Multiscale Evaluation of Raw Coconut Fiber as Biosorbent for Marine Oil Spill Remediation: From Laboratory to Field Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation and Characterization of Coconut Fibers
2.1.1. Scanning Electron Microscopy (SEM)
2.1.2. Fourier-Transform Infrared Spectroscopy (ATR-FTIR)
2.1.3. Chemical Composition Analysis by the NREL Method
2.1.4. X-Ray Diffraction (XRD)
2.1.5. X-Ray Photoelectron Spectroscopy (XPS)
2.2. Physicochemical Characterization of the Petroleum Sample
2.3. Fractional Factorial Experimental Design
2.4. Adsorption Experiments
2.5. Reuse Test of Bioadsorbent Mini-Barriers in Subsequent Cycles
2.6. Performance of Raw Coconut Fiber Barriers in Meso-Scale and Field Marine Conditions
2.7. Statistical Analyses
3. Results and Discussion
3.1. Physicochemical and Structural Characterization of Raw Coconut Fibers
3.2. Physicochemical Characterization of Petroleum
3.3. Fractional Factorial Design for Oil Adsorption
3.4. Kinetic Study and Adsorption Isotherms
3.5. Reusability of Coconut Fiber Mini-Barriers in Consecutive Adsorption–Desorption Cycles
3.6. Meso- and Field-Scale Evaluation of Coconut Fiber Sorbent Barriers
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Oliveira, O.M.C.; Queiroz, A.F.S.; Cerqueira, J.R.; Soares, S.A.R.; Garcia, K.S.; Filho, A.P.; Rosa, M.L.S.; Suzart, C.M.; Pinheiro, L.L.; Moreira, Í.T.A. Environmental disaster in the northeast coast of Brazil: Forensic geochemistry in the identification of the source of the oily material. Mar. Pollut. Bull. 2020, 160, 111597. [Google Scholar] [CrossRef]
- Verâne, J.; dos Santos, N.C.P.; da Silva, V.L.; de Almeida, M.; de Oliveira, O.M.C.; Moreira, Í.T.A. Phytoremediation of polycyclic aromatic hydrocarbons (PAHs) in mangrove sediments using Rhizophora mangle. Mar. Pollut. Bull. 2020, 160, 111687. [Google Scholar] [CrossRef]
- Li, P.; Cai, Q.; Lin, W.; Chen, B.; Zhang, B. Offshore oil spill response practices and emerging challenges. Mar. Pollut. Bull. 2016, 110, 6–27. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, L.M.T.M.; Saleem, J.; Bazargan, A.; Duarte, J.L.S.; McKay, G.; Meili, L. Sorption as a rapidly response for oil spill accidents: A material and mechanistic approach. J. Hazard. Mater. 2021, 407, 124842. [Google Scholar] [CrossRef]
- Moreira, Í.T.A.; Oliveira, O.M.C.; Azwell, T.; Queiroz, A.F.S.; Nano, R.M.W.; Souza, E.S.; Anjos, J.A.S.A.; Assunção, R.V.; Guimarães, L.M. Strategies of Bioremediation for the Degradation of Petroleum Hydrocarbons in the Presence of Metals in Mangrove Simulated. Clean Soil Air Water 2016, 44, 631–637. [Google Scholar] [CrossRef]
- Silva, M.M.; Leao, D.J.; Moreira, Í.T.A.; de Oliveira, O.M.C.; Queiroz, A.F.d.S.; Ferreira, S.L.C. Speciation analysis of inorganic antimony in sediment samples from São Paulo Estuary, Bahia State, Brazil. Environ. Sci. Pollut. Res. 2015, 22, 8386–8391. [Google Scholar] [CrossRef]
- Miranda, L.S.; Moreira, Í.T.A.; Oliveira, O.M.C.; Santos, C.P.; Pinheiro, S.M.M.; Oliveira, L.M.L.; Martins, A.B.O.; Filho, M.S.C. Oil-suspended particulate material aggregates as a tool in preventing potential ecotoxicological impacts in the São Paulo river, Todos os Santos Bay, Bahia, Brazil: Influence of salinity and suspended particulate material. Mar. Pollut. Bull. 2016, 112, 91–97. [Google Scholar] [CrossRef]
- Ferreira, S.L.C.; Lima, D.C.; Moreira, I.T.A.; de Oliveira, O.M.C. Critical study using experimental design of the determination of lead by high-resolution continuum source hydride generation atomic absorption spectrometry. J. Anal. At. Spectrom. 2011, 26, 2039–2044. [Google Scholar] [CrossRef]
