Agroforestry as a Resource for Resilience in the Technological Era: The Case of Ukraine
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Agroforestry in Ukraine: Status and Challenges
3.1.1. Biophysical Condition of Shelterbelts
3.1.2. Socio-Economic Determinants of Degradation
3.1.3. Institutional and Legal Barriers
3.1.4. Financing Landscapes and Support Programs
3.1.5. Climate-Change Interactions
3.2. Global Experience in Agroforestry Development
3.2.1. Overview of Global Trends and Regional Specificities
3.2.2. Institutional Frameworks and Policy Instruments
3.2.3. Climate Adaptation and Mitigation Outcomes
3.2.4. Economic Incentives and Market Mechanisms
3.3. Digital and AI-Enabled Approaches to Agroforestry
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moldavan, L.; Pimenowa, O.; Prus, P.; Pimenow, S. Pollution Problems in the Economic Agricultural Sector: Evaluating the Impact on Natural Resources and Solutions for Improvement. Sustainability 2024, 16, 11294. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Overview of Agroforestry; FAO: Rome, Italy, 2025; Available online: https://www.fao.org/agroforestry/about-agroforestry/overview/en/ (accessed on 18 June 2025).
- Ghimire, M.; Dahal, D.; Giri, S.; Khanal, A.; Bhatt, D. Agroforestry systems in Nepal: Enhancing food security and rural livelihoods–a comprehensive review. Food Energy Secur. 2024, 13, e524. [Google Scholar] [CrossRef]
- Quandt, A.; Neufeldt, H.; Gorman, K. Climate change adaptation through agroforestry: Opportunities and gaps. Curr. Opin. Environ. Sustain. 2023, 60, 101244. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Committee on Agriculture: Silvopastoral Systems as a Major Vehicle for Empowering Small Scale Farmers (COAG/2024/3); FAO: Rome, Italy, 2024; Available online: https://openknowledge.fao.org/server/api/core/bitstreams/f7fd8fd9-0384-4446-9ea2-06ac6494fe2f/content (accessed on 16 June 2025).
- Fuentes-Peñailillo, F.; Gutter, K.; Vega, R.; Silva, G.C. Transformative Technologies in Digital Agriculture: Leveraging Internet of Things, Remote Sensing, and Artificial Intelligence for Smart Crop Management. J. Sens. Actuator Netw. 2024, 13, 39. [Google Scholar] [CrossRef]
- Pal, A.; Dubey, S.K.; Goel, S.; Kalita, P.K. Portable Sensors in Precision Agriculture: Assessing Advances and Challenges in Soil Nutrient Determination. TrAC Trends Anal. Chem. 2024, 180, 117981. [Google Scholar] [CrossRef]
- Karunathilake, E.M.B.M.; Le, A.T.; Heo, S.; Chung, Y.S.; Mansoor, S. The Path to Smart Farming: Innovations and Opportunities in Precision Agriculture. Agriculture 2023, 13, 1593. [Google Scholar] [CrossRef]
- Miller, T.; Mikiciuk, G.; Durlik, I.; Mikiciuk, M.; Łobodzińska, A.; Śnieg, M. The IoT and AI in Agriculture: The Time Is Now—A Systematic Review of Smart Sensing Technologies. Sensors 2025, 25, 3583. [Google Scholar] [CrossRef]
- Tan, H.; Wang, L.; Lu, N.; Kou, W.; Wang, H.; Xu, W. Improved Estimation of Aboveground Biomass in Rubber Plantations Using Deep Learning on UAV Multispectral Imagery. Drones 2025, 9, 32. [Google Scholar] [CrossRef]
- Pimenow, S.; Pimenowa, O.; Moldavan, L.; Udova, L.; Wasilewski, M.; Wasilewska, N. Transforming Agriculture into Energy: Unlocking Ukraine’s Bioenergy Potential for Sustainable Post-Conflict Recovery. Energies 2025, 18, 1212. [Google Scholar] [CrossRef]
- Ocaña-Zuñiga, C.; Quiñones-Huatangari, L.; Barboza, E.; Peña, N.C.; Zamora, S.H.; Ojeda, J.M.P. Coffee Rust Severity Analysis in Agroforestry Systems Using Deep Learning in Peruvian Tropical Ecosystems. Agriculture 2025, 15, 39. [Google Scholar] [CrossRef]
- Agyekumhene, C.; de Vries, J.R.; van Paassen, A.; Macnaghten, P.; Schut, M.; Bregt, A. Digital platforms for smallholder credit access: The mediation of trust for cooperation in maize value chain financing. NJAS Wagening. J. Life Sci. 2018, 86–87, 77–88. [Google Scholar] [CrossRef]
- Cravero, A.; Bustamante, A.; Negrier, M.; Galeas, P. Agricultural Big Data Architectures in the Context of Climate Change: A Systematic Literature Review. Sustainability 2022, 14, 7855. [Google Scholar] [CrossRef]
- Furdychko, O.I.; Drobot, O.I.; Dem’yaniuk, O.S.; Tkach, Y.D.; Bunas, A.A. (Eds.) Ekologiia Ahrosfery: Pidruchnyk [Ecology of the Agrosphere: Textbook]; DIA: Kyiv, Ukraine, 2022; Available online: https://www.agroeco.org.ua/wp-content/uploads/Publications/ecology_agrosphere.pdf (accessed on 28 August 2025).
- Natchev, V.; Harnessing AI to Empower Smallholder Farmers: Bridging the Digital Divide for Sustainable Growth. Harvard Advanced Leadership Initiative Social Impact Review. 2024. Available online: https://www.sir.advancedleadership.harvard.edu/articles/harnessing-ai-empower-smallholder-farmers-bridging-digital-divide-sustainable-growth (accessed on 13 June 2025).
