Sludge Retention Time |
TRI | Trimethoprim |
TWW | Treated Wastewater |
WWTP | Wastewater Treatment Plant |
UTWW | Untreated Wastewater |
References
- HELCOM. Thematic Assessment of Biodiversity 2016–2021. In Baltic Sea Environment Proceedings No. 191; HELCOM: Helsinki, Finland, 2023; Available online: https://helcom.fi/wp-content/uploads/2023/03/HELCOM-Thematic-assessment-of-biodiversity-2016-2021-Main-report.pdf (accessed on 5 June 2025).
- Inácio, M.; Karnauskaitė, D.; Baltranaitė, E.; Kalinauskas, M.; Bogdzevič, K.; Gomes, E.; Pereira, P. Ecosystem Services of the Baltic Sea: An Assessment and Mapping Perspective. Geogr. Sustain. 2020, 1, 256–265. [Google Scholar] [CrossRef]
- Heckwolf, M.J.; Peterson, A.; Jänes, H.; Horne, P.; Künne, J.; Liversage, K.; Sajeva, M.; Reusch, T.B.H.; Kotta, J. From Ecosystems to Socio-Economic Benefits: A Systematic Review of Coastal Ecosystem Services in the Baltic Sea. Sci. Total Environ. 2021, 755, 142565. [Google Scholar] [CrossRef]
- HELCOM State of the Baltic Sea. Third HELCOM Holistic Assessment 2016–2021. Baltic Sea Environment Proceedings N°194. 2023. Available online: https://stateofthebalticsea.helcom.fi/ (accessed on 5 June 2025).
- Wang, H.; Xi, H.; Xu, L.; Jin, M.; Zhao, W.; Liu, H. Ecotoxicological Effects, Environmental Fate and Risks of Pharmaceutical and Personal Care Products in the Water Environment: A Review. Sci. Total Environ. 2021, 788, 147819. [Google Scholar] [CrossRef]
- Grenni, P.; Ancona, V.; Barra Caracciolo, A. Ecological Effects of Antibiotics on Natural Ecosystems: A Review. Microchem. J. 2018, 136, 25–39. [Google Scholar] [CrossRef]
- Rehman, M.U.; Nisar, B.; Mohd Yatoo, A.; Sehar, N.; Tomar, R.; Tariq, L.; Ali, S.; Ali, A.; Mudasir Rashid, S.; Bilal Ahmad, S.; et al. After Effects of Pharmaceuticals and Personal Care Products (PPCPs) on the Biosphere and Their Counteractive Ways. Sep. Purif. Technol. 2024, 342, 126921. [Google Scholar] [CrossRef]
- Świacka, K.; Maculewicz, J.; Kowalska, D.; Grace, M.R. Do Pharmaceuticals Affect Microbial Communities in Aquatic Environments? A Review. Front. Environ. Sci. 2023, 10, 15. [Google Scholar] [CrossRef]
- Falkenmark, M.; Mikulski, Z. The Baltic Sea-A Semi-Enclosed Sea, as Seen by the Hydrologist. Hydrol. Res. 1975, 6, 115–136. [Google Scholar] [CrossRef]
- Lin, M.; She, J.; Murawski, J.; Hou, X.; Qiao, J. Long-Term Environmental Risks of the Baltic Sea’s ‘Memory Effect’ Revealed by Ocean Modeling and Observation of Reprocessing-Derived Radiotracers. J. Hazard. Mater. 2023, 443, 130144. [Google Scholar] [CrossRef]
- Węsławski, J.M.; Kryla-Straszewska, L.; Piwowarczyk, J.; Urbański, J.; Warzocha, J.; Kotwicki, L.; Włodarska-Kowalczuk, M.; Wiktor, J. Habitat Modelling Limitations–Puck Bay, Baltic Sea–a Case Study**This Study Represents a Contribution to the Project ‘Advanced Modelling Tool for Scenarios of the Baltic Sea Ecosystem to Support Decision Making (ECOSUPPORT)’, Which Has Received Fundin. Oceanologia 2013, 55, 167–183. [Google Scholar] [CrossRef]
- Galatius, A.; Teilmann, J.; Dähne, M.; Ahola, M.; Westphal, L.; Kyhn, L.A.; Pawliczka, I.; Olsen, M.T.; Dietz, R. Grey Seal Halichoerus Grypus Recolonisation of the Southern Baltic Sea, Danish Straits and Kattegat. Wildl. Biol. 2020, 2020, 1–10. [Google Scholar] [CrossRef]
- HELCOM Distribution of Baltic Seals–Grey Seals. HELCOM Core Indicator Report. 2023. Available online: https://indicators.helcom.fi/wp-content/uploads/2023/04/Distribution-of-Baltic-Seals-Grey-seals_Final_October_2023.pdf (accessed on 5 June 2025).