- Gote, M.G.; Dhila, H.H.; Muley, S.R. Advanced synthetic and bio-based sorbents for oil spill clean-up: A review of novel trends. Nat. Environ. Pollut. Technol. 2023, 22, 39–61. [Google Scholar] [CrossRef]
- Georgin, J.; Ramos, C.G.; Oliveira, J.S.; Dehmani, Y.; Messaoudi, N.E.; Meili, L.; Franco, D.S.P. A critical review of the advances and current status of the application of adsorption in the remediation of micropollutants and dyes through the use of emerging bio-based nanocomposites. Sustainability 2025, 17, 2012. [Google Scholar] [CrossRef]
- El-Samak, A.A.; Ponnamma, D.; Hassan, M.K.; Adham, S.; Karim, A.; Ammar, A.; Alser, M.; Shurbaji, S.; Eltai, N.O.; Al-Maadeed, M.A.A. Multifunctional oil absorption with macroporous polystyrene fibers incorporating silver-doped ZnO. ACS Omega 2021, 6, 8081–8093. [Google Scholar] [CrossRef]
- Bhardwaj, N.; Bhaskarwar, A.N. A review on sorbent devices for oil-spill control. Environ. Pollut. 2018, 243, 1758–1771. [Google Scholar] [CrossRef]
- Hakeim, O.A.; Abdelghaffar, F.; El-Gabry, L.K. Investigation of Egyptian Chorisia spp. fiber as a natural sorbent for oil spill cleanup. Environ. Technol. Innov. 2022, 25, 102134. [Google Scholar] [CrossRef]
- Kaur, K.; Kaur, R.; Kaur, H. A systematic review of lignocellulosic biomass for remediation of environmental pollutants. Appl. Surf. Sci. Adv. 2024, 19, 100547. [Google Scholar] [CrossRef]
- Albuquerque, J.G.M.; Santos, B.R.; Silvestre, W.K.P.; Paula, G.C.R.; Alves, M.S.A.; Oliveira, N.L.M.A. O aproveitamento do resíduo do coco verde para a produção de subprodutos em Aracaju. RACE—Rev. Adm. Cesmac 2020, 9, 190–204. [Google Scholar]
- Cardoso, C.K.M.; Mattedi, S.; Lobato, A.K.C.L.; Moreira, Í.T.A. Remediation of petroleum contaminated saline water using value-added adsorbents derived from waste coconut fibres. Chemosphere 2021, 279, 130562. [Google Scholar] [CrossRef]
- Luis-Zarate, V.H.; Rodriguez-Hernandez, M.C.; Alatristre-Mondragon, F.; Chazaro-Ruiz, L.F.; Rangel-Mendez, J.R. Coconut endocarp and mesocarp as both biosorbents of dissolved hydrocarbons in fuel spills and as a power source when exhausted. J. Environ. Manag. 2018, 211, 103–111. [Google Scholar] [CrossRef]
- Yang, X.; Tian, D.; Jiang, H.; Gao, Z.; Wang, Y.; Tang, Z.; Lu, S. Effect of coconut fibers with interfacial improvement on the dynamic performance of cement mortar. J. Build. Eng. 2024, 98, 111524. [Google Scholar] [CrossRef]
- Zamparas, M.; Tzivras, D.; Dracopoulos, V.; Ioannides, T. Application of sorbents for oil spill cleanup focusing on natural-based modified materials: A review. Molecules 2020, 25, 4522. [Google Scholar] [CrossRef]
- Bichang’a, D.O.; Oladele, I.O.; Alabi, O.O.; Borisade, S.G.; Githinji, D.N.; Ojemaye, M.O. Comparative property investigation of raw and treated coconut shell biomass for potential polymer composite application. Heliyon 2024, 10, e40704. [Google Scholar] [CrossRef]
- Mishra, L.; Basu, G. Coconut fibre: Its structure, properties and applications. In Handbook of Natural Fibres (Second Edition), Volume 1: Types, Properties and Factors Affecting Breeding and Cultivation; Woodhead Publishing Series in Textiles; Elsevier: Cambridge, UK, 2020; pp. 231–255. [Google Scholar] [CrossRef]
- Ighalo, J.O.; Conradie, J.; Ohoro, C.R.; Amaku, J.F.; Oyedotun, K.O.; Maxakato, N.W.; Akpomie, K.G.; Okeke, E.S.; Olisah, C.; Mallaoum, A.; et al. Biochar from coconut residues: An overview of production, properties, and applications. Ind. Crops Prod. 2023, 204, 117300. [Google Scholar] [CrossRef]
