Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4491 KB  
Article
Comparative Analysis of Water Stress Regimes in Avocado Plants during the Early Development Stage
by Tatiana Rondon, Manuel Guzmán-Hernández, Maria C. Torres-Madronero, Maria Casamitjana, Lucas Cano, July Galeano and Manuel Goez
Plants 2024, 13(18), 2660; https://doi.org/10.3390/plants13182660 - 23 Sep 2024
Cited by 5 | Viewed by 2311
Abstract
The avocado cv. Hass requires a suitable rootstock for optimal development under water stress. This study evaluated the performance of two avocado rootstocks (ANRR88 and ANGI52) grafted onto cv. Hass under four water stress conditions, 50% and 25% deficit, and 50% and 25% [...] Read more.
The avocado cv. Hass requires a suitable rootstock for optimal development under water stress. This study evaluated the performance of two avocado rootstocks (ANRR88 and ANGI52) grafted onto cv. Hass under four water stress conditions, 50% and 25% deficit, and 50% and 25% excess during the nursery stage. Plant height, leaf area (LA), dry matter (DM), and Carbon (OC) content in the roots, stems, and leaves were measured. Root traits were evaluated using digital imaging, and three vegetation indices (NDVI, CIRE, and MTCI) were used to quantify stress. The results showed that genotype significantly influenced the response to water stress. ANRR88 exhibited adaptation to moderate to high water deficits. ANGI52 adapted better to both water deficit and excess, and showed greater root exploration. LA and DM reductions of up to 60% were observed in ANRR88, suggesting a higher sensitivity to extreme changes in water availability. More than 90% of the total OC accumulation was observed in the stem and roots. The NDVI and the MTCI quantified the presence and levels of stress applied, and the 720 nm band provided high precision and speed for detecting stress. These insights are crucial for selecting rootstocks that ensure optimal performance under varying water availability, enhancing productivity and sustainability. Full article
(This article belongs to the Special Issue Responses of Crops to Abiotic Stress)
Show Figures

Figure 1

15 pages, 5833 KB  
Article
Comparative Studies for Cryopreservation of Agave Shoot Tips by Droplet-Vitrification
by Lourdes Delgado-Aceves, Santiago Corona, Ubaldo Richard Marin-Castro, Martha Paola Rascón-Díaz, Liberato Portillo, Antonia Gutiérrez-Mora and María Teresa González-Arnao
Plants 2024, 13(18), 2609; https://doi.org/10.3390/plants13182609 - 18 Sep 2024
Cited by 4 | Viewed by 1691
Abstract
The objective of this work was to assess the suitability of the Droplet-vitrification protocol previously developed with Agave peacockii shoot tips for the cryopreservation of six Agave species. Shoot tips were precultured for 1 day on a medium with 0.3 M sucrose in [...] Read more.
The objective of this work was to assess the suitability of the Droplet-vitrification protocol previously developed with Agave peacockii shoot tips for the cryopreservation of six Agave species. Shoot tips were precultured for 1 day on a medium with 0.3 M sucrose in the dark, loaded in a solution with 1.6 M glycerol and 0.4 M sucrose for 20 min, and dehydrated by exposure to Plant Vitrification Solution 2 (PVS2) at 0 °C for 20 min. Complementary studies using histological analysis, Differential scanning calorimetry (DSC), and evaluation of morphological characteristics in cryo-derived plants were performed. Survival rates ranged from 84% to 100% and from 76% to 97% before and after cryopreservation regardless of the Agave species belonging to two taxonomic subgenera. Thermal analysis of shoot tips subjected to the successive steps of the Droplet-vitrification protocol identified ice crystal formation after loading treatment and glass transition after osmotic dehydration with PVS2. The average glass transition temperature (Tg) was −55.44 °C based on the results of four Agave species. The histological studies showed the anatomical differences that could be found in the meristematic structures depending on the loss of apical dominance. This is the most advanced research on cryopreservation of Agave shoot tips. Full article
(This article belongs to the Special Issue In Vitro Propagation and Cryopreservation of Plants)
Show Figures

Figure 1

20 pages, 4626 KB  
Article
Genetic Diversity of Common Bean (Phaseolus vulgaris L.) Landraces Based on Morphological Traits and Molecular Markers
by Evaldo de Paula, Rafael Nunes de Almeida, Talles de Oliveira Santos, José Dias de Souza Neto, Elaine Manelli Riva-Souza, Sheila Cristina Prucoli Posse, Maurício Novaes Souza, Aparecida de Fátima Madella de Oliveira, Alexandre Cristiano Santos Júnior, Jardel Oliveira Santos, Samy Pimenta, Cintia dos Santos Bento and Monique Moreira Moulin
Plants 2024, 13(18), 2584; https://doi.org/10.3390/plants13182584 - 15 Sep 2024
Cited by 9 | Viewed by 4060
Abstract
The objective of this study was to evaluate the genetic diversity among traditional common bean accessions through morphological descriptors and molecular markers. Sixty-seven common bean accessions from the Germplasm bank of the Instituto Federal of Espírito Santo—Campus de Alegre were evaluated. For this, [...] Read more.
The objective of this study was to evaluate the genetic diversity among traditional common bean accessions through morphological descriptors and molecular markers. Sixty-seven common bean accessions from the Germplasm bank of the Instituto Federal of Espírito Santo—Campus de Alegre were evaluated. For this, 25 specific morphological descriptors were used, namely 12 quantitative and 13 qualitative ones. A diversity analysis based on morphological descriptors was carried out using the Gower algorithm. For molecular characterization, 23 ISSR primers were used to estimate dissimilarity using the Jaccard Index. Based on the dendrograms obtained by the UPGMA method, for morphological and molecular characterization, high genetic variability was observed between the common bean genotypes studied, evidenced by cophenetic correlation values in the order of 0.99, indicating an accurate representation of the dissimilarity matrix by the UPGMA clustering. In the morphological characterization, high phenotypic diversity was observed between the accessions, with grains of different shapes, colors, and sizes, and the accessions were grouped into nine distinct groups. Molecular characterization was efficient in separating the genotypes in the Andean and Mesoamerican groups, with the 23 ISSR primers studied generating an average of 6.35 polymorphic bands. The work identified divergent accessions that can serve different market niches, which can be indicated as parents to form breeding programs in order to obtain progenies with high genetic variability. Full article
(This article belongs to the Special Issue Characterization and Conservation of Vegetable Genetic Resources)
Show Figures

Figure 1

23 pages, 4097 KB  
Review
Current Insights into Weak Seed Dormancy and Pre-Harvest Sprouting in Crop Species
by Angel J. Matilla
Plants 2024, 13(18), 2559; https://doi.org/10.3390/plants13182559 - 12 Sep 2024
Cited by 11 | Viewed by 3797
Abstract
During the domestication of crops, seed dormancy has been reduced or eliminated to encourage faster and more consistent germination. This alteration makes cultivated crops particularly vulnerable to pre-harvest sprouting, which occurs when mature crops are subjected to adverse environmental conditions, such as excessive [...] Read more.
During the domestication of crops, seed dormancy has been reduced or eliminated to encourage faster and more consistent germination. This alteration makes cultivated crops particularly vulnerable to pre-harvest sprouting, which occurs when mature crops are subjected to adverse environmental conditions, such as excessive rainfall or high humidity. Consequently, some seeds may bypass the normal dormancy period and begin to germinate while still attached to the mother plant before harvest. Grains affected by pre-harvest sprouting are characterized by increased levels of α-amylase activity, resulting in poor processing quality and immediate grain downgrading. In the agriculture industry, pre-harvest sprouting causes annual economic losses exceeding USD 1 billion worldwide. This premature germination is influenced by a complex interplay of genetic, biochemical, and molecular factors closely linked to environmental conditions like rainfall. However, the exact mechanism behind this process is still unclear. Unlike pre-harvest sprouting, vivipary refers to the germination process and the activation of α-amylase during the soft dough stage, when the grains are still immature. Mature seeds with reduced levels of ABA or impaired ABA signaling (weak dormancy) are more susceptible to pre-harvest sprouting. While high seed dormancy can enhance resistance to pre-harvest sprouting, it can lead to undesirable outcomes for most crops, such as non-uniform seedling establishment after sowing. Thus, resistance to pre-harvest sprouting is crucial to ensuring productivity and sustainability and is an agronomically important trait affecting yield and grain quality. On the other hand, seed color is linked to sprouting resistance; however, the genetic relationship between both characteristics remains unresolved. The identification of mitogen-activated protein kinase kinase-3 (MKK3) as the gene responsible for pre-harvest sprouting-1 (Phs-1) represents a significant advancement in our understanding of how sprouting in wheat is controlled at the molecular and genetic levels. In seed maturation, Viviparous-1 (Vp-1) plays a crucial role in managing pre-harvest sprouting by regulating seed maturation and inhibiting germination through the suppression of α-amylase and proteases. Vp-1 is a key player in ABA signaling and is essential for the activation of the seed maturation program. Mutants of Vp-1 exhibit an unpigmented aleurone cell layer and exhibit precocious germination due to decreased sensitivity to ABA. Recent research has also revealed that TaSRO-1 interacts with TaVp-1, contributing to the regulation of seed dormancy and resistance to pre-harvest sprouting in wheat. The goal of this review is to emphasize the latest research on pre-harvest sprouting in crops and to suggest possible directions for future studies. Full article
Show Figures