- Marchowski, D.; Ławicki, Ł.; Kaliciuk, J. Management of Marine Natura 2000 Sites as Exemplified by Seabirds Wintering in the Baltic Sea: The Case of Poland. Diversity 2022, 14, 1081. [Google Scholar] [CrossRef]
- Srain, H.S.; Beazley, K.F.; Walker, T.R. Pharmaceuticals and Personal Care Products and Their Sublethal and Lethal Effects in Aquatic Organisms. Environ. Rev. 2021, 29, 142–181. [Google Scholar] [CrossRef]
- Wilkinson, J.L.; Hooda, P.S.; Barker, J.; Barton, S.; Swinden, J. Ecotoxic Pharmaceuticals, Personal Care Products, and Other Emerging Contaminants: A Review of Environmental, Receptor-Mediated, Developmental, and Epigenetic Toxicity with Discussion of Proposed Toxicity to Humans. Crit. Rev. Environ. Sci. Technol. 2016, 46, 336–381. [Google Scholar] [CrossRef]
- Skarakis, N.; Skiniti, G.; Tournaki, S.; Tsoutsos, T. Necessity to Assess the Sustainability of Sensitive Ecosystems: A Comprehensive Review of Tourism Pressures and the Travel Cost Method. Sustainability 2023, 15, 12064. [Google Scholar] [CrossRef]
- UNESCO; HELCOM. Pharmaceuticals in the Aquatic Environment of the Baltic Sea Region–A Status Report; UNESCO Emerging Pollutants in Water Series–No. 1; UNESCO Publishing: Paris, France, 2017; Available online: https://helcom.fi/wp-content/uploads/2019/08/BSEP149.pdf (accessed on 5 June 2025).
- Cizmas, L.; Sharma, V.K.; Gray, C.M.; McDonald, T.J. Pharmaceuticals and Personal Care Products in Waters: Occurrence, Toxicity, and Risk. Environ. Chem. Lett. 2015, 13, 381–394. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, B.; Sengar, A.; Ahamad, A.; Waris, R.F. Pharmaceuticals and Personal Care Products: Occurrence, Detection, Risk, and Removal Technologies in Aquatic Environment. In Contamination of Water; Elsevier: Amsterdam, The Netherlands, 2021; pp. 265–284. [Google Scholar]
- Chaves, M.D.J.S.; Kulzer, J.; de Lima, P.D.R.P.; Barbosa, S.C.; Primel, E.G. Updated Knowledge, Partitioning and Ecological Risk of Pharmaceuticals and Personal Care Products in Global Aquatic Environments. Environ. Sci. Process Impacts 2022, 24, 1982–2008. [Google Scholar] [CrossRef]
- Felis, E.; Kalka, J.; Sochacki, A.; Kowalska, K.; Bajkacz, S.; Harnisz, M.; Korzeniewska, E. Antimicrobial Pharmaceuticals in the Aquatic Environment-Occurrence and Environmental Implications. Eur. J. Pharmacol. 2020, 866, 172813. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Removal of Pharmaceuticals and Personal Care Products (PPCPs) from Wastewater: A Review. J. Environ. Manage. 2016, 182, 620–640. [Google Scholar] [CrossRef]
- Chaturvedi, P.; Shukla, P.; Giri, B.S.; Chowdhary, P.; Chandra, R.; Gupta, P.; Pandey, A. Prevalence and Hazardous Impact of Pharmaceutical and Personal Care Products and Antibiotics in Environment: A Review on Emerging Contaminants. Environ. Res. 2021, 194, 110664. [Google Scholar] [CrossRef]
- Kovalakova, P.; Cizmas, L.; McDonald, T.J.; Marsalek, B.; Feng, M.; Sharma, V.K. Occurrence and Toxicity of Antibiotics in the Aquatic Environment: A Review. Chemosphere 2020, 251, 126351. [Google Scholar] [CrossRef]
- Martinez, J.L. Environmental Pollution by Antibiotics and by Antibiotic Resistance Determinants. Environ. Pollut. 2009, 157, 2893–2902. [Google Scholar] [CrossRef]
- Gomez Cortes, L.; Porcel Rodriguez, E.; Marinov, D.; Sanseverino, I.; Lettieri, T. Selection of Substances for the 5th Watch List Under the Water Framework Directive. Publications Office of the European Union. 2025. Available online: https://data.europa.eu/doi/10.2760/956398 (accessed on 5 June 2025).