- Fouda-Mbanga, B.G.; Onotu, O.P.; Tywabi-Ngeva, Z. Advantages of the reuse of spent adsorbents and potential applications in environmental remediation: A review. Green Anal. Chem. 2024, 11, 100156. [Google Scholar] [CrossRef]
- Machado, A.A.; Mulky, L. Reusing waste to save our water: Regenerable bioadsorbents for effective oil sequestration. ChemBioEng Rev. 2024, 11, 426–440. [Google Scholar] [CrossRef]
- Cardoso, C.K.M.; Moreira, Í.T.A.; de Souza Queiroz, A.F.; de Oliveira, O.M.C.; de Carvalho Lima Lobato, A.K. Bio-Based Sorbents for Marine Oil Spill Response: Advances in Modification, Circularity, and Waste Valorization. Resources 2025, 14, 140. [Google Scholar] [CrossRef]
- Nine, M.J.; Kabiri, S.; Sumona, A.K.; Tung, T.T.; Moussa, M.M.; Losic, D. Superhydrophobic/superoleophilic natural fibres for continuous oil-water separation and interfacial dye-adsorption. Sep. Purif. Technol. 2020, 233, 116062. [Google Scholar] [CrossRef]
- de Sousa, L.; Villa-Vélez, H.A.; Coelho Leite, P.H. Cinética de adsorción de diésel por bioadsorbentes de fibra in natura de coco (Cocos nucifera). Rev. ION 2022, 35, 117–131. [Google Scholar] [CrossRef]
- Cardoso, C.K.M.; Santana, R.S.G.; Lima da Silva, V.; Meirelles, A.C.L.E.; Mattedi, S.; Moreira, Í.T.A.; Lobato, A.K.C.L. Kinetic and equilibrium study of petroleum adsorption using pre-treated coconut fibers. Res. Soc. Dev. 2020, 9, e523974413. [Google Scholar] [CrossRef]
- Moreira, Í.T.A.; Cardoso, C.K.M.; Franco, E.D.S.S.; Marques, I.M.; Hadlich, G.M.; Queiroz, A.F.S.; Lobato, A.K.C.L.; Oliveira, O.M.C. Mangrove Ecosystem Restoration after Oil Spill: Bioremediation, Phytoremediation, Biofibers and Phycoremediation. In Mangrove Ecosystem Restoration; Sharma, S., Ed.; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Hoang, P.H.; Dat, H.T.; Cuong, T.D.; Dien, L.Q. Pretreatment of coir lignocellulose for preparation of a porous coir–polyurethane composite with high oil adsorption capacity. RSC Adv. 2022, 12, 14976–14985. [Google Scholar] [CrossRef] [PubMed]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of Structural Carbohydrates and Lignin in Biomass; Technical Report NREL/TP-510-42618; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2012. [Google Scholar]
- Segal, L.; Creely, J.J.; Martin, A.E., Jr.; Conrad, C.M. An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Textile Res. J. 1959, 29, 786–794. [Google Scholar] [CrossRef]
- French, A.D. Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 2014, 21, 885–896. [Google Scholar] [CrossRef]
- French, A.D. Increment in evolution of cellulose crystallinity analysis. Cellulose 2020, 27, 5445–5448. [Google Scholar] [CrossRef]
- Brígida, A.I.S.; Calado, V.M.A.; Gonçalves, L.R.B.; Coelho, M.A.Z. Effect of Chemical Treatments on Properties of Green Coconut Fiber. Carbohydr. Polym. 2010, 79, 832–838. [Google Scholar] [CrossRef]
- Zhang, L.; Tu, L.-Y.; Liang, Y.; Chen, Q.; Li, Z.-S.; Li, C.-H.; Wang, Z.-H.; Li, W. Coconut-Based Activated Carbon Fibers for Efficient Adsorption of Various Organic Dyes. RSC Adv. 2018, 8, 42280–42291. [Google Scholar] [CrossRef]
- Verma, R.; Maji, P.K.; Sarkar, S. Comprehensive Investigation of the Mechanism for Cr(VI) Removal from Contaminated Water Using Coconut Husk as a Biosorbent. J. Clean. Prod. 2021, 314, 128117. [Google Scholar] [CrossRef]
- ASTM D97-17; Standard Test Method for Pour Point of Petroleum Products. ASTM International: West Conshohocken, PA, USA, 2017. Available online: https://store.astm.org/standards/d97 (accessed on 1 October 2025).