Figure 1

19 pages, 6261 KB  
Article
Optimization of Ultrasonic-Assisted Extraction of Phenolic Compounds and Antioxidant Activity from Araticum Peel Using Response Surface Methodology
by Amanda Cristina Andrade, Felipe Tecchio Borsoi, Ana Sofia Martelli Chaib Saliba, Severino Matias de Alencar, Glaucia Maria Pastore and Henrique Silvano Arruda
Plants 2024, 13(18), 2560; https://doi.org/10.3390/plants13182560 - 12 Sep 2024
Cited by 5 | Viewed by 3153
Abstract
The peel represents a significant portion of the araticum fruit (about 40%), which becomes waste after its consumption or processing. Previous studies have shown that the araticum peel is rich in phenolic compounds; however, little is known about the ideal conditions for recovering [...] Read more.
The peel represents a significant portion of the araticum fruit (about 40%), which becomes waste after its consumption or processing. Previous studies have shown that the araticum peel is rich in phenolic compounds; however, little is known about the ideal conditions for recovering these compounds. Therefore, response surface methodology, using a central composite rotatable design, was employed to optimize the extraction process to maximize the total phenolic compounds (TPCs) and enhance the Trolox equivalent antioxidant capacity (TEAC) from araticum peel. The variables optimized were ethanol concentration (EC; 20–80%, v/v), extraction time (ET; 5–45 min), and solid–solvent ratio (SSR; 10–100 mg/mL). Additionally, condensed tannins, antioxidant capacity against synthetic free radicals (TEAC and FRAP) and reactive oxygen species (ROS), and the phenolic compounds profile, were evaluated. Optimum extraction conditions were 50% (v/v) ethanol concentration, 5 min of extraction time, and 10 mg/mL solid–solvent ratio. Under these conditions, experimental TPCs and TEAC values were 70.16 mg GAE/g dw and 667.22 µmol TE/g dw, respectively, comparable with predicted models (68.47 mg GAE/g dw for TPCs and 677.04 µmol TE/g dw for TEAC). A high condensed tannins content (76.49 mg CE/g dw) was also observed and 12 phenolic compounds were identified, predominantly flavonoids (97.77%), including procyanidin B2, epicatechin, and catechin as the major compounds. Moreover, a potent antioxidant activity was observed against synthetic free radicals and ROS, especially in scavenging peroxyl and hydroxyl radicals. From this study, we obtained the ideal conditions for recovering phenolic compounds from araticum peel using a simple, fast, sustainable, and effective method, offering a promising opportunity for the management of this plant byproduct. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

18 pages, 3637 KB  
Article
Diverging Elevational Patterns of Tree vs. Epiphyte Species Density, Beta Diversity, and Biomass in a Tropical Dry Forest
by Florian A. Werner and Jürgen Homeier
Plants 2024, 13(18), 2555; https://doi.org/10.3390/plants13182555 - 11 Sep 2024
Cited by 3 | Viewed by 2085
Abstract
There is evidence to suggest that vascular epiphytes experience low competition for resources (light, water, and nutrients) compared to terrestrial plants. We tested the hypothesis that low resource competition may lead to higher nestedness among vascular epiphyte assemblages compared to trees. We studied [...] Read more.
There is evidence to suggest that vascular epiphytes experience low competition for resources (light, water, and nutrients) compared to terrestrial plants. We tested the hypothesis that low resource competition may lead to higher nestedness among vascular epiphyte assemblages compared to trees. We studied the species composition and biomass of epiphytes and trees along an elevation gradient in a tropical dry forest in SW Ecuador. Both life-forms were inventoried on 25 plots of 400 m2 across five elevation levels (550–1250 m). Tree species density and total species richness increased with elevation, whereas basal area and biomass did not show significant trends. Epiphyte species density and richness both increased strongly with elevation, in parallel to biomass. Plot-level compositional changes were similarly strong for both life-forms. We attribute elevational increases in the species richness of trees and epiphytes to increasing humidity, i.e., more mesic growth conditions. We attribute the more pronounced elevational increase in epiphyte biomass, species density, and richness—the latter coupled with a higher degree of nestedness—to the greater moisture dependency of epiphytes and relatively low direct competition for resources. Our study provides a first comparison of elevational trends in epiphyte and tree diversity and biomass for a tropical dry forest. Full article
Show Figures

Figure 1

18 pages, 339 KB  
Article
Impact of Simultaneous Nutrient Priming and Biopriming on Soybean Seed Quality and Health
by Gordana Tamindžić, Dragana Miljaković, Maja Ignjatov, Jegor Miladinović, Vuk Đorđević, Dragana Milošević, Dušica Jovičić, Slobodan Vlajić, Dragana Budakov and Mila Grahovac
Plants 2024, 13(18), 2557; https://doi.org/10.3390/plants13182557 - 11 Sep 2024
Cited by 6 | Viewed by 2257
Abstract
In soybean production, numerous strategies are utilized to enhance seed quality and mitigate the effects of biotic and abiotic stressors. Zn-based nutrient priming has been shown to be effective for field crops, and biopriming is a strategy that is becoming increasingly important for [...] Read more.
In soybean production, numerous strategies are utilized to enhance seed quality and mitigate the effects of biotic and abiotic stressors. Zn-based nutrient priming has been shown to be effective for field crops, and biopriming is a strategy that is becoming increasingly important for sustainable agriculture. On the other hand, there is a lack of information about the effect of comprehensive nutrient priming and biopriming techniques on soybean seed quality and viability and seed health. This study was performed to assess the benefits of nutrient priming with Zn, biopriming with Bacillus megaterium and Bradyrhizobium japonicum (single and co-inoculation), and combination of nutrient priming and biopriming on the seed quality and viability, as well as seed infection caused by Alternaria spp. and Fusarium spp. Three different laboratory tests were employed: germination test, accelerated aging test, and seed health test. The results revealed that all tested priming treatments have a beneficial effect on seed germination, initial plant growth, and reduction of seed infection in normal and aged seeds. Additionally, comprehensive priming with Zn, Bacillus megaterium, and Bradyrhizobium japonicum reduced the occurrence of Alternaria spp. (−84% and −75%) and Fusarium spp. (−91% and −88%) on soybean seeds in the germination and accelerated aging tests, respectively, as compared to the control, which proved to be the most effective treatment in both optimal and stressful conditions. Full article
(This article belongs to the Special Issue Mechanisms of Seed Dormancy and Germination)
22 pages, 6251 KB  
Article
Importance of Media Composition and Explant Type in Cannabis sativa Tissue Culture
by Rekhamani Das, Tobias Kretzschmar and Jos C. Mieog
Plants 2024, 13(18), 2544; https://doi.org/10.3390/plants13182544 - 10 Sep 2024
Cited by 3 | Viewed by 6292
Abstract
Producing uniform Cannabis sativa (Cannabis) for medicinal/recreational flower production through sexual propagation has been problematic, leading to dominance of clonal propagation from “mother plants” in the cannabinoid industry, which also faces significant limitations. Cannabis tissue culture (TC) methods have been developed to overcome [...] Read more.
Producing uniform Cannabis sativa (Cannabis) for medicinal/recreational flower production through sexual propagation has been problematic, leading to dominance of clonal propagation from “mother plants” in the cannabinoid industry, which also faces significant limitations. Cannabis tissue culture (TC) methods have been developed to overcome these challenges, but the long-term health and maintenance of Cannabis explants in TC have been largely overlooked in previous studies. The current study focused on the development of an efficient and optimized micropropagation protocol covering the entire process, with a specific focus on the health and performance in the multiplication stage. Multiplication media were formulated hormone-free to avoid longer-term vitrification issues, resulting in single-main-shoot cultures rather than multiple-shoot cultures. This instigated the use of stage II explant types different from the standard shoot tips previously used for multiple shoot cultures. Multiplication media were further improved from the basal salt composition via nitrogen and calcium additives. The optimized protocol was used on eight diverse Cannabis cultivars to test its applicability across various genetic backgrounds. Results indicated that the protocol was effective for conservation purposes across all cultivars and achieved good long-term multiplication rates for some but not all. The outcomes of this study mark a significant stride towards an efficient Cannabis TC methodology ready for more comprehensive industrial applications. Full article
(This article belongs to the Special Issue Plant Tissue Culture and Plant Regeneration)
Show Figures

Figure 1

25 pages, 6918 KB  
Article
Microbial Biocontrol Agents and Natural Products Act as Salt Stress Mitigators in Lactuca sativa L.
by Claudio Caprari, Antonio Bucci, Anastasia C. Ciotola, Carmine Del Grosso, Ida Dell’Edera, Sabrina Di Bartolomeo, Danilo Di Pilla, Fabio Divino, Paola Fortini, Pamela Monaco, Davide Palmieri, Michele Petraroia, Luca Quaranta, Giuseppe Lima and Giancarlo Ranalli
Plants 2024, 13(17), 2505; https://doi.org/10.3390/plants13172505 - 6 Sep 2024
Cited by 4 | Viewed by 5343
Abstract
One of the major problems related to climate change is the increase in land area affected by higher salt concentrations and desertification. Finding economically and environmentally friendly sustainable solutions that effectively mitigate salt stress damage to plants is of great importance. In our [...] Read more.
One of the major problems related to climate change is the increase in land area affected by higher salt concentrations and desertification. Finding economically and environmentally friendly sustainable solutions that effectively mitigate salt stress damage to plants is of great importance. In our work, some natural products and microbial biocontrol agents were evaluated for their long-term effectiveness in reducing salt stress in lettuce (Lactuca sativa L. var. romana) plants. Fourteen different treatments applied to soil pots, with and without salt stress, were analyzed using biometric (leaf and root length and width), physiological (chlorophyll and proline content), and morphological (microscopic preparations) techniques and NGS to study the microbial communities in the soil of plants subjected to different treatments. Under our long-term experimental conditions (90 days), the results showed that salt stress negatively affected plant growth. The statistical analysis showed a high variability in the responses of the different biostimulant treatments. Notably, the biocontrol agents Papiliotrema terrestris (strain PT22AV), Bacillus amyloliquefaciens (strain B07), and Rahnella aquatilis (strain 36) can act as salt stress mitigators in L. sativa. These findings suggest that both microbial biocontrol agents and certain natural products hold promise for reducing the adverse effects of salt stress on plants. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