- World Bank. Agriculture, Forestry, and Fishing, Value Added (% of GDP)—Ukraine [Data Set]; World Bank: Washington, DC, USA, 2024; Available online: https://data.worldbank.org/indicator/NV.AGR.TOTL.ZS?locations=UA (accessed on 25 August 2025).
- World Bank. Ukraine: Repairing Essential Logistics Infrastructure and Network Connectivity (RELINC) Project—Ukraine’s Transport and Logistics System; World Bank: Washington, DC, USA, 2025; Available online: https://documents1.worldbank.org/curated/en/099061725033525342/pdf/P502442-346a4fd3-882f-46ca-95c9-ce90c0a71619.pdf (accessed on 28 August 2025).
- Food and Agriculture Organization of the United Nations (FAO). Agroforestry for Landscape Restoration: Exploring the Potential of Agroforestry to Enhance the Sustainability and Resilience of Degraded Landscapes; FAO: Rome, Italy, 2017; Available online: https://openknowledge.fao.org/server/api/core/bitstreams/8cd17c6f-051b-4105-866b-dcd344d4ba78/content (accessed on 25 August 2025).
- United States Department of Agriculture, Natural Resources Conservation Service (USDA NRCS). Conservation Practice Standard 380: Windbreak-Shelterbelt Establishment and Renovation; USDA NRCS: Washington, DC, USA, 2021. Available online: https://www.nrcs.usda.gov/sites/default/files/2022-10/Windbreak-Shelterbelt_Establishment_380_NHCP_CPS_2021.pdf (accessed on 20 August 2025).
- Cabinet of Ministers of Ukraine. Regulation on the Maintenance and Preservation of Protective Forest Belts Located on Agricultural Lands (Resolution No. 650). 2020. Available online: https://zakon.rada.gov.ua/laws/show/650-2020-%D0%BF#Text (accessed on 19 June 2025).
- Matsala, M.; Odruzhenko, A.; Sydorenko, S.; Sydorenko, S. War threatens 18% of protective plantations in eastern agroforestry region of Ukraine. For. Ecol. Manag. 2025, 578, 122361. [Google Scholar] [CrossRef]
- Danylenko, I.; Bohaienko, V.; Liutnytskyi, S.; Mykhaylov, Y. Determination of Optimal Locations of Shelterbelts in Southern Ukraine Using Remote Sensing Data. J. Indian. Soc. Remote Sens. 2025, 53, 1495–1505. [Google Scholar] [CrossRef]
- Breus, D.; Nikonchuk, N.; Pismennyi, O. Influence of War on the Forest Plantations of the Left Bank Kherson Region. Eur. J. For. Eng. 2024, 10, 123–132. [Google Scholar] [CrossRef]
- Maliuha, V.; Sovakov, O.; Dudarets, S. The current state of windbreaks in the Left Bank Forest-Steppe of Ukraine. Ukr. J. For. Wood Sci. 2023, 14, 53–66. [Google Scholar] [CrossRef]
- Jose, S. Agroforestry for ecosystem services and environmental benefits. Agroforest Syst. 2009, 76, 1–10. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Supporting the Restoration of Degraded Forest Steppe and Steppe Zones in Ukraine Through Integrated Natural Resources Management (Project GCP/UKR/004/GFF); FAO: Rome, Italy, 2025; Available online: https://www.fao.org/partnerships/resource-partners/results/detail/supporting-the-restoration-of-degraded-forest-steppe-and-steppe-zones-in-ukraine-through-integrated-natural-resources-management-gcp-ukr-004-gff/en/ (accessed on 18 June 2025).
- Tkachuk, O.; Viter, N.; Pankova, S.; Titarenko, O.; Yakovets, L. The current environmental state of the field protective forest belts of the forest-steppe of Ukraine. Int. J. Ecosyst. Ecol. Sci. 2023, 13, 1–8. [Google Scholar] [CrossRef]
- United Nations Environment Programme (UNEP). Climate Oriented Agroforestry for Shelterbelts: Estimating Biomass Through AI and Remote Sensing; UNEP Tech Action: Copenhagen, Denmark, 2021; Available online: https://tech-action.unepccc.org/wp-content/uploads/sites/2/2021/12/agroforestry.pdf (accessed on 18 June 2025).
- European Agroforestry Federation (EURAF). Ukraine. Available online: https://euraf.isa.utl.pt/countries/ukraine (accessed on 18 June 2025).
- Bioenergy Association of Ukraine. Analysis of Additional Sources of Wood Fuel in Ukraine (Position Paper No. 15); Bioenergy Association of Ukraine: Kyiv, Ukraine, 2016; Available online: https://uabio.org/wp-content/uploads/2016/04/position-paper-uabio-15-en.pdf (accessed on 18 June 2025).
- Pereira, P.; Bašić, F.; Bogunovic, I.; Barcelo, D. Russian-Ukrainian war impacts the total environment. Sci. Total Environ. 2022, 837, 155865. [Google Scholar] [CrossRef]
- Ukraine. Ukaz of the President of Ukraine No. 720/95 “On the Procedure for Allocation of Land Shares Transferred to Collective Ownership of Agricultural Enterprises and Organizations”. Zakon.rada.gov.ua Database. 1995. Available online: https://zakon.rada.gov.ua/go/720/95#Text (accessed on 27 June 2025).