- ASTM D4052-22; Standard Test Method for Density, Relative Density, and API Gravity of Liquids by Digital Density Meter. ASTM International: West Conshohocken, PA, USA, 2022. Available online: https://store.astm.org/standards/d4052 (accessed on 1 October 2025).
- ASTM D1250-19e01; Standard Guide for the Use of the Joint API and ASTM Adjunct for Temperature and Pressure Volume Correction Factors for Generalized Crude Oils, Refined Products, and Lubricating Oils: API MPMS Chapter 11.1. ASTM International: West Conshohocken, PA, USA, 2019. Available online: https://www.astm.org/d1250-19e01.html (accessed on 1 October 2025).
- Srinivasan, A.; Viraraghavan, T. Oil Removal from Water Using Biomaterials. Bioresour. Technol. 2010, 101, 6594–6600. [Google Scholar] [CrossRef] [PubMed]
- Minitab Inc. Minitab Statistical Software, version 14.1.0; Minitab Inc.: State College, PA, USA, 2003.
- ASTM F726-99; Standard Test Method for Sorbent Performance of Adsorbents. ASTM International: West Conshohocken, PA, USA, 1999. Available online: https://www.astm.org/f0726-99.html (accessed on 1 October 2025).
- Široký, J.; Blackburn, R.S.; Bechtold, T.; Taylor, J.; White, P. Attenuated total reflectance Fourier-transform infrared spectroscopy analysis of crystallinity changes in lyocell following continuous treatment with sodium hydroxide. Cellulose 2010, 17, 103–115. [Google Scholar] [CrossRef]
- Wu, J.; Du, X.; Yin, Z.; Xu, S.; Xu, S.; Zhang, Y. Preparation and characterization of cellulose nanofibrils from coconut coir fibers and their reinforcements in biodegradable composite films. Carbohydr. Polym. 2019, 211, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Pandey, K.K.; Pitman, A.J. FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. Int. Biodeterior. Biodegrad. 2003, 52, 151–160. [Google Scholar] [CrossRef]
- Kasprzyk, H.; Wichłacz, K. Some aspects of estimation of the crystallinity of gamma-radiation wood cellulose by FTIR spectroscopy and X-ray diffraction techniques. Acta Sci. Pol. Silvarum Colendarum Ratio Ind. Lignaria 2004, 3, 73–84. [Google Scholar]
- Zhang, Z.; Chen, Y.; Wang, D.; Yu, D.; Wu, C. Lignin-Based Adsorbents for Heavy Metals. Ind. Crops Prod. 2023, 193, 116119. [Google Scholar] [CrossRef]
- Houfani, A.A.; Anders, N.; Spiess, A.C.; Baldrian, P.; Benallaoua, S. Insights from enzymatic degradation of cellulose and hemicellulose to fermentable sugars—A review. Biomass Bioenergy 2020, 134, 105481. [Google Scholar] [CrossRef]
- Elfaleh, I.; Abbassi, F.; Habibi, M.; Ahmad, F.; Guedri, M.; Nasri, M.; Garnier, C. A comprehensive review of natural fibers and their composites: An eco-friendly alternative to conventional materials. Results Eng. 2023, 19, 101271. [Google Scholar] [CrossRef]
- Peng, D.; Cheng, S.; Li, H.; Guo, X. Effective multi-functional biosorbent derived from corn stalk pith for dyes and oils removal. Chemosphere 2021, 272, 129963. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Li, J.; Wang, G.; Luan, Y.; Dai, W. Adsorption behavior of organic pollutants on microplastics. Ecotoxicol. Environ. Saf. 2021, 217, 112207. [Google Scholar] [CrossRef]