15 pages, 278 KB  
Article
Perception of the Vegetation Elements of Urban Green Spaces with a Focus on Flower Beds
by Miroslav Poje, Anton Vukelić, Vesna Židovec, Tatjana Prebeg and Mihael Kušen
Plants 2024, 13(17), 2485; https://doi.org/10.3390/plants13172485 - 5 Sep 2024
Cited by 6 | Viewed by 2077
Abstract
Urban vegetation plays a crucial role in meeting the challenges posed by rapid urbanization and climate change. The presence of plants and green spaces in urban areas provides a variety of environmental, social, and economic benefits. Understanding how users perceive ornamental plants in [...] Read more.
Urban vegetation plays a crucial role in meeting the challenges posed by rapid urbanization and climate change. The presence of plants and green spaces in urban areas provides a variety of environmental, social, and economic benefits. Understanding how users perceive ornamental plants in public green spaces and what their preferences are for certain vegetation elements is extremely important for planning and designing functional and aesthetically interesting urban landscapes. Although landscape experts sometimes use their creativity to create new trends, it is important not to ignore the attitudes and preferences of the public, who sometimes have a different opinion from that of the experts. The aim of the study was to determine the perceptions and preferences of the public and landscape experts for different vegetation elements and the differences in attitudes between these two groups. The study was conducted in Croatia in April 2012 using an online survey (n = 348). The results showed that trees were the most preferred vegetation element and that the public preferred flower beds and lawns to a greater extent than the professionals. All respondents perceived vegetation elements as volumes (trees, shrubs, and hedges) and plains (flower beds and lawns). In addition, respondents perceived two basic types of flower beds according to the features that characterize them: conventional and sustainable. The results show that users perceive the functional and spatial characteristics of the different vegetation elements, which is very important for the design of functional and sustainable urban green spaces. Full article
(This article belongs to the Special Issue Ornamental Plants and Urban Gardening II)
15 pages, 7214 KB  
Article
Overexpression of OsRbohH Enhances Heat and Drought Tolerance through ROS Homeostasis and ABA Mediated Pathways in Rice (Oryza sativa L.)
by Yating Chen, Rui Zhang, Rujie Wang, Jiangdi Li, Bin Wu, Haiwen Zhang and Guiqing Xiao
Plants 2024, 13(17), 2494; https://doi.org/10.3390/plants13172494 - 5 Sep 2024
Cited by 7 | Viewed by 2354
Abstract
Respiratory burst oxidase homologs (Rbohs) are the primary producers of reactive oxygen species (ROS), which have been demonstrated to play critical roles in plant responses to abiotic stress. Here, we explored the function of OsRbohH in heat and drought stress tolerance by generating [...] Read more.
Respiratory burst oxidase homologs (Rbohs) are the primary producers of reactive oxygen species (ROS), which have been demonstrated to play critical roles in plant responses to abiotic stress. Here, we explored the function of OsRbohH in heat and drought stress tolerance by generating overexpression lines (OsRbohH-OE). OsRbohH was highly induced by various abiotic stress and hormone treatments. Compared to wild-type (WT) controls, OsRbohH-OE plants exhibited enhanced tolerance to heat and drought, as determined by survival rate analyses and total chlorophyll content. Histochemical staining revealed that OsRbohH-OE accumulated less ROS. This is consistent with the observed increase in catalase (CAT) and peroxidase (POD) activities, as well as a reduced electrolyte leakage rate and malondialdehyde (MDA) content. Moreover, OsRbohH-OE exhibited enhanced sensitivity to exogenous abscisic acid (ABA), accompanied by altered expression levels of ABA synthesis and catabolic genes. Further analysis indicated that transgenic lines had lower transcripts of ABA signaling-related genes (OsDREB2A, OsLEA3, OsbZIP66, and OsbZIP72) under heat but higher levels under drought than WT. In conclusion, these results suggest that OsRbohH is a positive regulator of heat and drought tolerance in rice, which is probably performed through OsRbohH-mediated ROS homeostasis and ABA signaling. Full article
Show Figures

Figure 1

22 pages, 3884 KB  
Article
Beyond the Scent: New Evidence about Micromorphological, Phytochemical and Biological Features of Plumeria rubra ‘Tonda Palermitana’ (Apocynaceae)
by Paola Malaspina, Mariarosaria Ingegneri, Federica Betuzzi, Emilio Di Gristina, Laura Cornara, Domenico Trombetta and Antonella Smeriglio
Plants 2024, 13(17), 2479; https://doi.org/10.3390/plants13172479 - 4 Sep 2024
Cited by 4 | Viewed by 3968
Abstract
Plumeria rubra L. is an ornamental Caribbean plant widely known for its ethnobotanical uses and pharmacological activities. The ‘Tonda Palermitana’ cultivar, on which no data are to date available, is commonly cultivated in Sicily. The aim of our study was to characterize the [...] Read more.
Plumeria rubra L. is an ornamental Caribbean plant widely known for its ethnobotanical uses and pharmacological activities. The ‘Tonda Palermitana’ cultivar, on which no data are to date available, is commonly cultivated in Sicily. The aim of our study was to characterize the micro-morphological features of leaves and flowers of this cultivar by light and Scanning Electron Microscopy and to investigate the phytochemical profile and the biological properties of their food-grade extracts (LE and FE, respectively) by LC-DAD-ESI-MS analysis and different in vitro assays. Numerous branched laticifers were observed, and their secretion contained alkaloids and lipophilic compounds as confirmed by histological analyses. Phytochemical analyses showed the presence of alkaloids (9%), terpenoids (13%) and fatty acids (6%), together with a very abundant presence of iridoids (28%) and polyphenols (39%). The most notable biological activity of both extracts appears to be the antioxidant one, showing half-inhibitory concentrations (IC50) about 5 times lower than those detected in anti-inflammatory assays (383.74 ± 5.65 and 232.05 ± 2.87 vs. 1981.23 ± 12.82 and 1215.13 ± 10.15, for FE and LE, respectively), with LE showing the best, and statistically significant (p < 0.001), biological activity. These results allow us to speculate promising nutraceutical and cosmeceutical applications for this old Sicilian cultivar. Full article
Show Figures

Figure 1

20 pages, 4749 KB  
Article
Variation in Root-Associated Microbial Communities among Three Different Plant Species in Natural Desert Ecosystem
by Yulin Zhang, Yi Du, Zhihao Zhang, Waqar Islam and Fanjiang Zeng
Plants 2024, 13(17), 2468; https://doi.org/10.3390/plants13172468 - 3 Sep 2024
Cited by 4 | Viewed by 2478
Abstract
The process and function that underlie the assembly of root-associated microbiomes may be strongly linked to the survival strategy of plants. However, the assembly and functional changes of root-associated microbial communities in different desert plants in natural desert ecosystems are still unclear. Thus, [...] Read more.
The process and function that underlie the assembly of root-associated microbiomes may be strongly linked to the survival strategy of plants. However, the assembly and functional changes of root-associated microbial communities in different desert plants in natural desert ecosystems are still unclear. Thus, we studied the microbial communities and diversity of root endosphere (RE), rhizosphere soil (RS), and bulk soil (BS) among three representative desert plants (Alhagi sparsifolia, Tamarix ramosissima, and Calligonum caput-medusae) in three Xinjiang desert regions {Taklimakan (CL), Gurbantünggüt (MSW), and Kumtag (TLF)} in China. This study found that the soil properties {electrical conductivity (EC), soil organic carbon (SOC), total nitrogen (TN) and phosphorus (TP), available nitrogen (AN) and phosphorus (AP)} of C. caput-medusae were significantly lower than those of A. sparsifolia and T. ramosissima, while the root nutrients (TN and TP) of A. sparsifolia were significantly higher compared to C. caput-medusae and T. ramosissima. The beta diversity of bacteria and fungi (RE) among the three desert plants was significantly different. The common OTU numbers of bacteria and fungi in three compartments (RE, RS, and BS) of the three desert plants were ranked as RS > BS > RE. The bacterial and fungal (RE) Shannon and Simpson indexes of C. caput-medusae were significantly lower as compared to those of A. sparsifolia and T. ramosissima. Additionally, bacterial and fungal (RE and RS) node numbers and average degree of C. caput-medusae were lower than those found in A. sparsifolia and T. ramosissima. Root and soil nutrients collectively contributed to the composition of root-associated bacterial (RE, 12.4%; RS, 10.6%; BS, 16.6%) and fungal communities (RE, 34.3%; RS, 1.5%; BS, 17.7%). These findings demonstrate variations in the bacterial and fungal populations across different plant species with distinct compartments (RE, RS, and BS) in arid environments. More importantly, the study highlights how much soil and plant nutrients contribute to root-associated microbial communities. Full article
(This article belongs to the Special Issue Plant-Microbiome Interactions)
Show Figures

Figure 1

15 pages, 1881 KB  
Article
Variations in Root Characteristics and Cadmium Accumulation of Different Rice Varieties under Dry Cultivation Conditions
by Chaoping Shan, Can Shi, Xinran Liang, Yanqun Zu, Jixiu Wang, Bo Li and Jianjun Chen
Plants 2024, 13(17), 2457; https://doi.org/10.3390/plants13172457 - 2 Sep 2024
Cited by 7 | Viewed by 1801
Abstract
Variations in the cadmium (Cd) accumulation and root characteristics of different genotypes of rice during three developmental periods of dry cultivation were investigated in pot experiments in which two levels of Cd were added to the soil (0 and 10 mg kg−1 [...] Read more.
Variations in the cadmium (Cd) accumulation and root characteristics of different genotypes of rice during three developmental periods of dry cultivation were investigated in pot experiments in which two levels of Cd were added to the soil (0 and 10 mg kg−1). The results show that the Cd concentration in each organ of the different rice genotypes decreased in both the order of roots > shoots > grains and during the three developmental periods in the order of the maturity stage > booting stage > tillering stage. The lowest bioaccumulation factor (BCF) and translocation factor (TF) were found in Yunjing37 (YJ37) under Cd stress. At maturity, Cd stress inhibited the root length of Dianheyou34 (DHY34) the most and that of Dianheyou 918 (DHY918) the least, also affecting the root volume of DHY34 and Dianheyou615 (DHY615) the most and that of YJ37 and Yiyou 673 (YY673) the least; the inhibition rates were 41.80, 5.09, 40.95, and 10.51%, respectively. The exodermis showed the greatest thickening in YY673 and the lowest thickening in DHY615, while the endodermis showed the opposite result. The rates of change were 16.48, 2.45, 5.10, and 8.49%, respectively. The stele diameter of DHY615 decreased the most, and that of YY673 decreased the least, while the secondary xylem area showed the opposite result; the rates of change were −21.50, −14.29, −5.86, and −26.35%, respectively. Under Cd stress treatment at maturity, iron plaque was extracted using the dithionite–citrate–bicarbonate (DCB) method. The concentration of iron (DCB-Fe) was highest in YJ37, and the concentration of cadmium (DCB-Cd) was lowest in DHY34. YJ37 was screened as a low Cd-accumulating variety. The concentration of available Cd in the rhizosphere soil, iron plaque, root morphology, and anatomy affect Cd accumulation in rice with genotypic differences. Our screening of Cd-accumulating rice varieties provides a basis for the dry cultivation of rice in areas with high background values of Cd in order to avoid the health risks of Cd intake. Full article
(This article belongs to the Special Issue Crop Plants and Heavy Metals)
Show Figures