- Kovalenko, A.; Sakal, O.; Tretiak, N.; Skolskyi, I.; Shtohryn, H.; Tretiak, R. Field shelterbelts: Current state, land use issues and perspective in Ukraine. Sci. Papers. Ser. E. Land Reclam. Earth Obs. Surv. Environ. Eng. 2021, 10, 229–240. [Google Scholar]
- Popov, A.; Tymoshevskyi, V.; Poliakh, V. Costs, Benefits and Obstacles to the Adoption and Retention of Shelterbelts: Regional Perception and Mind Map Analyses for Ukraine. Geomat. Environ. Eng. 2022, 16, 157–176. [Google Scholar] [CrossRef]
- Moldavan, L.; Pimenova, O. “Holdingization” of the agricultural sector of Ukraine: Consequences and ways of their prevention. Manag. Theory Stud. Rural. Bus. Infrastruct. 2021, 43, 217–224. [Google Scholar] [CrossRef]
- Hladun, H.B. Suchasnyi stan lisovykh melioratsii v agrolandshaftakh rivnynnoi chastyny Ukrainy [The current state of forest melioration in agro-landscapes of the flat part of Ukraine]. Agroekologichnyi Zhurnal 2004, 1, 66–71. [Google Scholar]
- Moldavan, L.; Pimenowa, O.; Wasilewski, M.; Wasilewska, N. Crop rotation management in the context of sustainable development of agriculture in Ukraine. Agriculture 2024, 14, 934. [Google Scholar] [CrossRef]
- Tranchina, M.; Reubens, B.; Frey, M.; Mele, M.; Mantino, A. What challenges impede the adoption of agroforestry practices? A global perspective through a systematic literature review. Agrofor. Syst. 2024, 98, 1817–1837. [Google Scholar] [CrossRef]
- Rogoża, J. Ukraine in the Face of A Demographic Catastrophe; OSW Commentary; Ośrodek Studiów Wschodnich: Warszawa, Poland, 2023; Available online: https://www.osw.waw.pl/en/publikacje/osw-commentary/2023-07-11/ukraine-face-a-demographic-catastrophe (accessed on 18 June 2025).
- Wengle, S.; Dankevych, V.; Mamonova, N. Farming the Black Earth: The History and Politics of Ukraine’s Agricultural Land Markets Before, During and After the War; Food and Agriculture Organization of the United Nations: Rome, Italy, 2024; Available online: https://openknowledge.fao.org/server/api/core/bitstreams/96184d0f-e1c3-4c40-9a9e-084e4c25f4a8/content (accessed on 27 July 2025).
- United Nations Economic Commission for Europe; Food and Agriculture Organization of the United Nations. Forest Products Annual Market Review 2022–2023 (UNECE/FAO Forest Products Annual Market Review); UNECE/FAO: Geneva, Switzerland, 2023; Available online: https://unece.org/sites/default/files/2023-11/FPAMR23_WEB.pdf (accessed on 27 July 2025).
- Shelter Cluster Ukraine. Winterization 2024–2025 Lessons Learned; Shelter Cluster: Kyiv, Ukraine, 2025; Available online: https://s3.eu-north-1.amazonaws.com/cdn.sheltercluster.org/public/docs/Winterization%202024-2025%20Lessons%20Learned%20Final%2026_06_2025_0.pdf (accessed on 27 July 2025).
- World Health Organization. Ukraine: 2023–2024 Winter Risk Assessment; WHO: Geneva, Switzerland, 2023; Available online: https://www.who.int/docs/librariesprovider2/default-document-library/risk-assessment-winter-in-ukraine_fin.pdf (accessed on 26 August 2025).
- World Bank. Ukraine Country Forest Note: Growing Green and Sustainable Opportunities (Report No. 149186-UA); World Bank: Washington, DC, USA, 2020; Available online: https://documents1.worldbank.org/curated/en/938941593413817490/pdf/Ukraine-Country-Forest-Note.pdf (accessed on 27 June 2025).
- Verkhovna Rada of Ukraine. Land Code of Ukraine (Law No. 561-XII). 1990. Available online: https://www.wto.org/english/thewto_e/acc_e/ukr_e/wtaccukr88_leg_1.pdf (accessed on 19 June 2025).
- Kulinich, P.F. Pravovyi rezhym zemel’, peredanykh sil’s’kohospodars’kym pidpryiemstvam u kolektyvnu vlasnist’ [Legal regime of lands transferred to agricultural enterprises into collective ownership]. Pidpryiemstvo Hospod. Pravo 2005, 10, 29–32. [Google Scholar]
- Verkhovna Rada of Ukraine. Land Code of Ukraine, Article 22. 2001. Available online: https://kodeksy.com.ua/zemel_nij_kodeks_ukraini/statja-22.htm (accessed on 18 June 2025).
- Verkhovna Rada of Ukraine. On Amendments to Certain Legislative Acts of Ukraine Concerning Resolution of Collective Land Ownership Issues, Improvement of Land-Use Rules in Agricultural Land Areas, Prevention of Raiding, and Encouragement of Irrigation in Ukraine (Law No. 2498-VIII). 2018. Available online: https://zakon.rada.gov.ua/laws/main/2498-19#Text (accessed on 26 August 2025).
- Cabinet of Ministers of Ukraine. Concept for the Development of Agroforestry in Ukraine (Decree No. 725-r). 2013. Available online: https://zakon.rada.gov.ua/laws/show/725-2013-p#Text (accessed on 26 August 2025).
- Cabinet of Ministers of Ukraine. Action Plan for the Implementation of the Concept for the Development of Agroforestry in Ukraine (Order No. 582-r). 2014. Available online: https://zakon.rada.gov.ua/laws/show/582-2014-p#Text (accessed on 26 August 2025).