- Yue, Y.; Han, J.; Han, G.; Zhang, Q.; French, A.D.; Wu, Q. Characterization of cellulose I/II hybrid fibers isolated from energycane bagasse during the delignification process: Morphology, crystallinity and percentage estimation. Carbohydr. Polym. 2015, 133, 438–447. [Google Scholar] [CrossRef]
- Oliveira, J.M.; de Sousa, V.M.Z.; Teixeira, L.A.; Leão, R.M.; Sales-Contini, R.C.M.; Steier, V.F.; Luz, S.M. The Role of Chemical Treatments on Curaua Fibers on Mechanical and Thermal Behavior of Biodegradable Composites. Appl. Sci. 2024, 14, 10621. [Google Scholar] [CrossRef]
- Fonseca, A.S.; Raabe, J.; Dias, L.M.; Baliza, A.E.R.; Costa, T.G.; Silva, L.E.; Vasconcelos, R.P.; Marconcini, J.M.; Savastano, H.; Mendes, L.M.; et al. Main Characteristics of Underexploited Amazonian Palm Fibers for Using as Potential Reinforcing Materials. Waste Biomass Valor 2019, 10, 3125–3142. [Google Scholar] [CrossRef]
- Yudhanto, F.; Yudha, V.; Jamir, M.R.M.; Suyambuligam, I.; Terzioglu, P.; Sudarisman. Morphology, Crystallinity and Thermal Properties of Nanocrystalline Cellulose Isolated of Sisal Fiber by Acid Hydrolysis-Ultrasonication. Int. J. Nanoelectron. Mater. 2023, 16, 623–640. [Google Scholar]
- Bozacı, E.; Altınışık Tağaç, A. Extraction and Characterization of New Cellulosic Fiber from Catalpa bignonioides Fruits for Potential Use in Sustainable Products. Polymers 2023, 15, 201. [Google Scholar] [CrossRef]
- Woche, S.K.; Goebel, M.-O.; Mikutta, R.; Schurig, C.; Kaestner, M.; Guggenberger, G.; Bachmann, J. Soil Wettability Can Be Explained by the Chemical Composition of Particle Interfaces—An XPS Study. Sci. Rep. 2017, 7, 42877. [Google Scholar] [CrossRef] [PubMed]
- Reyes, C.Y.; Moreira, Í.T.A.; Oliveira, D.A.F.; Medeiros, N.C.; Almeida, M.; Wandega, F.; Soares, S.A.R.; Oliveira, O.M.C. Weathering of Petroleum Biomarkers: Review in Tropical Marine Environment Impacts. Open Access Libr. J. 2014, 1, e1004. [Google Scholar] [CrossRef]
- Daniel, A.B.; Zahir, E.; Asghar, M.A. On the practicability of a new bio sorbent: Lasani sawdust and coconut coir for cleanup of oil spilled on water. Pet. Sci. Technol. 2019, 37, 1143–1154. [Google Scholar] [CrossRef]
- Panahi, S.; Moghaddam, M.K.; Moezzi, M. Assessment of milkweed floss as a natural hollow oleophilic fibrous sorbent for oil spill cleanup. J. Environ. Manag. 2020, 268, 110688. [Google Scholar] [CrossRef]
- Abdelwahab, O.; Nasr, S.M.; Thabet, W.M. Palm fibers and modified palm fibers adsorbents for different oils. Alex. Eng. J. 2017, 56, 749–755. [Google Scholar] [CrossRef]
- Tursi, A.; Beneduci, A.; Chidichimo, F.; De Vietro, N.; Chidichimo, G. Remediation of hydrocarbons polluted water by hydrophobic functionalized cellulose. Chemosphere 2018, 201, 530–539. [Google Scholar] [CrossRef]
- Diraki, A.; Mackey, H.R.; McKay, G.; Abdala, A. Removal of emulsified and dissolved diesel oil from high salinity wastewater by adsorption onto graphene oxide. J. Environ. Chem. Eng. 2019, 7, 103106. [Google Scholar] [CrossRef]