Figure 1

17 pages, 3594 KB  
Article
Effects of Combined Nitrogen–Phosphorus on Biomass Accumulation, Allocation, and Allometric Growth Relationships in Pinus yunnanensis Seedlings after Top Pruning
by Guangpeng Tang, Yu Wang, Zhuangyue Lu, Sili Cheng, Zhaoliu Hu, Shi Chen, Lin Chen, Junrong Tang, Yulan Xu and Nianhui Cai
Plants 2024, 13(17), 2450; https://doi.org/10.3390/plants13172450 - 2 Sep 2024
Cited by 9 | Viewed by 2090
Abstract
Pinus yunnanensis (Franch), a species endemic to southwestern China, provides significant ecological and economic benefits. The quality of afforestation can be enhanced by promoting high-quality sprout growth. This study analyzed the effects of six fertilization treatments following top pruning: T1 (N: 0 g/plant [...] Read more.
Pinus yunnanensis (Franch), a species endemic to southwestern China, provides significant ecological and economic benefits. The quality of afforestation can be enhanced by promoting high-quality sprout growth. This study analyzed the effects of six fertilization treatments following top pruning: T1 (N: 0 g/plant−1; P: 0 g/plant−1), T2 (N: 0 g/plant−1; P: 2 g/plant−1), T3 (N: 0 g/plant−1; P: 4 g/plant−1), T4 (N: 0.6 g/plant−1; P: 0 g/plant−1), T5 (N: 0.6 g/plant−1; P: 2 g/plant−1), and T6 (N: 0.6 g/plant−1; P: 4 g/plant−1). The accumulation and allocation of aboveground biomass in roots, stems, and leaves of P. yunnanensis were measured, as well as changes in biomass per plant at 90 days (early stage), 180 days (middle stage), and 270 days (late stage) post-fertilization. At 90 days, root biomass accumulation in T3 was significantly higher, by 13.31%, compared to that in T1 (p < 0.05). The growth rates of stem and plant biomass followed the order T6 > T1 > T3 > T5 > T4 > T2. The biomass of sprouts and individual plants exhibited allometric growth under T1, T5, and T6 treatments. At 180 days, needle biomass allocation in T1 and T4 increased by 7.47% and 8.6%, respectively, compared to 90 days. Combined nitrogen–phosphorus fertilization significantly influenced aboveground biomass allocation, promoting growth more effectively than other treatments. By 270 days, the stem and individual biomass in T2 and T3 treatments showed significant differences (p < 0.01) compared to other treatments. Overall, root, stem, and sprouts were primarily influenced by phosphorus fertilization, while nitrogen fertilization notably promoted needle and leaf growth in later stages. The aboveground components were more affected by phosphorus fertilization. The combination of nitrogen and phosphorus fertilizers enhanced early-stage stem and sprouts, as well as late-stage root development. Full article
(This article belongs to the Collection Feature Papers in Plant Ecology)
Show Figures

Figure 1

15 pages, 2284 KB  
Article
Application of Silica Nanoparticles Improved the Growth, Yield, and Grain Quality of Two Salt-Tolerant Rice Varieties under Saline Irrigation
by Wenyu Jin, Lin Li, Wenli He and Zhongwei Wei
Plants 2024, 13(17), 2452; https://doi.org/10.3390/plants13172452 - 2 Sep 2024
Cited by 15 | Viewed by 3046
Abstract
Salt stress significantly reduces rice yield and quality and is a global challenge, especially in arid and semi-arid regions with limited freshwater resources. The present study was therefore conducted to examine the potential of silica nanoparticles (SiO2 NPs) in mitigating the adverse [...] Read more.
Salt stress significantly reduces rice yield and quality and is a global challenge, especially in arid and semi-arid regions with limited freshwater resources. The present study was therefore conducted to examine the potential of silica nanoparticles (SiO2 NPs) in mitigating the adverse effects of saline irrigation water in salt-tolerant rice. Two salt-tolerant rice varieties, i.e., Y liangyou 957 (YLY957) and Jingliangyou 534 (JLY534), were irrigated with 0.6% salt solution to simulate high-salt stress and two SiO2 NPs were applied, i.e., control (CK) and SiO2 NPs (15 kg hm−2). The results demonstrated that the application of SiO2 NPs increased, by 33.3% and 23.3%, the yield of YLY957 and JLY534, respectively, compared with CK, which was primarily attributed to an increase in the number of grains per panicle and the grain-filling rate. Furthermore, the application of SiO2 NPs resulted in a notable enhancement in the chlorophyll content, leaf area index, and dry matter accumulation, accompanied by a pronounced stimulation of root system growth and development. Additionally, the SiO2 NPs also improved the antioxidant enzyme activities, i.e., superoxide dismutase, peroxidase, and catalase activity and reduced the malondialdehyde content. The SiO2 NPs treatment effectively improved the processing quality, appearance quality, and taste quality of the rice. Furthermore, the SiO2 NPs resulted in improvements to the rapid viscosity analyzer (RVA) pasting profile, including an increase in peak viscosity and breakdown values and a reduction in setback viscosity. The application of SiO2 NPs also resulted in a reduction in crystallinity and pasting temperature owing to a reduction in the proportion of B2 + B3 amylopectin chains. Overall, the application of silica nanoparticles improved the quality of rice yield under high-salt stress. Full article
(This article belongs to the Special Issue Nanomaterials on Plant Growth and Stress Adaptation)
Show Figures

Graphical abstract

16 pages, 2224 KB  
Article
Isolation and Selection of Protein-Rich Mutants of Chlorella vulgaris by Fluorescence-Activated Cell Sorting with Enhanced Biostimulant Activity to Germinate Garden Cress Seeds
by Mafalda Trovão, Lisa Schüler, Humberto Pedroso, Ana Reis, Gonçalo Espírito Santo, Ana Barros, Nádia Correia, Joana Ribeiro, Gabriel Bombo, Florinda Gama, Catarina Viana, Monya M. Costa, Sara Ferreira, Helena Cardoso, João Varela, Joana Silva, Filomena Freitas and Hugo Pereira
Plants 2024, 13(17), 2441; https://doi.org/10.3390/plants13172441 - 1 Sep 2024
Cited by 5 | Viewed by 2591
Abstract
Microalgae are a promising feedstock with proven biostimulant activity that is enhanced by their biochemical components (e.g., amino acids and phytohormones), which turns them into an appealing feedstock to reduce the use of fertilisers in agriculture and improve crop productivity and resilience. Thus, [...] Read more.
Microalgae are a promising feedstock with proven biostimulant activity that is enhanced by their biochemical components (e.g., amino acids and phytohormones), which turns them into an appealing feedstock to reduce the use of fertilisers in agriculture and improve crop productivity and resilience. Thus, this work aimed to isolate protein-rich microalgal mutants with increased biostimulant activity. Random mutagenesis was performed with Chlorella vulgaris, and a selection of protein-rich mutants were sorted through fluorescence-activated cell sorting (FACS), resulting in the isolation of 17 protein-rich mutant strains with protein contents 19–34% higher than that of the wildtype (WT). Furthermore, mutant F4 displayed a 38%, 22% and 62% higher biomass productivity, growth rate and chlorophyll content, respectively. This mutant was then scaled up to a 7 L benchtop reactor to produce biomass and evaluate the biostimulant potential of this novel strain towards garden cress seeds. Compared to water (control), the germination index and the relative total growth increased by 7% and 19%, respectively, after the application of 0.1 g L−1 of this bioproduct, which highlights its biostimulant potential. Full article
(This article belongs to the Collection Feature Papers in Plant Physiology and Metabolism)
Show Figures

Figure 1

38 pages, 3872 KB  
Review
A Comprehensive Review of Climate Change and Plant Diseases in Brazil
by Francislene Angelotti, Emília Hamada and Wagner Bettiol
Plants 2024, 13(17), 2447; https://doi.org/10.3390/plants13172447 - 1 Sep 2024
Cited by 8 | Viewed by 7248
Abstract
Analyzing the impacts of climate change on phytosanitary problems in Brazil is crucial due to the country’s special role in global food security as one of the largest producers of essential commodities. This review focuses on the effects of climate change on plant [...] Read more.
Analyzing the impacts of climate change on phytosanitary problems in Brazil is crucial due to the country’s special role in global food security as one of the largest producers of essential commodities. This review focuses on the effects of climate change on plant diseases and discusses its main challenges in light of Brazil’s diverse agricultural landscape. To assess the risk of diseases caused by fungi, bacteria, viruses, oomycetes, nematodes, and spiroplasms, we surveyed 304 pathosystems across 32 crops of economic importance from 2005 to 2022. Results show that diseases caused by fungi account for 79% of the pathosystems evaluated. Predicting the occurrence of diseases in a changing climate is a complex challenge, and the continuity of this work is strategic for Brazil’s agricultural defense. The future risk scenarios analyzed here aim to help guide disease mitigation for cropping systems. Despite substantial progress and ongoing efforts, further research will be needed to effectively prevent economic and environmental damage. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Graphical abstract