- DIRECTIVE (EU) 2024/3019 of the European Parliament and of the Council of 27 November 2024 Concerning Urban Wastewater Treatment (Recast). 2024. Available online: https://eur-lex.europa.eu/eli/dir/2024/3019/oj/eng (accessed on 5 June 2025).
- Adeleye, A.S.; Xue, J.; Zhao, Y.; Taylor, A.A.; Zenobio, J.E.; Sun, Y.; Han, Z.; Salawu, O.A.; Zhu, Y. Abundance, Fate, and Effects of Pharmaceuticals and Personal Care Products in Aquatic Environments. J. Hazard. Mater. 2022, 424, 127284. [Google Scholar] [CrossRef] [PubMed]
- Kasprzyk-Hordern, B.; Dinsdale, R.M.; Guwy, A.J. The Removal of Pharmaceuticals, Personal Care Products, Endocrine Disruptors and Illicit Drugs during Wastewater Treatment and Its Impact on the Quality of Receiving Waters. Water Res. 2009, 43, 363–380. [Google Scholar] [CrossRef] [PubMed]
- Frédéric, O.; Yves, P. Pharmaceuticals in Hospital Wastewater: Their Ecotoxicity and Contribution to the Environmental Hazard of the Effluent. Chemosphere 2014, 115, 31–39. [Google Scholar] [CrossRef]
- Mackuľak, T.; Cverenkárová, K.; Vojs Staňová, A.; Fehér, M.; Tamáš, M.; Škulcová, A.B.; Gál, M.; Naumowicz, M.; Špalková, V.; Bírošová, L. Hospital Wastewater—Source of Specific Micropollutants, Antibiotic-Resistant Microorganisms, Viruses, and Their Elimination. Antibiotics 2021, 10, 1070. [Google Scholar] [CrossRef] [PubMed]
- Gogoi, A.; Mazumder, P.; Tyagi, V.K.; Tushara Chaminda, G.G.; An, A.K.; Kumar, M. Occurrence and Fate of Emerging Contaminants in Water Environment: A Review. Groundw. Sustain. Dev. 2018, 6, 169–180. [Google Scholar] [CrossRef]
- Loos, R.; Carvalho, R.; António, D.C.; Comero, S.; Locoro, G.; Tavazzi, S.; Paracchini, B.; Ghiani, M.; Lettieri, T.; Blaha, L.; et al. EU-Wide Monitoring Survey on Emerging Polar Organic Contaminants in Wastewater Treatment Plant Effluents. Water Res. 2013, 47, 6475–6487. [Google Scholar] [CrossRef]
- Khan, M.T.; Shah, I.A.; Ihsanullah, I.; Naushad, M.; Ali, S.; Shah, S.H.A.; Mohammad, A.W. Hospital Wastewater as a Source of Environmental Contamination: An Overview of Management Practices, Environmental Risks, and Treatment Processes. J. Water Process Eng. 2021, 41, 101990. [Google Scholar] [CrossRef]
- Verlicchi, P.; Al Aukidy, M.; Zambello, E. Occurrence of Pharmaceutical Compounds in Urban Wastewater: Removal, Mass Load and Environmental Risk after a Secondary Treatment—A Review. Sci. Total Environ. 2012, 429, 123–155. [Google Scholar] [CrossRef]
- Kasprzyk-Hordern, B.; Dinsdale, R.M.; Guwy, A.J. The Occurrence of Pharmaceuticals, Personal Care Products, Endocrine Disruptors and Illicit Drugs in Surface Water in South Wales, UK. Water Res. 2008, 42, 3498–3518. [Google Scholar] [CrossRef]
- Kümmerer, K. The Presence of Pharmaceuticals in the Environment Due to Human Use–Present Knowledge and Future Challenges. J. Environ. Manage. 2009, 90, 2354–2366. [Google Scholar] [CrossRef]
- Kisielius, V.; Äystö, L.; Lehtinen, T.; Kharel, S.; Stapf, M.; Zhiteneva, V.; Perkola, N.; Bester, K. Pharmaceutical Emissions on the Example of the Baltic Sea Catchment: Comparing Measurements with Multi-Tier Predictive Models. J. Hazard. Mater. 2024, 476, 134998. [Google Scholar] [CrossRef]
- Ślósarczyk, K.; Jakóbczyk-Karpierz, S.; Różkowski, J.; Witkowski, A.J. Occurrence of Pharmaceuticals and Personal Care Products in the Water Environment of Poland: A Review. Water 2021, 13, 2283. [Google Scholar] [CrossRef]
- Olańczuk-Neyman, K.; Luczkiewicz, A.; Sokołowska, A.; Quant, B.; Bray, R.; Jankowska, K.; Kulba, E. Dezynfekcja Ścieków; Seidel Przywecki: Józefosław, Poland, 2015; ISBN SN-978-83-60956-37-3. [Google Scholar]
- Bączkowska, E.; Pierpaoli, M.; Gamoń, F.; Luczkiewicz, A.; Fudala-Ksiazek, S.; Bray, R.; Szopińska, M. On-Site Medical Wastewater Treatment Enabling Sustainable Water Reclamation: Merged Advanced Oxidation Process for Disinfection, Toxicity, and Contaminants Removal. J. Water Process Eng. 2025, 72, 107562. [Google Scholar] [CrossRef]
- de Bruijn, H.; Heuvelhof, E. Ten Policy Analysis and Decision Making in a Network: How to Improve the Quality of Analysis and the Impact on Decision Making. Impact Assess. Proj. Apprais. 2002, 20, 232–242. [Google Scholar] [CrossRef]
- NORMAN Database. Available online: https://www.norman-network.com/nds/ (accessed on 5 June 2025).