- Younker, J.M.; Walsh, M.E. Impact of salinity and dispersed oil on adsorption of dissolved aromatic hydrocarbons by activated carbon and organoclay. J. Hazard. Mater. 2015, 299, 562–569. [Google Scholar] [CrossRef] [PubMed]
- Inbaraj, B.S.; Sridhar, K.; Chen, B.-H. Removal of polycyclic aromatic hydrocarbons from water by magnetic activated carbon nanocomposite from green tea waste. J. Hazard. Mater. 2021, 415, 125701. [Google Scholar] [CrossRef]
- Moreno-Castilla, C. Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon 2004, 42, 83–94. [Google Scholar] [CrossRef]
- Andrade, S.N.; Veloso, C.M.; Fontan, R.C.I.; Bonomo, R.C.F.; Santos, L.S.; Brito, M.J.P.; Diniz, G.A. Chemical-Activated Carbon from Coconut (Cocos nucifera) Endocarp Waste and Its Application in the Adsorption of β-Lactoglobulin Protein. Rev. Mex. Ing. Quím. 2018, 17, 463–475. [Google Scholar] [CrossRef]
- Vareda, J.P. On validity, physical meaning, mechanism insights and regression of adsorption kinetic models. J. Mol. Liq. 2023, 376, 121416. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef]
- Freundlich, H.M.F. Over the adsorption in solution. J. Phys. Chem. 1906, 57, 385–471. [Google Scholar]
- Sambo, G.N.; Adeola, A.O.; Muhammad, S.A. Oil Palm Waste-Derived Adsorbents for the Sequestration of Selected Polycyclic Aromatic Hydrocarbon in Contaminated Aqueous Medium. Appl. Water Sci. 2024, 14, 113. [Google Scholar] [CrossRef]
- Groenendijk, D.J.; van Wunnik, J.N.M. The Impact of Micelle Formation on Surfactant Adsorption–Desorption. ACS Omega 2021, 6, 2248–2254. [Google Scholar] [CrossRef]
- Sips, R. On the Structure of a Catalyst Surface. J. Chem. Phys. 1948, 16, 490–495. [Google Scholar] [CrossRef]
- Kumar, N.P.; Chellapandian, M.; Arunachelam, N.; Vincent, P. Effect of Mercerization on the Chemical Characteristics of Plant-Based Natural Fibers. Mater. Today Proc. 2022, 68, 1201–1207. [Google Scholar] [CrossRef]
- Gurav, R.; Bhatia, S.K.; Choi, T.-R.; Choi, Y.-K.; Kim, H.J.; Song, H.-S.; Park, S.L.; Lee, H.S.; Lee, S.M.; Choi, K.-Y.; et al. Adsorptive Removal of Crude Petroleum Oil from Water Using Floating Pinewood Biochar Decorated with Coconut Oil-Derived Fatty Acids. Sci. Total Environ. 2021, 781, 146636. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, C.; Chai, W.; Liu, X.; Xu, Y.; Zhou, S. Kapok Fiber as a Natural Source for Fabrication of Oil Absorbent. J. Chem. Technol. Biotechnol. 2016, 92, 2642–2648. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, Y.; Wang, A. Effect of Kapok Fiber Treated with Various Solvents on Oil Absorbency. Ind. Crops Prod. 2012, 40, 178–184. [Google Scholar] [CrossRef]
- Singh, S.V.; Chaturvedi, S.; Dhyani, V.C.; Kasivelu, G. Pyrolysis Temperature Influences the Characteristics of Rice Straw and Husk Biochar and Sorption/Desorption Behaviour of Their Biourea Composite. Bioresour. Technol. 2020, 314, 123674. [Google Scholar] [CrossRef]
- Doshi, B.; Sillanpää, M.; Kallioila, S. A Review of Bio-Based Materials for Oil Spill Treatment. Water Res. 2018, 135, 262–277. [Google Scholar] [CrossRef]