16 pages, 8749 KB  
Article
Characterization of Male Flower Induction by Silver Thiosulfate Foliar Spray in Female Cannabis at the Middle Reproductive Stage for Breeding
by Juyoung Kim, Dong-Gun Kim, Woon Ji Kim, Ye-Jin Lee, Seung Hyeon Lee, Jaihyunk Ryu, Jae Hoon Kim and Sang Hoon Kim
Plants 2024, 13(17), 2429; https://doi.org/10.3390/plants13172429 - 30 Aug 2024
Cited by 4 | Viewed by 4940
Abstract
Cannabis (Cannabis sativa) is a versatile crop belonging to the Cannabaceae family, and is dioecious, typically with separate male and female plants. The flowers of female plants, especially the trichomes, accumulate relatively higher contents of cannabinoids compared with those of male [...] Read more.
Cannabis (Cannabis sativa) is a versatile crop belonging to the Cannabaceae family, and is dioecious, typically with separate male and female plants. The flowers of female plants, especially the trichomes, accumulate relatively higher contents of cannabinoids compared with those of male plants. For this reason, to obtain seeds that are genetically female, it is desirable to induce the development of male flowers on a female plant that produces genetically female haploid gametes. Silver thiosulfate (STS) is a highly effective chemical for male flower induction. We investigated male flower induction in three commercial cultivars of female cannabis (Spectrum303, SuperwomanS1, and CBGambit) regarding the treatment frequency, stage of application, and concentration of STS applied as a foliar spray. All three cultivars showed adequate induction of male flowers in response to 1.5 mM STS applied at the early reproductive stage. In particular, SuperwomanS1 was most highly responsive to induction of male flowers, even when treated with 0.3 mM STS at the early reproductive stage. Treatment with three applications of STS was more effective compared with a single application, but a single application of 1.5 mM STS at the early reproductive stage was sufficient for male flower induction. A single STS application during the middle stage of reproductive growth was inadequate for induction of male flowers. However, 6 weeks after three applications of STS, CBGambit exhibited approximately 54% male flower induction at 0.3 mM STS, Spectrum303 showed approximately 56% induction at 3 mM STS, and SuperwomanS1 yielded approximately 26% induction at 1.5 mM (expressed as percentage of total number of individuals with the induced male flowers). Pollen stainability tests using KI-I2 solution and Alexander’s staining showed high pollen viability with over 65% at different single STS concentrations, indicating that pollen grains induced by STS have sufficient viability for the self-pollination. This study demonstrated that different cultivars of cannabis respond diversely to different STS concentrations and highlighted the potential benefits of three STS applications during the middle reproductive stage for cannabis breeding. Full article
(This article belongs to the Special Issue Cannabis sativa: Advances in Biology and Cultivation—2nd Edition)
Show Figures

Figure 1

14 pages, 7080 KB  
Article
The Impact of Changing Climate on an Endangered Epiphytic Orchid (Pleione formosana) in a Montane Cloud Forest and the Conservation Challenge Ahead
by Rebecca C.-C. Hsu, Yi-Chiann Chen and Chienyu Lin
Plants 2024, 13(17), 2414; https://doi.org/10.3390/plants13172414 - 29 Aug 2024
Cited by 3 | Viewed by 1649
Abstract
Pleione formosana Hayata is an endemic orchid that was once widely distributed across the mid-elevations of Taiwan. However, populations of this orchid have steadily shrunk due to orchid poaching in most of its habitats. By correlating data from micrometeorological stations that we installed [...] Read more.
Pleione formosana Hayata is an endemic orchid that was once widely distributed across the mid-elevations of Taiwan. However, populations of this orchid have steadily shrunk due to orchid poaching in most of its habitats. By correlating data from micrometeorological stations that we installed in the cloud forest canopy at the study site, Yuanyang Lake (YYL) from 2017, we discovered the critical role of spring rainfall in triggering flowering and summer rainfall in promoting the growth of new bulbs. We found that rising temperatures and frequent drought events threaten orchid growth, potentially leading to pathogen infections. We climbed old-growth yellow cypresses to collect seed capsules of P. formosana for in vitro germination at YYL beginning in the autumn of 2018. Orchid plantlets were reintroduced to the study site in mid-August of 2022. However, the seedlings failed to survive the summer of 2023. This study is the first persistent monitoring of this rare orchid in the forest canopy of this old-growth cloud forest. Based on the result, we propose conservation strategies and directions for protecting this orchid on a regional scale. Our study highlights the mounting challenge to conservation efforts posed by global climate change. Full article
Show Figures

Figure 1

16 pages, 5009 KB  
Article
LrHSP17.2 Plays an Important Role in Abiotic Stress Responses by Regulating ROS Scavenging and Stress-Related Genes in Lilium regale
by Shaokang Tang, Qin Ling, Qiqi Ma, Yuqing Cheng, Peng Mei, Yuan Miao, Yuanzhi Pan, Yin Jia, Mengxi Wu, Xue Yong and Beibei Jiang
Plants 2024, 13(17), 2416; https://doi.org/10.3390/plants13172416 - 29 Aug 2024
Cited by 5 | Viewed by 1703
Abstract
As an important part of heat shock response module, heat shock proteins (HSP) play an important role in plant defense response against heat stress; however, the involvement of the majority of the HSP family members against other abiotic stresses remains poorly understood. In [...] Read more.
As an important part of heat shock response module, heat shock proteins (HSP) play an important role in plant defense response against heat stress; however, the involvement of the majority of the HSP family members against other abiotic stresses remains poorly understood. In the present study, LrHSP17.2 was identified and its function against abiotic stress was analyzed. The expression level of LrHSP17.2 was significantly induced by heat. Heterologous transgenes of LrHSP17.2 showed that LrHSP17.2 can increase the activity of catalase, peroxidase, superoxide dismutase to removes excess reactive oxygen species (ROS), maintain the stability of the membrane structure, and regulate genes related to antioxidant enzymes and defense under abiotic stress. In addition, LrHSP17.2 could be regulated by exogenous abscisic acid and melatonin, and the related hormone synthesis genes of transgenic plants were significantly up-regulated under heat stress. Taken together, our results revealed that LrHSP17.2 is involved in regulating abiotic stress responses by regulating ROS scavenging and stress-related genes in Lilium regale. Full article
(This article belongs to the Special Issue Abiotic Stress Responses in Plants)
Show Figures

Figure 1

20 pages, 3618 KB  
Article
Rapeseed Flower Counting Method Based on GhP2-YOLO and StrongSORT Algorithm
by Nan Wang, Haijuan Cao, Xia Huang and Mingquan Ding
Plants 2024, 13(17), 2388; https://doi.org/10.3390/plants13172388 - 27 Aug 2024
Cited by 18 | Viewed by 2954
Abstract
Accurately quantifying flora and their respective anatomical structures within natural ecosystems is paramount for both botanical breeders and agricultural cultivators. For breeders, precise plant enumeration during the flowering phase is instrumental in discriminating genotypes exhibiting heightened flowering frequencies, while for growers, such data [...] Read more.
Accurately quantifying flora and their respective anatomical structures within natural ecosystems is paramount for both botanical breeders and agricultural cultivators. For breeders, precise plant enumeration during the flowering phase is instrumental in discriminating genotypes exhibiting heightened flowering frequencies, while for growers, such data inform potential crop rotation strategies. Moreover, the quantification of specific plant components, such as flowers, can offer prognostic insights into the potential yield variances among different genotypes, thereby facilitating informed decisions pertaining to production levels. The overarching aim of the present investigation is to explore the capabilities of a neural network termed GhP2-YOLO, predicated on advanced deep learning techniques and multi-target tracking algorithms, specifically tailored for the enumeration of rapeseed flower buds and blossoms from recorded video frames. Building upon the foundation of the renowned object detection model YOLO v8, this network integrates a specialized P2 detection head and the Ghost module to augment the model’s capacity for detecting diminutive targets with lower resolutions. This modification not only renders the model more adept at target identification but also renders it more lightweight and less computationally intensive. The optimal iteration of GhP2-YOLOm demonstrated exceptional accuracy in quantifying rapeseed flower samples, showcasing an impressive mean average precision at 50% intersection over union metric surpassing 95%. Leveraging the virtues of StrongSORT, the subsequent tracking of rapeseed flower buds and blossom patterns within the video dataset was adeptly realized. By selecting 20 video segments for comparative analysis between manual and automated counts of rapeseed flowers, buds, and the overall target count, a robust correlation was evidenced, with R-squared coefficients measuring 0.9719, 0.986, and 0.9753, respectively. Conclusively, a user-friendly “Rapeseed flower detection” system was developed utilizing a GUI and PyQt5 interface, facilitating the visualization of rapeseed flowers and buds. This system holds promising utility in field surveillance apparatus, enabling agriculturalists to monitor the developmental progress of rapeseed flowers in real time. This innovative study introduces automated tracking and tallying methodologies within video footage, positioning deep convolutional neural networks and multi-target tracking protocols as invaluable assets in the realms of botanical research and agricultural administration. Full article
(This article belongs to the Special Issue Precision Agriculture in Crop Production)
Show Figures