- Deblonde, T.; Hartemann, P. Environmental Impact of Medical Prescriptions: Assessing the Risks and Hazards of Persistence, Bioaccumulation and Toxicity of Pharmaceuticals. Public Health 2013, 127, 312–317. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Jeon, J.; Kim, S.D. Prioritization of Pharmaceuticals and Personal Care Products in the Surface Waters of Korea: Application of an Optimized Risk-Based Methods. Ecotoxicol. Environ. Saf. 2023, 259, 115024. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-project.org/ (accessed on 5 June 2025).
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer-Verlag: New York, NY, USA, 2016. [Google Scholar]
- Wilke, C. Cowplot: Streamlined Plot Theme and Plot Annotations for ‘ggplot2’. R Package Version 1.1.3. 2024. Available online: https://wilkelab.org/cowplot/ (accessed on 5 June 2025).
- Lee, L. NADA: Nondetects and Data Analysis for Environmental Data. R Package Version 1.6-1.1. 2020. Available online: https://cran.r-universe.dev/NADA (accessed on 5 June 2025).
- Julian, P.; Helsel, D. NADA2: Data Analysis for Censored Environmental Data. R Package Version 1.1.6. 2024. Available online: https://CRAN.R-project.org/package=NADA2 (accessed on 5 June 2025).
- Maechler, M.; Rousseeuw, P.; Struyf, A.; Hubert, M.; Hornik, K. Cluster: Cluster Analysis Basics and Extensions. R Package Version 2.1.6. 2023. Available online: https://cran.r-project.org/web/packages/cluster/index.html (accessed on 5 June 2025).
- Kassambara, A.; Mundt, F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R Package Version 1.0.7. 2020. Available online: https://rpkgs.datanovia.com/factoextra/index.html (accessed on 5 June 2025).
- Helsel, D.R. Statistics for Censored Environmental Data Using Minitab® and R; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011; ISBN 9781118162729. [Google Scholar]
- Gago-Ferrero, P.; Alonso, M.B.; Bertozzi, C.P.; Marigo, J.; Barbosa, L.; Cremer, M.; Secchi, E.R.; Azevedo, A.; Lailson-Brito, J., Jr.; Torres, J.P.; et al. First Determination of UV Filters in Marine Mammals. Octocrylene Levels in Franciscana Dolphins. Environ. Sci. Technol. 2013, 47, 5619–5625. [Google Scholar] [CrossRef]
- Gackowska, A.; Przybyłek, M.; Studziński, W.; Gaca, J. Experimental and Theoretical Studies on the Photodegradation of 2-Ethylhexyl 4-Methoxycinnamate in the Presence of Reactive Oxygen and Chlorine Species. Cent. Eur. J. Chem. 2014, 12, 612–623. [Google Scholar] [CrossRef]
- Langford, K.H.; Reid, M.J.; Fjeld, E.; Øxnevad, S.; Thomas, K.V. Environmental Occurrence and Risk of Organic UV Filters and Stabilizers in Multiple Matrices in Norway. Environ. Int. 2015, 80, 1–7. [Google Scholar] [CrossRef]
- Su, C.-L.; Lau, S.H.; Yeh, H.-Y.; Chang, Y.-T. Biological Treatment of Benzophenone-Type UV Filter Wastewater in a Sequencing Batch Reactor (SBR). Int. Biodeterior Biodegrad. 2023, 177, 105534. [Google Scholar] [CrossRef]
- Balmer, M.E.; Buser, H.R.; Müller, M.D.; Poiger, T. Occurrence of Some Organic UV Filters in Wastewater, in Surface Waters, and in Fish from Swiss Lakes. Environ. Sci. Technol. 2005, 39, 953–962. [Google Scholar] [CrossRef]
- Cadena-Aizaga, M.I.; Montesdeoca-Esponda, S.; Torres-Padrón, M.E.; Sosa-Ferrera, Z.; Santana-Rodríguez, J.J. Organic UV Filters in Marine Environments: An Update of Analytical Methodologies, Occurrence and Distribution. Trends Environ. Anal. Chem. 2020, 25, e00079. [Google Scholar] [CrossRef]