- Urgel, J.J.D.T.; Briones, J.M.A.; Diaz, E.B.; Dimaculangan, K.M.N.; Rangel, K.L.; Lopez, E.C.R. Removal of Diesel Oil from Water Using Biochar Derived from Waste Banana Peels as Adsorbent. Carbon Res. 2024, 3, 13. [Google Scholar] [CrossRef]
- Moreira, Í.T.A.; Oliveira, O.M.C.; Silva, C.S.; Rios, M.C.; Queiroz, A.F.S.; Assunção, R.V.; Carvalho, A.P.N. Chemometrics applied in laboratory study on formation of oil–SPM aggregates (OSAs)—A contribution to ecological evaluation. Microchem. J. 2015, 118, 198–202. [Google Scholar] [CrossRef]
- Liu, R.; Daskiran, C.; Ji, W.; Abou Khalil, C.; Li, J. The Behavior of Weathered and/or Photo-Oxidized Crude Oil with/without Application of Dispersant under Breaking Wave Conditions. SSRN Electron. J. 2025; preprint. [Google Scholar] [CrossRef]
- Mishra, A.K.; Kumar, G.S. Weathering of Oil Spill: Modeling and Analysis. Aquat. Procedia 2015, 4, 435–442. [Google Scholar] [CrossRef]
- Papaioannou, V.; Anagnostopoulos, C.G.E.; Mantsis, D.F.; Vlachos, K.; Mountzidou, A.; Gialampoukidis, I.; Vrochidis, S.; Kompatsiaris, I. Assessment of Oil Spill Dispersion and Weathering Processes in Saronic Gulf. Adv. Hydrol. Meteorol. 2025, 2, AHM.MS.ID.000550. [Google Scholar] [CrossRef]
- Abdelwahab, O.; Thabet, W.M.; Nasr, S.M.; Nafea, S. Oil spill cleanup using chemically modified natural fibers: Trial for practical application. Egypt. J. Aquat. Biol. Fish. 2021, 25, 457–464. [Google Scholar] [CrossRef]
- Shang, W.; Sheng, Z.; Shen, Y.; Ai, B.; Zheng, L.; Yang, J.; Xu, Z. Study on oil absorbency of succinic anhydride modified banana cellulose in ionic liquid. Carbohydr. Polym. 2016, 141, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Lv, N.; Wang, X.; Peng, S.; Zhang, H.; Luo, L. Study of the Kinetics and Equilibrium of the Adsorption of Oils onto Hydrophobic Jute Fiber Modified via the Sol-Gel Method. Int. J. Environ. Res. Public Health 2018, 15, 969. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Du, G.; Pizzi, A.; Xi, X. Superhydrophobic and Superoleophilic Fiber from Waste Bamboo Processing Residues for Oil/Water Selective Separation. J. Wood Chem. Technol. 2020, 40, 58–72. [Google Scholar] [CrossRef]
- Louzada, T.C.C.; Weschenfelder, S.E.; dos Passos, B.T.; Mazur, L.P.; Marinho, B.A.; da Cunha, M.D.F.R.; da Silva, A.; de Souza, A.A.U.; de Souza, S.M.G.U. New Insights in the Treatment of Real Oilfield Produced Water: Feasibility of Adsorption Process with Coconut Husk Activated Charcoal. J. Water Process Eng. 2023, 54, 104026. [Google Scholar] [CrossRef]
- Bureau of Safety and Environmental Enforcement (BSEE). Application of the Field Scale Test Protocol for Type I Sorbents Recovering Oil on Water; 2021 AMOP Technical Paper; Bureau of Safety and Environmental Enforcement (BSEE): Washington, DC, USA, 2021. Available online: https://ohmsett.bsee.gov/sites/ohmsett/files/2023-10/Coolbaugh%20-%20Application%20of%20the%20Field%20Scale%20Test%20Protocol%20for%20Type%20I%20Sorbents%20Recovering%20Oil%20on%20Water_Final_05212021%20%281%29.pdf (accessed on 27 May 2025).