Figure 1

20 pages, 2143 KB  
Article
Maintenance of High Phytoplankton Diversity in the Danubian Floodplain Lake over the Past Half-Century
by Melita Mihaljević, Dubravka Špoljarić Maronić, Filip Stević, Tanja Žuna Pfeiffer and Vanda Zahirović
Plants 2024, 13(17), 2393; https://doi.org/10.3390/plants13172393 - 27 Aug 2024
Cited by 3 | Viewed by 1462
Abstract
Riverine floodplains are recognized as centers of biodiversity, but due to intense anthropogenic pressures, many active floodplains have disappeared during the last century. This research focuses on the long-term changes in phytoplankton diversity in the floodplain lake situated in the Kopački Rit (Croatia), [...] Read more.
Riverine floodplains are recognized as centers of biodiversity, but due to intense anthropogenic pressures, many active floodplains have disappeared during the last century. This research focuses on the long-term changes in phytoplankton diversity in the floodplain lake situated in the Kopački Rit (Croatia), one of the largest conserved floodplains in the Middle Danube. The recent dataset from 2003 to 2016 and historical data from the 1970s and 1980s indicate high phytoplankton diversity, summarising 680 taxa for nearly half a century. The variability of species richness is driven by specific in-lake variables, particularly water temperature, water depth, total nitrogen, pH, and transparency, determined by a redundancy analysis of the current data. The high phytoplankton diversity levels are sustained regardless of intense pressures on the lake environment, including exposure to strong anthropogenic pollution in the past and extreme hydrological events, both droughts and floods, which have increasingly affected this part of the Danube in the last decades. The conserved hydrological connection between various biotopes along the river–floodplain gradient seems crucial in maintaining high phytoplankton diversity. Accordingly, conserving natural flooding is mandatory to maintain high biodiversity in complex and dynamic river–floodplain systems. Full article
(This article belongs to the Special Issue Phytoplankton Community Structure and Succession)
Show Figures

Figure 1

15 pages, 2028 KB  
Article
Effect of CO2 Elevation on Tomato Gas Exchange, Root Morphology and Water Use Efficiency under Two N-Fertigation Levels
by Manyi Zhang, Wentong Zhao, Chunshuo Liu, Changtong Xu, Guiyu Wei, Bingjing Cui, Jingxiang Hou, Heng Wan, Yiting Chen, Jiarui Zhang and Zhenhua Wei
Plants 2024, 13(17), 2373; https://doi.org/10.3390/plants13172373 - 26 Aug 2024
Cited by 3 | Viewed by 1346
Abstract
Atmospheric elevated CO2 concentration (e[CO2]) decreases plant nitrogen (N) concentration while increasing water use efficiency (WUE), fertigation increases crop nutrition and WUE in crop; yet the interactive effects of e[CO2] coupled with two N-fertigation levels [...] Read more.
Atmospheric elevated CO2 concentration (e[CO2]) decreases plant nitrogen (N) concentration while increasing water use efficiency (WUE), fertigation increases crop nutrition and WUE in crop; yet the interactive effects of e[CO2] coupled with two N-fertigation levels during deficit irrigation on plant gas exchange, root morphology and WUE remain largely elusive. The objective of this study was to explore the physiological and growth responses of ambient [CO2] (a[CO2], 400 ppm) and e[CO2] (800 ppm) tomato plant exposed to two N-fertigation regimes: (1) full irrigation during N-fertigation (FIN); (2) deficit irrigation during N-fertigation (DIN) under two N fertilizer levels (reduced N (N1, 0.5 g pot−1) and adequate N (N2, 1.0 g pot−1). The results indicated that e[CO2] associated with DIN regime induced the lower N2 plant water use (7.28 L plant−1), maintained leaf water potential (−5.07 MPa) and hydraulic conductivity (0.49 mol m−2 s−1 MPa−1), greater tomato growth in terms of leaf area (7152.75 cm2), specific leaf area (223.61 cm2 g−1), stem and total dry matter (19.54 g and 55.48 g). Specific root length and specific root surface area were increased under N1 fertilization, and root tissue density was promoted in both e[CO2] and DIN environments. Moreover, a smaller and denser leaf stomata (4.96 µm2 and 5.37 mm−2) of N1 plant was obtained at e[CO2] integrated with DIN strategy. Meanwhile, this combination would simultaneously reduce stomatal conductance (0.13 mol m−2 s−1) and transpiration rate (1.91 mmol m−2 s−1), enhance leaf ABA concentration (133.05 ng g−1 FW), contributing to an improvement in WUE from stomatal to whole-plant scale under each N level, especially for applying N1 fertilization (125.95 µmol mol−1, 8.41 µmol mmol−1 and 7.15 g L−1). These findings provide valuable information to optimize water and nitrogen fertilizer management and improve plant water use efficiency, responding to the potential resource-limited and CO2-enriched scenario. Full article
Show Figures

Figure 1

24 pages, 4472 KB  
Article
Enhancing Water and Soil Resources Utilization via Wolfberry–Alfalfa Intercropping
by Jinghai Wang, Minhua Yin, Yaya Duan, Yanbiao Wang, Yanlin Ma, Heng Wan, Yanxia Kang, Guangping Qi and Qiong Jia
Plants 2024, 13(17), 2374; https://doi.org/10.3390/plants13172374 - 26 Aug 2024
Cited by 8 | Viewed by 1941
Abstract
The impact of the intercropping system on the soil–plant–atmosphere continuum (SPAC), encompassing soil evaporation, soil moisture dynamics, and crop transpiration, remains an area of uncertainty. Field experiments were conducted for two years in conjunction with the SIMDualKc (Simulation Dual Crop Coefficient) model to [...] Read more.
The impact of the intercropping system on the soil–plant–atmosphere continuum (SPAC), encompassing soil evaporation, soil moisture dynamics, and crop transpiration, remains an area of uncertainty. Field experiments were conducted for two years in conjunction with the SIMDualKc (Simulation Dual Crop Coefficient) model to simulate two planting configurations: sole-cropped wolfberry (Lycium barbarum L.) (D) and wolfberry intercropped with alfalfa (Medicago sativa L.) (J). These configurations were subjected to different irrigation levels: full irrigation (W1, 75–85% θfc), mild deficit irrigation (W2, 65–75% θfc), moderate deficit irrigation (W3, 55–65% θfc), and severe deficit irrigation (W4, 45–55% θfc). The findings revealed that the JW1 treatment reduced the annual average soil evaporation by 32% compared with that of DW1. Additionally, mild, moderate, and severe deficit irrigation reduced soil evaporation by 17, 24, and 36%, respectively, compared with full irrigation. The intercropping system exhibited a more efficient canopy structure, resulting in reduced soil evaporation and alleviation of water stress to a certain extent. In terms of temporal dynamics, monocropping resulted in soil moisture levels from 1% to 15% higher than intercropping, with the most significant differences manifesting in the mid to late stages, whereas differences in the early stages were not statistically significant. Spatially, the intercropping system exhibited 7–19% lower soil water contents (SWCs) than sole cropping, primarily within the root water uptake zone within the 0–60 cm soil layer. The intercropping system showed an enhanced water absorption capacity for plant transpiration, resulting in a 29% increase in transpiration compared with sole cropping, thereby achieving water-saving benefits. These findings contribute to our understanding of the agronomic and environmental implications of intercropping wolfberry and alfalfa in arid regions and provide insights into optimizing water and soil resource management for sustainable agricultural practices. Full article
Show Figures

Figure 1

14 pages, 783 KB  
Article
Short-Term Effect of the Combined Application of Rice Husk Biochar and Organic and Inorganic Fertilizers on Radish Growth and Nitrogen Use Efficiency
by War War Mon and Hideto Ueno
Plants 2024, 13(17), 2376; https://doi.org/10.3390/plants13172376 - 26 Aug 2024
Cited by 2 | Viewed by 2382
Abstract
Research on soil biochar fertilization has mainly been conducted on cereal crops, and information on its potential for radish production remains inconsistent. Therefore, a pot experiment was conducted to examine the short-term effects of rice husk biochar on radish growth and nitrogen use [...] Read more.
Research on soil biochar fertilization has mainly been conducted on cereal crops, and information on its potential for radish production remains inconsistent. Therefore, a pot experiment was conducted to examine the short-term effects of rice husk biochar on radish growth and nitrogen use efficiency (NUE). An investigation was conducted with two application rates of biochar alone, (10 t ha−1 (B10) and 25 t ha−1 (B25), and biochar + chicken manure application with and without NPK fertilizer. The results indicated that the application of biochar 25 t ha−1 + chicken manure (B25:CHM) and the combination of biochar 25 t ha−1 + chicken manure + NPK fertilizer (B25:CHM:NPK) significantly increased root yield by improving NUE, fertilizer recovery efficiency (REN), agronomic efficiency (AE), nitrogen harvest index (NHI), and retaining soil NH4+-N. Although biochar application alone did not significantly influence radish growth on a short-term basis, B10 and B25 increased root yields by 10% and 20%, respectively, compared with the control. Notably, the role of biochar application when combined with organic and inorganic fertilizers was to retain fertilizer N and promote N uptake efficiency by radishes, as higher rates of biochar resulted in higher NUE. Our results suggest that B25:CHM is a suitable combination for organic farming. Full article
Show Figures

Figure 1

18 pages, 2178 KB  
Article
Organic Waste from the Management of the Invasive Oxalis pes-caprae as a Source of Nutrients for Small Horticultural Crops
by Paula Lorenzo, Cristina Galhano and Maria Celeste Dias
Plants 2024, 13(17), 2358; https://doi.org/10.3390/plants13172358 - 23 Aug 2024
Cited by 3 | Viewed by 1391
Abstract
The management of invasive plants is a challenge when using traditional control methods, which are ineffective for large areas, leading to the abandonment of invaded areas and the subsequent worsening of the situation. Finding potential uses for waste resulting from invaders’ management could [...] Read more.
The management of invasive plants is a challenge when using traditional control methods, which are ineffective for large areas, leading to the abandonment of invaded areas and the subsequent worsening of the situation. Finding potential uses for waste resulting from invaders’ management could motivate their control in the long-term, concurrently providing new bio-based resources with different applications. Oxalis pes-caprae is an invasive plant, widely distributed worldwide, which spreads aggressively through bulbils, creating a dense ground cover. This study was designed to assess the potential of Oxalis aboveground waste for use as fertilizer and in ameliorating deficit irrigation effects in growing crops. Diplotaxis tenuifolia (wild rocket) seedlings were planted in pots with soil mixed with Oxalis waste at 0, 2.2 and 4.3 kg m−2 or with commercial fertilizer, left to grow for 27 days and then irrigated at 100% or 50% field capacity for 14 days. The incorporation of the Oxalis waste improved the biomass, photosynthesis, sugars, total phenols and total antioxidant capacity in the crop, achieving commercial fertilization values, as well as increasing the phosphorus in soils. However, Oxalis waste seems not to directly affect plants’ relative water contents. Our results support the use of Oxalis waste as fertilizer, which can encourage the long-term control of this invasive species. Full article
(This article belongs to the Topic Plant Invasion)
Show Figures