- Tsui, M.M.P.; Leung, H.W.; Wai, T.-C.; Yamashita, N.; Taniyasu, S.; Liu, W.; Lam, P.K.S.; Murphy, M.B. Occurrence, Distribution and Ecological Risk Assessment of Multiple Classes of UV Filters in Surface Waters from Different Countries. Water Res. 2014, 67, 55–65. [Google Scholar] [CrossRef]
- Fisch, K.; Waniek, J.J.; Schulz-Bull, D.E. Occurrence of Pharmaceuticals and UV-Filters in Riverine Run-Offs and Waters of the German Baltic Sea. Mar. Pollut. Bull. 2017, 124, 388–399. [Google Scholar] [CrossRef] [PubMed]
- Apel, C.; Joerss, H.; Ebinghaus, R. Environmental Occurrence and Hazard of Organic UV Stabilizers and UV Filters in the Sediment of European North and Baltic Seas. Chemosphere 2018, 212, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Orlikowska, A.; Fisch, K.; Schulz-Bull, D.E. Organic Polar Pollutants in Surface Waters of Inland Seas. Mar. Pollut. Bull. 2015, 101, 860–866. [Google Scholar] [CrossRef]
- Sipma, J.; Osuna, M.B.; Emanuelsson, M.A.E.; Castro, P.M.L. Biotreatment of Industrial Wastewaters under Transient-State Conditions: Process Stability with Fluctuations of Organic Load, Substrates, Toxicants, and Environmental Parameters. Crit. Rev. Environ. Sci. Technol. 2010, 40, 147–197. [Google Scholar] [CrossRef]
- Vieno, N.; Tuhkanen, T.; Kronberg, L. Elimination of Pharmaceuticals in Sewage Treatment Plants in Finland. Water Res. 2007, 41, 1001–1012. [Google Scholar] [CrossRef] [PubMed]
- Yi, M.; Sheng, Q.; Sui, Q.; Lu, H. β-Blockers in the Environment: Distribution, Transformation, and Ecotoxicity. Environ. Pollut. 2020, 266, 115269. [Google Scholar] [CrossRef] [PubMed]
- Godoy, A.A.; Kummrow, F.; Pamplin, P.A.Z. Occurrence, Ecotoxicological Effects and Risk Assessment of Antihypertensive Pharmaceutical Residues in the Aquatic Environment-A Review. Chemosphere 2015, 138, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Björlenius, B.; Ripszám, M.; Haglund, P.; Lindberg, R.H.; Tysklind, M.; Fick, J. Pharmaceutical Residues Are Widespread in Baltic Sea Coastal and Offshore Waters–Screening for Pharmaceuticals and Modelling of Environmental Concentrations of Carbamazepine. Sci. Total Environ. 2018, 633, 1496–1509. [Google Scholar] [CrossRef] [PubMed]
- Nödler, K.; Voutsa, D.; Licha, T. Polar Organic Micropollutants in the Coastal Environment of Different Marine Systems. Mar. Pollut. Bull. 2014, 85, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Guerra, P.; Kim, M.; Shah, A.; Alaee, M.; Smyth, S.A. Occurrence and Fate of Antibiotic, Analgesic/Anti-Inflammatory, and Antifungal Compounds in Five Wastewater Treatment Processes. Sci. Total Environ. 2014, 473–474, 235–243. [Google Scholar] [CrossRef]
- Gros, M.; Petrović, M.; Ginebreda, A.; Barceló, D. Removal of Pharmaceuticals during Wastewater Treatment and Environmental Risk Assessment Using Hazard Indexes. Environ. Int. 2010, 36, 15–26. [Google Scholar] [CrossRef]
- Thiebault, T. Sulfamethoxazole/Trimethoprim Ratio as a New Marker in Raw Wastewaters: A Critical Review. Sci. Total Environ. 2020, 715, 136916. [Google Scholar] [CrossRef]
- Project MORPHEUS 2017-2019 Deliverable 4.1, Determination of the Regional Pharmaceutical Burden in 15 Selected WWTPs and Associated Water Bodies Using Chemical Analysis Status in Four Coastal Regions of the South Baltic Sea Germany, Lithuania, Poland and Sweden. 2019. Available online: https://www.morpheus-project.eu/downloads/ (accessed on 5 June 2025).