- Cabinet of Ministers of Ukraine. On approval of the State Targeted program “Forests of Ukraine” for 2010–2015 (Resolution No. 977–2009 p). 2009. Available online: https://zakon.rada.gov.ua/laws/show/977-2009-%D0%BF (accessed on 19 June 2025).
- Cabinet of Ministers of Ukraine. Strategy for Environmental Safety and Adaptation to Climate Change Until 2030 (Resolution No. 1363–2021 p). 2021. Available online: https://zakon.rada.gov.ua/laws/show/1363-2021-p#Text (accessed on 19 June 2025).
- Semenova, I.; Vicente-Serrano, S.M. Long-term variability and trends of meteorological droughts in Ukraine. Int. J. Climatol. 2024, 44, 1849–1866. [Google Scholar] [CrossRef]
- Capua, G.D.; Rahmstorf, S. Extreme weather in a changing climate. Environ. Res. Lett. 2023, 18, 102001. [Google Scholar] [CrossRef]
- European Agroforestry Federation (EURAF). Agroforestry in Ukraine. 20 January 2023. Available online: https://euraf.net/2023/01/20/ukraine/ (accessed on 18 June 2025).
- Krysanov, D.; Dragan, O.; Tkachenko, K. The agricultural sector of the economy of Ukraine in the minds of increasing turbulence. AIC Econ. Manag. 2022, 2, 47–66. [Google Scholar] [CrossRef]
- Gregor, K.; Reyer, C.P.O.; Nagel, T.A.; Mäkelä, A.; Krause, A.; Knoke, T.; Rammig, A. Reconciling the EU forest, biodiversity, and climate strategies. Glob. Change Biol. 2024, 30, e17431. [Google Scholar] [CrossRef]
- Senf, C.; Pflugmacher, D.; Zhiqiang, Y.; Sebald, J.; Knorn, J.; Neumann, M.; Hostert, P.; Seidl, R. Canopy mortality has doubled in Europe’s temperate forests over the last three decades. Nat. Commun. 2018, 9, 4978. [Google Scholar] [CrossRef] [PubMed]
- Senf, C.; Seidl, R. Persistent impacts of the 2018 drought on forest disturbance regimes in Europe. Biogeosciences 2021, 18, 5223–5230. [Google Scholar] [CrossRef]
- Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J.; Ascoli, D.; Petr, M.; Honkaniemi, J.; et al. Forest disturbances under climate change. Nat. Clim. Change 2017, 7, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Allen, C.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.; et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef]
- Enescu, C.M.; Dinca, L.; Ilie, L.; Mihalache, M.; Murariu, G.; Constandache, C. Agricultural Benefits of Shelterbelts and Windbreaks: A Bibliometric Analysis. Agriculture 2025, 15, 1204. [Google Scholar] [CrossRef]
- Castle, S.E.; Miller, D.C.; Merten, N.; Ordonez, P.J.; Baylis, K. Evidence for the impacts of agroforestry on ecosystem services and human well-being in high-income countries: A systematic map. Environ. Evid. 2022, 11, 10. [Google Scholar] [CrossRef]
- Torralba, M.; Fagerholm, N.; Burgess, P.J.; Moreno, G.; Plieninger, T. Do European agroforestry systems enhance biodiversity and ecosystem services? A meta-analysis. Agric. Ecosyst. Environ. 2016, 230, 150–161. [Google Scholar] [CrossRef]
- Thiesmeier, A.; Zander, P. Can agroforestry compete? A scoping review of the economic performance of agroforestry practices in Europe and North America. For. Policy Econ. 2023, 150, 102939. [Google Scholar] [CrossRef]
- Mosquera-Losada, M.R.; Santos, M.G.S.; Gonçalves, B.; Ferreiro-Domínguez, N.; Castro, M.; Rigueiro-Rodríguez, A.; González-Hernández, M.P.; Fernández-Lorenzo, J.L.; Romero-Franco, R.; Aldrey-Vázquez, J.A.; et al. Policy challenges for agroforestry implementation in Europe. Front. For. Glob. Change 2023, 6, 1127601. [Google Scholar] [CrossRef]
- Kellerman, T.; Feibel, S.; Smith, M.M.; Bentrup, G.; Batcheler, M.; Macfarland, K. Agroforestry across the United States: Results of the 2022 Census of Agriculture. Agrofor. Syst. 2025, 99, 34. [Google Scholar] [CrossRef]
- Schoeneberger, M.M.; Bentrup, G.; Patel-Weynand, T. (Eds.) Agroforestry: Enhancing Resiliency in U.S. Agricultural Landscapes under Changing Conditions (Gen. Tech. Report WO-96, 228 p.); U.S. Department of Agriculture, Forest Service: Washington, DC, USA, 2017. [Google Scholar] [CrossRef]
- Rizvi, J.; Dhyani, S.K.; Arunachalam, A.; Rouge, J.C.; Singh, A. The Success of A National Agroforestry Policy in India has Become A Model for Other Countries (CIFOR ICRAF Brief No. 9240); Center for International Forestry Research—World Agroforestry (CIFOR ICRAF): Bogor, Indonesia, 2024. [Google Scholar] [CrossRef]
- Singh, K.; Dhyani, S.; Mishra, N.; Bauddh, K.; Byun, C.; Agrawala, M. Land degradation and development in India: Status quo, challenges and opportunities. Land Degrad. Dev. 2024, 35, 2675–2683. [Google Scholar] [CrossRef]
- He, J.; Sikor, T. Notions of justice in payments for ecosystem services: Insights from China’s Sloping Land Conversion Program in Yunnan Province. Land Use Policy 2015, 43, 207–216. [Google Scholar] [CrossRef]
- Pimenova, O.; Fylyuk, G. State support of agriculture: The analysis of an experience of Germany. J. Financ. Manag. Acc. 2014, 2, 19–30. [Google Scholar]
- Santiago-Freijanes, J.J.; Rigueiro-Rodríguez, A.; Aldrey, J.A.; Moreno, G.; den Herder, M.; Burgess, P.; Mosquera-Losada, M.R. Understanding Agroforestry Practices in Europe Through Landscape Features Policy Promotion. Agroforest. Syst. 2018, 92, 1105–1115. [Google Scholar] [CrossRef]
- Vaatz, A. Reviving Agroforestry: Unlocking Sustainable Farming Potential in the Baltics. EUKI. 2024. Available online: https://www.euki.de/en/news/reviving-agroforestry-unlocking-sustainable-farming-potential-in-the-baltics/ (accessed on 19 June 2025).