Figure 1

19 pages, 2632 KB  
Article
Machine Learning-Based Tomato Fruit Shape Classification System
by Dana V. Vazquez, Flavio E. Spetale, Amol N. Nankar, Stanislava Grozeva and Gustavo R. Rodríguez 
Plants 2024, 13(17), 2357; https://doi.org/10.3390/plants13172357 - 23 Aug 2024
Cited by 6 | Viewed by 2691
Abstract
Fruit shape significantly impacts the quality and commercial value of tomatoes (Solanum lycopersicum L.). Precise grading is essential to elucidate the genetic basis of fruit shape in breeding programs, cultivar descriptions, and variety registration. Despite this, fruit shape classification is still primarily [...] Read more.
Fruit shape significantly impacts the quality and commercial value of tomatoes (Solanum lycopersicum L.). Precise grading is essential to elucidate the genetic basis of fruit shape in breeding programs, cultivar descriptions, and variety registration. Despite this, fruit shape classification is still primarily based on subjective visual inspection, leading to time-consuming and labor-intensive processes prone to human error. This study presents a novel approach incorporating machine learning techniques to establish a robust fruit shape classification system. We trained and evaluated seven supervised machine learning algorithms by leveraging a public dataset derived from the Tomato Analyzer tool and considering the current four classification systems as label variables. Subsequently, based on class-specific metrics, we derived a novel classification framework comprising seven discernible shape classes. The results demonstrate the superiority of the Support Vector Machine model in terms of its accuracy, surpassing human classifiers across all classification systems. The new classification system achieved the highest accuracy, averaging 88%, and maintained a similar performance when validated with an independent dataset. Positioned as a common standard, this system contributes to standardizing tomato fruit shape classification, enhancing accuracy, and promoting consensus among researchers. Its implementation will serve as a valuable tool for overcoming bias in visual classification, thereby fostering a deeper understanding of consumer preferences and facilitating genetic studies on fruit shape morphometry. Full article
(This article belongs to the Special Issue Tomato Fruit Traits and Breeding)
Show Figures

Figure 1

29 pages, 5078 KB  
Review
Profiling and Improvement of Grain Quality Traits for Consumer Preferable Basmati Rice in the United States
by Zakaria Hossain Prodhan, Stanley Omar P. B. Samonte, Darlene Lonjas Sanchez and Shyamal Krishna Talukder
Plants 2024, 13(16), 2326; https://doi.org/10.3390/plants13162326 - 21 Aug 2024
Cited by 3 | Viewed by 3918
Abstract
Basmati rice is a premium aromatic rice that consumers choose primarily because of its distinct aroma and excellent grain quality. The grain quality of Basmati rice (GQBR) reflects the perspectives of producers, processors, sellers, and consumers related to the production, processing, marketing, and [...] Read more.
Basmati rice is a premium aromatic rice that consumers choose primarily because of its distinct aroma and excellent grain quality. The grain quality of Basmati rice (GQBR) reflects the perspectives of producers, processors, sellers, and consumers related to the production, processing, marketing, and consumption of Basmati rice. Consumers, an invaluable part of the production demand and value chain of the Basmati rice industry, have the freedom to choose from different types of aromatic rice. Consumers expect their preferred Basmati rice to possess all superior rice grain qualities, including the physical, biochemical, and physiological properties. Gene functional analysis explained that a 10-base pair deletion in the promoter region of the OsSPL16 gene causes the slender grains in Basmati rice, whereas an 8-base-pair deletion in exon 7 of the OsBadh2 gene (located in the fgr region on rice chromosome 8) results in the distinct aroma. Furthermore, a combination of the genetic characteristics of the gw8 and gs3 genes has led to the creation of a long-grain Basmati-type rice cultivar. It has also been demonstrated that agricultural, genetic, and environmental conditions significantly influence GQBR. Hence, research on improving GQBR requires a multidimensional approach and sophisticated elements due to the complexity of its nature and preference diversity. This review covers the basic definitions of grain quality traits, consumer preference criteria, influencing factors, and strategies for producing superior-quality Basmati rice in the United States. This knowledge will be useful in improving the grain quality of Basmati and Basmati-type rice, as well as developing appropriate breeding programs that will meet the preferences of different countries and cultures. Full article
(This article belongs to the Special Issue Plant Biotechnological Approaches Towards Crop Improvement)
Show Figures

Figure 1

16 pages, 3186 KB  
Article
The Critical Role of Soil Ecological Stoichiometric Ratios: How Does Reforestation Improve Soil Nitrogen and Phosphorus Availability?
by Zhixuan Chen, Xia Xu, Yongli Wen, Man Cheng and Xiao Wang
Plants 2024, 13(16), 2320; https://doi.org/10.3390/plants13162320 - 20 Aug 2024
Cited by 5 | Viewed by 1998
Abstract
The ecological stoichiometric characteristics of soil elements have greatly enhanced our understanding of the circulation of soil nutrients. However, there is limited knowledge regarding the alteration of carbon, nitrogen, and phosphorus stoichiometric ratios in deep soil after afforestation. To examine the variations in [...] Read more.
The ecological stoichiometric characteristics of soil elements have greatly enhanced our understanding of the circulation of soil nutrients. However, there is limited knowledge regarding the alteration of carbon, nitrogen, and phosphorus stoichiometric ratios in deep soil after afforestation. To examine the variations in stoichiometric ratios of soil elements with different vegetation types, restoration times, and soil depths, we collected soil samples from grassland, Caragana korshinskii shrubland, and Picea asperata forestland at different stand ages (10a, 25a, and 40a) in Xining City, which is located on the Loess Plateau. Our results showed that, at 25a, the carbon-to-nitrogen (C:N) and carbon-to-phosphorus (C:P) ratios were significantly higher in the grassland soil than under other vegetation types, whereas the nitrogen-to-phosphorus (N:P) ratio had no significant difference among the three vegetation types. At 40a, the ratios of soil C:N, C:P, and N:P in the shrubland were the highest. With the increasing of the restoration time, the ratios of soil C:N, C:P, and N:P in grassland with 25a became higher than for 40a or 10a. The ratios in the shrubland were highest at 40a, followed by 25a and then 10a, while the ratios in the forestland showed no significant difference. At 40a, the soil C:N, C:P, and N:P ratios of shrubland were highest at the soil depth of 40–100 cm. The soil C:N, C:P, and N:P ratios showed positive correlations with soil ammonium nitrogen and nitrate nitrogen, and the soil N:P ratios showed a negative correlation with soil available phosphorus. Plant diversity significantly influenced the soil stoichiometric ratio of the upper soil layer. In the upper soil layer (0–40 cm), species richness showed a positive correlation with soil C:N, C:P, and N:P ratios, and the Margalef index exhibited a positive correlation with soil C:N and C:P ratios. The results of this study indicate that the stoichiometric ratio and nutrient availability of Caragana korshinskii shrubland were the highest over time. Therefore, these findings can be served as a valuable reference for local revegetation and ecological restoration. Full article
(This article belongs to the Special Issue Soil Fertility Management for Plant Growth and Development)
Show Figures

Figure 1

19 pages, 5394 KB  
Article
Examining the Sensitivity of Satellite-Derived Vegetation Indices to Plant Drought Stress in Grasslands in Poland
by Maciej Bartold, Konrad Wróblewski, Marcin Kluczek, Katarzyna Dąbrowska-Zielińska and Piotr Goliński
Plants 2024, 13(16), 2319; https://doi.org/10.3390/plants13162319 - 20 Aug 2024
Cited by 12 | Viewed by 3174
Abstract
In this study, the emphasis is on assessing how satellite-derived vegetation indices respond to drought stress characterized by meteorological observations. This study aimed to understand the dynamics of grassland vegetation and assess the impact of drought in the Wielkopolskie (PL41) and Podlaskie (PL84) [...] Read more.
In this study, the emphasis is on assessing how satellite-derived vegetation indices respond to drought stress characterized by meteorological observations. This study aimed to understand the dynamics of grassland vegetation and assess the impact of drought in the Wielkopolskie (PL41) and Podlaskie (PL84) regions of Poland. Spatial and temporal characteristics of grassland dynamics regarding drought occurrences from 2020 to 2023 were examined. Pearson correlation coefficients with standard errors were used to analyze vegetation indices, including NDVI, NDII, NDWI, and NDDI, in response to drought, characterized by the meteorological parameter the Hydrothermal Coefficient of Selyaninov (HTC), along with ground-based soil moisture measurements (SM). Among the vegetation indices studied, NDDI showed the strongest correlations with HTC at r = −0.75, R2 = 0.56, RMSE = 1.58, and SM at r = −0.82, R2 = 0.67, and RMSE = 16.33. The results indicated drought severity in 2023 within grassland fields in Wielkopolskie. Spatial–temporal analysis of NDDI revealed that approximately 50% of fields were at risk of drought during the initial decades of the growing season in 2023. Drought conditions intensified, notably in western Poland, while grasslands in northeastern Poland showed resilience to drought. These findings provide valuable insights for individual farmers through web and mobile applications, assisting in the development of strategies to mitigate the adverse effects of drought on grasslands and thereby reduce associated losses. Full article
Show Figures