- Zhou, S.; Di Paolo, C.; Wu, X.; Shao, Y.; Seiler, T.-B.; Hollert, H. Optimization of Screening-Level Risk Assessment and Priority Selection of Emerging Pollutants–The Case of Pharmaceuticals in European Surface Waters. Environ. Int. 2019, 128, 1–10. [Google Scholar] [CrossRef]
- Yang, S.-F.; Lin, C.-F.; Wu, C.-J.; Ng, K.-K.; Yu-Chen Lin, A.; Andy Hong, P.-K. Fate of Sulfonamide Antibiotics in Contact with Activated Sludge–Sorption and Biodegradation. Water Res. 2012, 46, 1301–1308. [Google Scholar] [CrossRef]
- Kot-Wasik, A.; Jakimska, A.; Śliwka-Kaszyńska, M. Occurrence and Seasonal Variations of 25 Pharmaceutical Residues in Wastewater and Drinking Water Treatment Plants. Environ. Monit. Assess. 2016, 188, 661. [Google Scholar] [CrossRef]
- Vieno, N.; Sillanpää, M. Fate of Diclofenac in Municipal Wastewater Treatment Plant—A Review. Environ. Int. 2014, 69, 28–39. [Google Scholar] [CrossRef]
- Diclofenac. HELCOM Pre-Core Indicator Report. 2018. Available online: https://helcom.fi/wp-content/uploads/2019/08/Diclofenac-HELCOM-pre-core-indicator-2018.pdf (accessed on 5 June 2025).
- Parolini, M. Toxicity of the Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) Acetylsalicylic Acid, Paracetamol, Diclofenac, Ibuprofen and Naproxen towards Freshwater Invertebrates: A Review. Sci. Total Environ. 2020, 740, 140043. [Google Scholar] [CrossRef]
- Kucharski, D.; Nałęcz-Jawecki, G.; Drzewicz, P.; Skowronek, A.; Mianowicz, K.; Strzelecka, A.; Giebułtowicz, J. The Assessment of Environmental Risk Related to the Occurrence of Pharmaceuticals in Bottom Sediments of the Odra River Estuary (SW Baltic Sea). Sci. Total Environ. 2022, 828, 154446. [Google Scholar] [CrossRef]
- aus der Beek, T.; Weber, F.-A.; Bergmann, A.; Hickmann, S.; Ebert, I.; Hein, A.; Küster, A. Pharmaceuticals in the Environment—Global Occurrences and Perspectives. Environ. Toxicol. Chem. 2015, 35, 823–835. [Google Scholar] [CrossRef] [PubMed]
- Meyer, W.; Reich, M.; Beier, S.; Behrendt, J.; Gulyas, H.; Otterpohl, R. Measured and Predicted Environmental Concentrations of Carbamazepine, Diclofenac, and Metoprolol in Small and Medium Rivers in Northern Germany. Environ. Monit. Assess. 2016, 188, 487. [Google Scholar] [CrossRef]
- Kötke, D.; Gandrass, J.; Xie, Z.; Ebinghaus, R. Prioritised Pharmaceuticals in German Estuaries and Coastal Waters: Occurrence and Environmental Risk Assessment. Environ. Pollut. 2019, 255, 113161. [Google Scholar] [CrossRef]
- Ternes, T.A. Occurrence of Drugs in German Sewage Treatment Plants and Rivers. Water Res. 1998, 32, 3245–3260. [Google Scholar] [CrossRef]
- Nödler, K.; Hillebrand, O.; Idzik, K.; Strathmann, M.; Schiperski, F.; Zirlewagen, J.; Licha, T. Occurrence and Fate of the Angiotensin II Receptor Antagonist Transformation Product Valsartan Acid in the Water Cycle–A Comparative Study with Selected β-Blockers and the Persistent Anthropogenic Wastewater Indicators Carbamazepine and Acesulfame. Water Res. 2013, 47, 6650–6659. [Google Scholar] [CrossRef]
- Jelic, A.; Gros, M.; Ginebreda, A.; Cespedes-Sánchez, R.; Ventura, F.; Petrovic, M.; Barcelo, D. Occurrence, Partition and Removal of Pharmaceuticals in Sewage Water and Sludge during Wastewater Treatment. Water Res. 2011, 45, 1165–1176. [Google Scholar] [CrossRef] [PubMed]