- Sileshi, G.W.; Dagar, J.C.; Nath, A.J.; Kuntashula, E. Agroforestry as a climate-smart agriculture: Strategic interventions, current practices and policies. In Agroforestry for Sustainable Intensification of Agriculture in Asia and Africa; Dagar, J.C., Gupta, S.R., Sileshi, G.W., Eds.; Springer: Singapore, 2023; pp. 589–640. [Google Scholar] [CrossRef]
- Hübner, R.; Kühnel, A.; Lu, J.; Dettmann, H.; Wang, W.; Wiesmeier, M. Soil carbon sequestration by agroforestry systems in China: A meta-analysis. Agric. Ecosyst. Environ. 2021, 315, 107437. [Google Scholar] [CrossRef]
- Steinfeld, J.P.; Bianchi, F.J.; Luiz Locatelli, J.; Rizzo, R.; Eduarda Bispo De Resende, M.; Ramos Ballester, M.V.; Cerri, C.E.P.; Bernardi, A.C.C.; Creamer, R.E. Increasing complexity of agroforestry systems benefits nutrient cycling and mineral-associated organic carbon storage, in south-eastern Brazil. Geoderma 2023, 440, 116726. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture. A General Assessment of the Role of Agriculture and Forestry in U.S. Carbon Markets (Report to Congress); USDA: Washington, DC, USA, 2023. Available online: https://www.usda.gov/sites/default/files/documents/USDA-General-Assessment-of-the-Role-of-Agriculture-and-Forestry-in-US-Carbon-Markets.pdf (accessed on 20 June 2025).
- Ecosystem Marketplace. State of the Voluntary Carbon Markets Report 2023; Forest Trends: Washington, DC, USA, 2023; Available online: https://www.ecosystemmarketplace.com/publications/state-of-the-voluntary-carbon-market-report-2023/ (accessed on 20 June 2025).
- Birkebaek, J. Ag Tech Firm Agreena Experiences Growth in Farmer Participation. Reuters. 2023. Available online: https://www.reuters.com/sustainability/ag-tech-firm-agreena-experiences-growth-farmer-participation-2023-06-14/ (accessed on 20 June 2025).
- Agreena. How the AgreenaCarbon Programme Works: Rewarding Farmers for Making Meaningful Changes with Maximum Impact; Agreena: Copenhagen, Denmark, 2024; Available online: https://agreena.com/news/agreenacarbon-programme-how-to/ (accessed on 20 June 2025).
- Agri-Climate Outcomes & Revenue (Acorn). Planting A Better Future: Empower Smallholder Farmers; Rabobank: Utrecht, The Netherlands, 2024; Available online: https://acorn.rabobank.com/en/ (accessed on 21 June 2025).
- Bogale, G.A.; Bekele, S.E. Sustainability of Agroforestry Practices and their Resilience to Climate Change Adaptation and Mitigation in Sub-Saharan Africa: A Review. Ekológia 2023, 42, 179–192. [Google Scholar] [CrossRef]
- Andriatsitohaina, R.N.N.; Laby, P.; Llopis, J.C.; Martin, D.A. Agroforestry in Madagascar: Past, present, and future. Agrofor. Syst. 2024, 98, 1659–1680. [Google Scholar] [CrossRef]
- Muthuri, C.W.; Kuyah, S.; Njenga, M.; Kuria, A.; Öborn, I.; Van Noordwijk, M. Agroforestry’s contribution to livelihoods and carbon sequestration in East Africa: A systematic review. Trees For. People 2023, 14, 100432. [Google Scholar] [CrossRef]
- European Union. Regulation (EU) 2021/2115 of the European Parliament and of the Council of 2 December 2021 establishing rules on support for strategic plans. Off. J. Eur. Union 2021, L 435, 1–186. [Google Scholar]
- European Commission. Approved 28 CAP Strategic Plans (2023–2027): Summary Overview for 27 Member States—Facts and Figures; Publications Office of the European Union: Luxembourg, 2023; Available online: https://agriculture.ec.europa.eu/system/files/2023-06/approved-28-cap-strategic-plans-2023-27.pdf (accessed on 27 August 2025).