- Vasić, V.; Kukić, D.; Šćiban, M.; Đurišić-Mladenović, N.; Velić, N.; Pajin, B.; Crespo, J.; Farre, M.; Šereš, Z. Lignocellulose-Based Biosorbents for the Removal of Contaminants of Emerging Concern (CECs) from Water: A Review. Water 2023, 15, 1853. [Google Scholar] [CrossRef]
Component | Fraction (%) |
---|---|
Cellulose | 28.29 ± 2.46 |
Hemicelluloses | 17.79 ± 1.23 |
Lignin | 46.08 ± 1.64 |
Ash | 3.10 ± 0.17 |
Extractives | 9.38 ± 0.18 |
Property | Value |
---|---|
Density (g·mL−1, 20 °C) | 0.9225 |
API gravity (°) | 21.7 (Heavy oil) |
Pour point (°C) | –39 |
Kinect Model | R2 | k (Rate Constant) | qₑ (g·g−1) |
---|---|---|---|
Pseudo-first-order | 0.741 | 0.010 min−1 | 1.719 |
Pseudo-second-order | 0.990 | 0.043 g·g−1·min−1 | 4.182 |
Isotherm Model | R2 | qₘₐₓ or qₘₛ (g·g−1) | K or b | n |
---|---|---|---|---|
Langmuir | 0.919 | 5.535 | Kᴸ = 78.992 (L·mg−1) | – |
Freundlich | 0.886 | – | Kᶠ = 10.54 (L1/n.g−1/n)⋅(g.g)−1 | 3.409 |
Sips | 0.908 | 5.286 | b = 12,008.02 (L·g−1)n | 105.47 |
Biosorbent | Treatment/Modification | Adsorbate | Adsorption Capacity (g·g−1) | Experimental Conditions | Regeneration | Efficiency Loss | Desorption Method | Ref. |
---|---|---|---|---|---|---|---|---|
Banana Cellulose | Succinic anhydride in ionic liquid | Crude oil | 32.12 | Dose: 0.05 g; Time: 200 min; Initial oil conc.: 25 g | Not reported | — | — | [87] |
Jute Fiber | None (raw) | Crude oil | 7.12 | Dose: 1 g; Time: 15 min (ASTM F-726-12) | Not reported | — | — | [88] |
Bamboo Fiber | Delignification + CVD | Paraffin oil | 18.80 | Time: 10 min; Oil conc.: 50 mL | Yes | 96% after 5 cycles | Mechanical squeezing | [89] |
Coconut Fiber | Hydrothermal treatment (170 °C) | Diesel oil | 3.20 | Dose: 0.5 g; Time: 120 min; Temp.: 180 °C (ASTM F726-17) | Not reported | — | — | [90] |
Coconut Fiber | None (raw) | Petroleum (crude oil) | 4.18 ± 0.19 | Dose: 0.5 g; Time: 5 min; Conc.: 80 mL·L−1; pH: 7 | Yes, 5 cycles | 52.70% | Centrifugation | Present study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardoso, C.K.M.; Moreira, Í.T.A.; Queiroz, A.F.d.S.; Oliveira, O.M.C.d.; Lobato, A.K.d.C.L. Multiscale Evaluation of Raw Coconut Fiber as Biosorbent for Marine Oil Spill Remediation: From Laboratory to Field Applications. Resources 2025, 14, 159. https://doi.org/10.3390/resources14100159
Cardoso CKM, Moreira ÍTA, Queiroz AFdS, Oliveira OMCd, Lobato AKdCL. Multiscale Evaluation of Raw Coconut Fiber as Biosorbent for Marine Oil Spill Remediation: From Laboratory to Field Applications. Resources. 2025; 14(10):159. https://doi.org/10.3390/resources14100159
Chicago/Turabian StyleCardoso, Célia Karina Maia, Ícaro Thiago Andrade Moreira, Antônio Fernando de Souza Queiroz, Olívia Maria Cordeiro de Oliveira, and Ana Katerine de Carvalho Lima Lobato. 2025. "Multiscale Evaluation of Raw Coconut Fiber as Biosorbent for Marine Oil Spill Remediation: From Laboratory to Field Applications" Resources 14, no. 10: 159. https://doi.org/10.3390/resources14100159
APA StyleCardoso, C. K. M., Moreira, Í. T. A., Queiroz, A. F. d. S., Oliveira, O. M. C. d., & Lobato, A. K. d. C. L. (2025). Multiscale Evaluation of Raw Coconut Fiber as Biosorbent for Marine Oil Spill Remediation: From Laboratory to Field Applications. Resources, 14(10), 159. https://doi.org/10.3390/resources14100159