- Archer, E.; Petrie, B.; Kasprzyk-Hordern, B.; Wolfaardt, G.M. The Fate of Pharmaceuticals and Personal Care Products (PPCPs), Endocrine Disrupting Contaminants (EDCs), Metabolites and Illicit Drugs in a WWTW and Environmental Waters. Chemosphere 2017, 174, 437–446. [Google Scholar] [CrossRef]
- Rojewska, A.; Godlewska, K.; Paszkiewicz, M.; Siedlewicz, G.; Pazdro, K.; Białk-Bielińska, A. Occurrence and Risk Assessment of the Residues of Pharmaceuticals and Other Micropollutants in the Marine Sediments–Preliminary Study for the Baltic Sea. Mar. Pollut. Bull. 2025, 215, 117875. [Google Scholar] [CrossRef]
- Ferrari, B.; Paxéus, N.; Giudice, R.L.; Pollio, A.; Garric, J. Ecotoxicological Impact of Pharmaceuticals Found in Treated Wastewaters: Study of Carbamazepine, Clofibric Acid, and Diclofenac. Ecotoxicol. Environ. Saf. 2003, 55, 359–370. [Google Scholar] [CrossRef]
- Santos, L.H.M.L.M.; Araújo, A.N.; Fachini, A.; Pena, A.; Delerue-Matos, C.; Montenegro, M.C.B.S.M. Ecotoxicological Aspects Related to the Presence of Pharmaceuticals in the Aquatic Environment. J. Hazard. Mater. 2010, 175, 45–95. [Google Scholar] [CrossRef]
- Pérez, S.; Eichhorn, P.; Aga, D.S. Evaluating the Biodegradability of Sulfamethazine, Sulfamethoxazole, Sulfathiazole, and Trimethoprim at Different Stages of Sewage Treatment. Environ. Toxicol. Chem. 2005, 24, 1361–1367. [Google Scholar] [CrossRef] [PubMed]
- Project MORPHEUS 2017-2019 Deliverable 5.2, Zaawansowane Technologie Usuwania Farmaceutyków I Mikrozanieczyszczen Ze Scieków Na Przyktadzie Czterech Przybrzeznych Rejonów Morza Bartyckiego Niemiec, Szwecji, Polski i Litwy. 2019. Available online: https://eucc-d-inline.databases.eucc-d.de/files/documents/00001250_MORPHEUS_DEL5.2_POL.pdf (accessed on 5 June 2025).
- Sousa, J.C.G.; Ribeiro, A.R.; Barbosa, M.O.; Pereira, M.F.R.; Silva, A.M.T. A Review on Environmental Monitoring of Water Organic Pollutants Identified by EU Guidelines. J. Hazard. Mater. 2018, 344, 146–162. [Google Scholar] [CrossRef] [PubMed]
- Radjenović, J.; Petrović, M.; Barceló, D. Fate and Distribution of Pharmaceuticals in Wastewater and Sewage Sludge of the Conventional Activated Sludge (CAS) and Advanced Membrane Bioreactor (MBR) Treatment. Water Res. 2009, 43, 831–841. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Flowers, R.C.; Weinberg, H.S.; Singer, P.C. Occurrence and Removal of Pharmaceuticals and Personal Care Products (PPCPs) in an Advanced Wastewater Reclamation Plant. Water Res. 2011, 45, 5218–5228. [Google Scholar] [CrossRef]
- Alygizakis, N.A.; Urík, J.; Beretsou, V.G.; Kampouris, I.; Galani, A.; Oswaldova, M.; Berendonk, T.; Oswald, P.; Thomaidis, N.S.; Slobodnik, J.; et al. Evaluation of Chemical and Biological Contaminants of Emerging Concern in Treated Wastewater Intended for Agricultural Reuse. Environ. Int. 2020, 138, 105597. [Google Scholar] [CrossRef]
- La Cognata, R.; Piazza, S.; Freni, G. Pollutant Monitoring Solutions in Water and Sewerage Networks: A Scoping Review. Water 2025, 17, 1423. [Google Scholar] [CrossRef]
- European Commission “What Is the One Health Approach?”. Available online: https://health.ec.europa.eu/one-health/overview_en (accessed on 5 June 2025).