- Canales, E.; Bergtold, J.S.; Williams, J.R. Conservation intensification under risk: An assessment of adoption, additionally, and farmer preferences. Am. J. Agric. Econ. 2023, 106, 45–75. [Google Scholar] [CrossRef]
- Secchi, S. The role of conservation in United States’ agricultural policy from the Dust Bowl to today: A critical assessment. Ambio 2023, 53, 421–434. [Google Scholar] [CrossRef] [PubMed]
- Charoud, H.; Costedoat, S.; Izquierdo-Tort, S.; Moros, L.; Villamayor-Tomás, S.; Castillo-Santiago, M.Á.; Wunder, S.; Corbera, E. Sustained participation in a Payments for Ecosystem Services program reduces deforestation in a Mexican agricultural frontier. Sci. Rep. 2023, 13, 22314. [Google Scholar] [CrossRef]
- Pascual, U.; Phelps, J.; Garmendia, E.; Brown, K.; Corbera, E.; Martin, A.; Gomez-Baggethun, E.; Muradian, R. Social equity matters in payments for ecosystem services. BioScience 2014, 64, 1027–1036. [Google Scholar] [CrossRef]
- Nuñez Godoy, C.C.; Pienaar, E.F. Motivations for, and barriers to, landowner participation in Argentina’s payments for ecosystem services program. Conserv. Sci. Pract. 2023, 5, e12991. [Google Scholar] [CrossRef]
- Robalino, J.; Pfaff, A.; Sandoval, C.; Sanchez-Azofeifa, G.A. Can we increase the impacts from payments for ecosystem services? Impact rose over time in Costa Rica, yet spatial variation indicates more potential. For. Policy Econ. 2021, 132, 102577. [Google Scholar] [CrossRef]
- Hernandez-Aguilera, J.N.; Conrad, J.M.; Gómez, M.I.; Rodewald, A.D. The Economics and Ecology of Shade-grown Coffee: A Model to Incentivize Shade and Bird Conservation. Ecol. Econ. 2019, 159, 110–121. [Google Scholar] [CrossRef]
- Lalani, B.; Lanza, G.; Leiva, B.; Mercado, L.; Haggar, J. Shade versus intensification: Trade-off or synergy for profitability in coffee agroforestry systems? Agric. Syst. 2023, 214, 103814. [Google Scholar] [CrossRef]
- Hernández-Nuñez, H.E.; Suárez, J.C.; Andrade, H.J.; Acosta, J.R.S.; Gutiérrez-Montes, I.; Núñez, R.D.; Casanoves, F.; Gutiérrez, G.A.; Gutiérrez, D.R. Interactions between climate, shade canopy characteristics and cocoa production in Colombia. Front. Sustain. Food Syst. 2024, 8, 1295992. [Google Scholar] [CrossRef]
- Bojović, M.; Mrkonjić, Z.; Vukelić, I. Agroforestry systems and forest resources as a potential for sustainable energy development in the Western Balkan region. Energy Sustain. Soc. 2024, 14, 68. [Google Scholar] [CrossRef]
- García-López, N.; Bargués-Tobella, A.; Goodman, R.C.; Uwingabire, S.; Sundberg, C.; Boman, C.; Nyberg, G. An integrated agroforestry-bioenergy system for enhanced energy and food security in rural sub-Saharan Africa. Ambio 2024, 53, 1492–1504. [Google Scholar] [CrossRef] [PubMed]
- Ngango, J.; Musabanganji, E.; Maniriho, A.; Nkikabahizi, F.; Mukamuhire, A. Examining the adoption of agroforestry in Southern Rwanda: A double hurdle approach. For. Sci. Technol. 2023, 19, 260–267. [Google Scholar] [CrossRef]
- Leduc, G.; Hansson, H. Behavioural factors for farmers’ adoption of agroforestry practices in Sweden. Sustain. Prod. Consum. 2024, 47, 178–189. [Google Scholar] [CrossRef]
- Ali, M.M.; Ahmad, B.; Sarmin, I.J.; Bari, M.S.; Pal, A.C.; Rahman, M.L. An assessment of agroforestry as a climate-smart practice: Evidences from farmers of northwestern region of Bangladesh. Agrosyst. Geosci. Environ. 2024, 7, e20501. [Google Scholar] [CrossRef]
- European Forest Institute. AGFORWARD—Agroforestry that Will Advance Rural Development [Project Description]; European Forest Institute: Joensuu, Finland, 2025; Available online: https://efi.int/projects/agforward-agroforestry-will-advance-rural-development (accessed on 27 August 2025).
- European Commission. Agroforestry Innovation Networks (AFINET) (Grant No. 727872). 2016. Available online: https://cordis.europa.eu/project/id/727872 (accessed on 27 August 2025).
- Finlayson, R.; Paramita, E. Infographic: Agroforestry and Forestry in Sulawesi (AgFor)—Project Achievements; Southeast Asia Regional Office, World Agroforestry Centre (ICRAF): Bogor, Indonesia, 2016; Available online: https://www.cifor-icraf.org/publications/sea/Publications/files/brochure/BR0031-15.pdf (accessed on 27 August 2025).
- Food and Agriculture Organization of the United Nations. Farmer Field Schools on Forestry. Global Farmer Field School Platform. Available online: https://www.fao.org/farmer-field-schools/ffs-overview/forestry/en/ (accessed on 28 August 2025).
- World Bank. Implementation Status & Results Report: Forests for Prosperity Project (P170798); World Bank: Washington, DC, USA, 2025; Available online: https://documents1.worldbank.org/curated/en/099062024020027199/pdf/P170798-18942555-5ccd-4b4b-ae32-9e75b0f97b30.pdf (accessed on 28 August 2025).