PPCP | p-Value |
---|---|
BP-1 | 1.34 × 10−6 |
BP-3 | 8.81 × 10−6 |
EHMC | 8.86 × 10−6 |
MET | 1.73 × 10−7 |
PROP | 8.52 × 10−4 |
ATE | 1.09 × 10−4 |
SMX | 0.0485 |
TRI | 0.0695 |
DIC | 0.8187 |
APAP | 6.24 × 10−31 |
CBZ | 0.2808 |
CBZ-10,11-epoxide | 0.7583 |
LI-CBZ | 0.0635 |
Compound Class | UV Filters | b-Blockers | Antibiotic | Analgesic and Antipyretic Drugs | Anticonvulsants and It’s Metabolites | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Compound name | BP-1 | BP-3 | EHMC | MET | PROP | ATE | SMX | TRI | DIC | APAP | CBZ | CBZ-epoxide | LI-CBZ | |
CAS No. | 131-56-6 | 131-57-7 | 83834-59-7 | 51384-51-1 | 525-66-6 | 29122-68-7 | 15307-86-5 | 103-90-2 | 723-46-6 | 738-70-5 | 298-46-4 | 36507-30-9 | 35079-97-1 | |
Lowest PNEC fresh-water | mgL−1 | 1.71 | 1.54 | 0.13 | 8.60 | 0.16 | 150.0 | 0.60 | 120.0 | 0.05 | 46.0 | 2.0 | 2.57 | 1.91 |
RQ for treated wastewater samples | ||||||||||||||
value/risk | ||||||||||||||
July 2021 | Highest value TWW | <0.1 | <0.1 | 1.3 | <0.1 | <0.1 | <0.1 | 0.2 | <0.1 | 58 | <0.1 | 1.1 | 0.1 | 0.3 |
Lowest value TWW | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | 8.6 | <0.1 | 0.4 | <0.1 | 0.1 | |
Average value TWW | <0.1 | <0.1 | 0.2 | <0.1 | <0.1 | <0.1 | 0.1 | <0.1 | 24 | <0.1 | 0.7 | <0.1 | 0.2 | |
September 2021 | Highest value TWW | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | 0.1 | <0.1 | 50 | <0.1 | 0.7 | <0.1 | <0.1 |
Lowest value TWW | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | 13 | <0.1 | 0.3 | <0.1 | <0.1 | |
Average value TWW | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | 29 | <0.1 | 0.5 | <0.1 | <0.1 | |
February 2022 | Highest value TWW | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | 0.2 | <0.1 | 36 | <0.1 | 0.5 | <0.1 | 0.1 |
Lowest value TWW | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | 7.7 | <0.1 | <0.1 | <0.1 | <0.1 | |
Average value TWW | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | 21 | <0.1 | 0.2 | <0.1 | <0.1 | |
May 2022 | Highest value TWW | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | 0.2 | <0.1 | 61 | <0.1 | 0.7 | 0.2 | <0.1 |
Lowest value TWW | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | 17 | <0.1 | 0.2 | <0.1 | <0.1 | |
Average value TWW | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | 35 | <0.1 | 0.5 | <0.1 | <0.1 | |
July 2022 | Highest value TWW | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | 0.2 | <0.1 | 44 | <0.1 | 0.9 | <0.1 | 0.2 |
Lowest value TWW | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | 11 | <0.1 | 0.2 | <0.1 | <0.1 | |
Average value TWW | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | 0.2 | <0.1 | 26 | <0.1 | 0.6 | <0.1 | <0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bączkowska, E.; Jankowska, K.; Artichowicz, W.; Fudala-Ksiazek, S.; Szopińska, M. Emerging Contaminants in Coastal Landscape Park, South Baltic Sea Region: Year-Round Monitoring of Treated Wastewater Discharge into Czarna Wda River. Resources 2025, 14, 123. https://doi.org/10.3390/resources14080123
Bączkowska E, Jankowska K, Artichowicz W, Fudala-Ksiazek S, Szopińska M. Emerging Contaminants in Coastal Landscape Park, South Baltic Sea Region: Year-Round Monitoring of Treated Wastewater Discharge into Czarna Wda River. Resources. 2025; 14(8):123. https://doi.org/10.3390/resources14080123
Chicago/Turabian StyleBączkowska, Emilia, Katarzyna Jankowska, Wojciech Artichowicz, Sylwia Fudala-Ksiazek, and Małgorzata Szopińska. 2025. "Emerging Contaminants in Coastal Landscape Park, South Baltic Sea Region: Year-Round Monitoring of Treated Wastewater Discharge into Czarna Wda River" Resources 14, no. 8: 123. https://doi.org/10.3390/resources14080123
APA StyleBączkowska, E., Jankowska, K., Artichowicz, W., Fudala-Ksiazek, S., & Szopińska, M. (2025). Emerging Contaminants in Coastal Landscape Park, South Baltic Sea Region: Year-Round Monitoring of Treated Wastewater Discharge into Czarna Wda River. Resources, 14(8), 123. https://doi.org/10.3390/resources14080123