- Pimenow, S.; Pimenowa, O.; Prus, P.; Niklas, A. The Impact of Artificial Intelligence on the Sustainability of Regional Ecosystems: Current Challenges and Future Prospects. Sustainability 2025, 17, 4795. [Google Scholar] [CrossRef]
- Kou, W.; Shen, Z.; Zhang, Y.; Wang, H.; Ji, P.; Huang, L.; Zhang, C.; Ma, Y. Spatio-temporal analysis of agroforestry systems in hotan using multi-source remote sensing and deep learning. Smart Agric. Technol. 2024, 9, 100641. [Google Scholar] [CrossRef]
- Stamford, J.; Aciksoz, S.B.; Lawson, T. Remote Sensing Techniques: Hyperspectral Imaging and Data Analysis. Methods Mol. Biol. 2024, 2790, 373–390. [Google Scholar] [CrossRef]
- Navrozidis, I.; Lagopodi, A.; Alexandridis, T.K.; Bochtis, D.; Pantazi, X.E. Application of Machine Learning for Disease Detection Tasks in Olive Trees Using Hyperspectral Data. Remote Sens. 2023, 15, 5683. [Google Scholar] [CrossRef]
- Turkulainen, E.; Honkavaara, E.; Näsi, R.; Koivumäki, N.; Östersund, M.; Pelto-Arvo, M.; Lyytikäinen-Saarenmaa, P.; Junttila, S.; Pölönen, I.; Karila, K.; et al. Comparison of Deep Neural Networks in the Classification of Bark Beetle-Induced Spruce Damage Using UAS Images. Remote Sens. 2023, 15, 4928. [Google Scholar] [CrossRef]
- Noa-Yarasca, E.; Osorio Leyton, J.M.; Angerer, J.P. Deep Learning Model Effectiveness in Forecasting Limited-Size Aboveground Vegetation Biomass Time Series: Kenyan Grasslands Case Study. Agronomy 2024, 14, 349. [Google Scholar] [CrossRef]
- Yan, X.; Li, J.; Smith, A.R.; Yang, D.; Ma, T.; Su, Y.; Shao, J. Evaluation of machine learning methods and multi-source remote sensing data combinations to construct forest aboveground biomass models. Int. J. Digit. Earth 2023, 16, 4471–4491. [Google Scholar] [CrossRef]
- Wang, G.; Li, Y.; Feng, J.; Qiu, L.; Tang, F.; Yan, P.; Huang, C.; Li, S.; He, G. Mapping the Spatial Distribution of Aboveground Biomass in China’s Subtropical Forests Based on UAV LiDAR Data. Forests 2023, 14, 1560. [Google Scholar] [CrossRef]
- World Bank. Digital Monitoring, Reporting, and Verification Systems and Their Application in Future Carbon Markets; World Bank: Washington, DC, USA, 2022; Available online: https://documents1.worldbank.org/curated/en/099605006272210909/pdf/IDU0ca02ce8009a2404bb70bb6d0233b54ffad5e.pdf (accessed on 27 August 2025).
- Soussi, A.; Fossa, M.; Zero, E.; Trinchero, D.; Sacile, R. Smart Sensors and Smart Data for Precision Agriculture: A Review. Sensors 2024, 24, 2647. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.K.; Behera, M.D.; Das, P.; Rizvi, J.; Dhyani, S.K.; Biradar, Ç.M. Agroforestry Suitability for Planning Site-Specific Interventions Using Machine Learning Approaches. Sustainability 2022, 14, 5189. [Google Scholar] [CrossRef]
- Golicz, K.; Piepho, H.-P.; Minarsch, E.-M.L.; Niether, W.; Große-Stoltenberg, A.; Oldeland, J.; Breuer, L.; Gattinger, A.; Jacobs, S. Highlighting the potential of multilevel statistical models for analysis of individual agroforestry systems. Agrofor. Syst. 2023, 97, 1481–1489. [Google Scholar] [CrossRef]
- Tafuro, A.; Costa, A.; Dammacco, G. A Conceptual Study on the Role of Blockchain in Sustainable Development of Public-Private Partnership. Adm. Sci. 2023, 13, 175. [Google Scholar] [CrossRef]
- Nakalembe, C.; Becker-Reshef, I.; Bonifacio, R.; Hu, G.; Humber, M.L.; Justice, C.J.; Keniston, J.; Mwangi, K.; Rembold, F.; Shukla, S.; et al. A review of satellite-based global agricultural monitoring systems available for Africa. Glob. Food Secur. 2021, 29, 100543. [Google Scholar] [CrossRef]
- Wasehun, E.T.; Hashemi Beni, L.; Di Vittorio, C.A. UAV and satellite remote sensing for inland water quality assessments: A literature review. Environ. Monit. Assess. 2024, 196, 277. [Google Scholar] [CrossRef]
- Niu, X.; Chen, B.; Sun, W.; Feng, T.; Yang, X.; Liu, Y.; Liu, W.; Fu, B. Estimation of Coastal Wetland Vegetation Aboveground Biomass by Integrating UAV and Satellite Remote Sensing Data. Remote Sens. 2024, 16, 2760. [Google Scholar] [CrossRef]
- Han, H.; Feng, Z.; Du, W.; Guo, S.; Wang, P.; Xu, T. Remote sensing image classification based on multi-spectral cross-sensor super-resolution combined with texture features: A case study in the Liaohe planting area. IEEE Access 2024, 12, 16830–16843. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, H.; Zeng, H.; Li, X.; Gao, H.; Yu, Q. A CBAM-GAN-based method for super-resolution reconstruction of remote sensing image. IET Image Process. 2023, 18, 548–560. [Google Scholar] [CrossRef]
- Wang, P.; Bayram, B.; Sertel, E. A comprehensive review on deep learning based remote sensing image super-resolution methods. Earth-Sci. Rev. 2022, 232, 104110. [Google Scholar] [CrossRef]
- Escobar-López, A.; Castillo-Santiago, M.Á.; Mas, J.F.; Hernández-Stefanoni, J.L.; López-Martínez, J.O. Identification of coffee agroforestry systems using remote sensing data: A review of methods and sensor data. Geocarto Int. 2024, 39, 2297555. [Google Scholar] [CrossRef]
- Du, B.; Shan, L.; Shao, X.; Zhang, D.; Wang, X.; Wu, J. Transform Dual-Branch Attention Net: Efficient Semantic Segmentation of Ultra-High-Resolution Remote Sensing Images. Remote Sens. 2025, 17, 540. [Google Scholar] [CrossRef]
- Kouadio, L.; Roni, M.Z.K.; Amine, I.D.I.; El Jarroudi, M.; Junk, J.; Mokhtari, N.; Mokrini, F.; Laasli, S.-E.; Lahlali, R.; Belabess, Z. A Review on UAV-Based Applications for Plant Disease Detection and Monitoring. Remote Sens. 2023, 15, 4273. [Google Scholar] [CrossRef]
- Cifuentes-Faura, J. Corruption in Ukraine during the Ukrainian–Russian war: A decalogue of policies to combat it. J. Public Aff. 2024, 24, e2905. [Google Scholar] [CrossRef]
- Pimenow, S.; Pimenowa, O.; Prus, P. The impact of business model sustainability on the financial performance of Ukraine’s leading companies before the military conflict. Sustainability 2024, 16, 10008. [Google Scholar] [CrossRef]
- Hartel, T.; Dorresteijn, I.; Klein, C.; Máthé, O.; Moga, C.I.; Öllerer, K.; Roellig, M.; von Wehrden, H.; Fischer, J. Wood-pastures in a traditional rural region of Eastern Europe: Characteristics, management and status. Biol. Conserv. 2013, 166, 267–275. [Google Scholar] [CrossRef]
- Plieninger, T.; Hartel, T.; Martín-López, B.; Beaufoy, G.; Bergmeier, E.; Kirby, K.; Montero, M.J.; Moreno, G.; Oteros-Rozas, E.; van Uytvanck, J. Wood-pastures of Europe: Geographic coverage, social–ecological values, conservation management, and policy implications. Biol. Conserv. 2015, 190, 70–79. [Google Scholar] [CrossRef]
Reform/Intervention | Expected Benefit | Cost/Resource Need | Implementation Difficulty |
---|---|---|---|
Institutional reforms | |||
Consolidate administrative responsibility (single agency) | High | Low | Medium |
Farmer dialogue & inclusive governance | Medium | Low | Medium |
PES schemes | Medium | Medium | Medium |
Establish carbon-credit framework & MRV standards | High | Medium | High |
Financial & incentive mechanisms | |||
Embed agroforestry in CAP-aligned strategies (priority zones) | High | Medium | Medium |
Blended incentive mix (grants, tax holidays, subsidies) | High | Medium | Medium |
Mobilize blended finance (WB, EU, private platforms) | High | High | High |
Digital & monitoring tools | |||
Independent monitoring (satellite, GIS, digital tools) | High | Medium | Medium |
Low-cost digital field-data tools & training | Medium | Low | Medium |
National electronic agroforestry potential map | Medium | Medium | Medium |
Repurpose drones & AI pipelines for agroforestry MRV | High | Medium | High |
FAIR-compliant Ukrainian environmental data set | High | Medium | High |
Digital MRV & carbon-market platform | High | Medium | High |
Capacity & outreach | |||
Pilot farms & community projects (verified credits) | Medium | Low | Low |
Agroforestry research & extension capacity | Medium | Medium | Medium |
Agro-tech hubs & talent retention | High | High | High |
Challenge | Potential Technology Pathway (Authors’ Synthesis) |
---|---|
High cost of airborne surveys and limited UAV coverage | The emergence of a low-cost, long-range drone market could enable deployment of co-operative UAV fleets scanning large fields at high resolution. |
Cloud cover and insufficient satellite granularity | Fusion of satellite SAR with drone-borne RGB/IR imagery offers a possible route to generate weather-independent, higher-fidelity maps. |
Heavy computational load | Distributed edge-AI servers, originally built for battlefield imagery, may be repurposed for on-board pre-processing, sharply reducing data-transfer volumes. |
Lack of transparent MRV for carbon projects | Blockchain registries created to log war damage could be adapted as tamper-proof ledgers for shelterbelts and carbon data. |
Shortage of soil-moisture sensors | Mass-produced, low-cost wireless probes—networks deployed for field monitoring during hostilities—could be redirected to agro-ecological sensing and UAV-linked relays. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pimenow, S.; Pimenowa, O.; Moldavan, L.; Prus, P.; Sadowska, K. Agroforestry as a Resource for Resilience in the Technological Era: The Case of Ukraine. Resources 2025, 14, 152. https://doi.org/10.3390/resources14100152
Pimenow S, Pimenowa O, Moldavan L, Prus P, Sadowska K. Agroforestry as a Resource for Resilience in the Technological Era: The Case of Ukraine. Resources. 2025; 14(10):152. https://doi.org/10.3390/resources14100152
Chicago/Turabian StylePimenow, Sergiusz, Olena Pimenowa, Lubov Moldavan, Piotr Prus, and Katarzyna Sadowska. 2025. "Agroforestry as a Resource for Resilience in the Technological Era: The Case of Ukraine" Resources 14, no. 10: 152. https://doi.org/10.3390/resources14100152
APA StylePimenow, S., Pimenowa, O., Moldavan, L., Prus, P., & Sadowska, K. (2025). Agroforestry as a Resource for Resilience in the Technological Era: The Case of Ukraine. Resources, 14(10), 152. https://doi.org/10.3390/resources14100152