Figure 1

18 pages, 2362 KB  
Article
Engineering the Rhizosphere Microbiome with Plant Growth Promoting Bacteria for Modulation of the Plant Metabolome
by Maria J. Ferreira, Ana C. S. Veríssimo, Diana C. G. A. Pinto, Isabel N. Sierra-Garcia, Camille E. Granada, Javier Cremades, Helena Silva and Ângela Cunha
Plants 2024, 13(16), 2309; https://doi.org/10.3390/plants13162309 - 20 Aug 2024
Cited by 12 | Viewed by 3840
Abstract
Plant-growth-promoting bacteria (PGPB) have beneficial effects on plants. They can promote growth and enhance plant defense against abiotic stress and disease, and these effects are associated with changes in the plant metabolite profile. The research problem addressed in this study was the impact [...] Read more.
Plant-growth-promoting bacteria (PGPB) have beneficial effects on plants. They can promote growth and enhance plant defense against abiotic stress and disease, and these effects are associated with changes in the plant metabolite profile. The research problem addressed in this study was the impact of inoculation with PGPB on the metabolite profile of Salicornia europaea L. across controlled and field conditions. Salicornia europaea seeds, inoculated with Brevibacterium casei EB3 and Pseudomonas oryzihabitans RL18, were grown in controlled laboratory experiments and in a natural field setting. The metabolite composition of the aboveground tissues was analyzed using GC–MS and UHPLC–MS. PGPB inoculation promoted a reconfiguration in plant metabolism in both environments. Under controlled laboratory conditions, inoculation contributed to increased biomass production and the reinforcement of immune responses by significantly increasing the levels of unsaturated fatty acids, sugars, citric acid, acetic acid, chlorogenic acids, and quercetin. In field conditions, the inoculated plants exhibited a distinct phytochemical profile, with increased glucose, fructose, and phenolic compounds, especially hydroxybenzoic acid, quercetin, and apigenin, alongside decreased unsaturated fatty acids, suggesting higher stress levels. The metabolic response shifted from growth enhancement to stress resistance in the latter context. As a common pattern to both laboratory and field conditions, biopriming induced metabolic reprogramming towards the expression of apigenin, quercetin, formononetin, caffeic acid, and caffeoylquinic acid, metabolites that enhance the plant’s tolerance to abiotic and biotic stress. This study unveils the intricate metabolic adaptations of Salicornia europaea under controlled and field conditions, highlighting PGPB’s potential to redesign the metabolite profile of the plant. Elevated-stress-related metabolites may fortify plant defense mechanisms, laying the groundwork for stress-resistant crop development through PGPB-based inoculants, especially in saline agriculture. Full article
(This article belongs to the Special Issue Beneficial Effects of Bacteria on Plants)
Show Figures

Graphical abstract

22 pages, 5638 KB  
Review
Plant Cell Wall Polysaccharide O-Acetyltransferases
by Ruiqin Zhong, Dayong Zhou, Lirong Chen, John P. Rose, Bi-Cheng Wang and Zheng-Hua Ye
Plants 2024, 13(16), 2304; https://doi.org/10.3390/plants13162304 - 19 Aug 2024
Cited by 8 | Viewed by 2736
Abstract
Plant cell walls are largely composed of polysaccharide polymers, including cellulose, hemicelluloses (xyloglucan, xylan, mannan, and mixed-linkage β-1,3/1,4-glucan), and pectins. Among these cell wall polysaccharides, xyloglucan, xylan, mannan, and pectins are often O-acetylated, and polysaccharide O-acetylation plays important roles in cell [...] Read more.
Plant cell walls are largely composed of polysaccharide polymers, including cellulose, hemicelluloses (xyloglucan, xylan, mannan, and mixed-linkage β-1,3/1,4-glucan), and pectins. Among these cell wall polysaccharides, xyloglucan, xylan, mannan, and pectins are often O-acetylated, and polysaccharide O-acetylation plays important roles in cell wall assembly and disease resistance. Genetic and biochemical analyses have implicated the involvement of three groups of proteins in plant cell wall polysaccharide O-acetylation: trichome birefringence-like (TBL)/domain of unknown function 231 (DUF231), reduced wall acetylation (RWA), and altered xyloglucan 9 (AXY9). Although the exact roles of RWAs and AXY9 are yet to be identified, members of the TBL/DUF231 family have been found to be O-acetyltransferases responsible for the O-acetylation of xyloglucan, xylan, mannan, and pectins. Here, we provide a comprehensive overview of the occurrence of O-acetylated cell wall polysaccharides, the biochemical properties, structural features, and evolution of cell wall polysaccharide O-acetyltransferases, and the potential biotechnological applications of manipulations of cell wall polysaccharide acetylation. Further in-depth studies of the biochemical mechanisms of cell wall polysaccharide O-acetylation will not only enrich our understanding of cell wall biology, but also have important implications in engineering plants with increased disease resistance and reduced recalcitrance for biofuel production. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

23 pages, 4851 KB  
Article
Foliar Sprays of Multi-Nutrient Fertilizer Containing Selenium Produce Functional Tomato Fruits with Higher Shelf Life
by Everton Geraldo de Morais, Maila Adriely Silva, Anyela Pierina Vega Quispe, Gilson Gustavo Lucinda Machado, Debora Teixeira Prado, Pedro Antônio Namorato Benevenute, Jucelino de Sousa Lima, Gustavo Ferreira de Sousa, Eduardo Valério de Barros Vilas Boas and Luiz Roberto Guimarães Guilherme
Plants 2024, 13(16), 2288; https://doi.org/10.3390/plants13162288 - 17 Aug 2024
Cited by 4 | Viewed by 2241
Abstract
Selenium (Se) is a nutrient whose daily intake is often below the recommended levels in people. Biofortification with Se is a method to increase this intake by raising the Se concentration in tomato fruits, an effect dependent on sources and modes of application. [...] Read more.
Selenium (Se) is a nutrient whose daily intake is often below the recommended levels in people. Biofortification with Se is a method to increase this intake by raising the Se concentration in tomato fruits, an effect dependent on sources and modes of application. Additionally, Se application can promote the enhancement of other compounds in tomato fruits, altering their metabolism, which may increase the fruit’s shelf life. This study aimed to determine how different strategies of applying a multi-nutrient fertilizer containing Se (SeMNF) can increase the Se content and other bioactive compounds and enhance the shelf life of tomato (Solanum lycopersicum L.) fruits. Different foliar fertilization strategies involving the use of SeMNF were evaluated in field trials conducted on commercial tomato crops. Indeterminate-growth tomatoes were used, and different Se doses and application strategies were tested. Harvesting was conducted in three phases according to fruit ripening. Each harvested fruit was assessed for the Se content, macro and micronutrients, total phenolic compounds, vitamin C, antioxidant activity, carotenoids, pH, total titratable acidity, and total soluble solids in tomato fruits. Doses of 15 g ha−1 of Se, split into three applications, increased the Se content in the fruits at 1 and 2 harvests. The application of SeMNF at Se doses above 10 g of Se ha−1 increased firmness, days of ripening, and the nutritional quality of the tomatoes (higher contents of carotenoids (+39%), lycopene (+33%), antioxidant activity (+16%), total phenolic compounds (+38%), and vitamin C (+14%) in a dose-dependent effect of the application strategy used. These results contributed to an increase in the shelf life of tomatoes, consequently reducing food waste. Full article
(This article belongs to the Collection Plant Nutrition Biofortification)
Show Figures

Figure 1

15 pages, 2061 KB  
Article
Photosynthetic Response to Phosphorus Fertilization in Drought-Stressed Common Beech and Sessile Oak from Different Provenances
by Antonia Vukmirović, Željko Škvorc, Saša Bogdan, Daniel Krstonošić, Ida Katičić Bogdan, Tomislav Karažija, Marko Bačurin, Magdalena Brener and Krunoslav Sever
Plants 2024, 13(16), 2270; https://doi.org/10.3390/plants13162270 - 15 Aug 2024
Cited by 4 | Viewed by 1192
Abstract
Increasingly frequent and severe droughts pose significant threats to forest ecosystems, particularly affecting photosynthesis, a crucial physiological process for plant growth and biomass production. This study investigates the impact of phosphorus fertilization on the photosynthesis of common beech (Fagus sylvatica L.) and [...] Read more.
Increasingly frequent and severe droughts pose significant threats to forest ecosystems, particularly affecting photosynthesis, a crucial physiological process for plant growth and biomass production. This study investigates the impact of phosphorus fertilization on the photosynthesis of common beech (Fagus sylvatica L.) and sessile oak (Quercus petraea (Matt.) Liebl.). In a common garden experiment, saplings originating from two provenances (wetter KA and drier SB provenances) were exposed to regular watering and drought in interaction with moderate and high phosphorus concentrations in the growing substrate. Results indicated that drought significantly reduced pre-dawn leaf water potential (ΨPD), net photosynthesis (Anet), stomatal conductance (gs) and photosynthetic performance index (PIabs) in both species. Phosphorus fertilization had a negative impact on Anet and PIabs, thus exacerbating the negative impact of drought on photosynthetic efficiency, potentially due to excessive phosphorus absorption by saplings. Provenance differences were notable, with the KA provenance showing better drought resilience. This research highlights the complexity of nutrient–drought interactions and underscores the need for cautious application of fertilization strategies in reforestation efforts under changing climatic conditions. Full article
(This article belongs to the Special Issue Water and Nutrient Uptake in Plants)
Show Figures

Figure 1

19 pages, 2179 KB  
Article
Mitigation of Drought Stress for Quinoa (Chenopodium quinoa Willd.) Varieties Using Woodchip Biochar-Amended Soil
by Muhammad Zubair Akram, Anna Rita Rivelli, Angela Libutti, Fulai Liu and Christian Andreasen
Plants 2024, 13(16), 2279; https://doi.org/10.3390/plants13162279 - 15 Aug 2024
Cited by 10 | Viewed by 1845
Abstract
Drought stress deteriorates agro-ecosystems and poses a significant threat to crop productivity and food security. Soil amended with biochar has been suggested to mitigate water stress, but there is limited knowledge about how biochar affects the physiology and vegetative growth of quinoa plants [...] Read more.
Drought stress deteriorates agro-ecosystems and poses a significant threat to crop productivity and food security. Soil amended with biochar has been suggested to mitigate water stress, but there is limited knowledge about how biochar affects the physiology and vegetative growth of quinoa plants under soil water deficits. We grew three quinoa (Chenopodium quinoa Willd.) varieties, Titicaca (V1), Quipu (V2), and UAFQ7 (V3) in sandy loam soil without (B0) and with 2% woodchip biochar (B2) under drought conditions. The drought resulted in significant growth differences between the varieties. V3 performed vegetatively better, producing 46% more leaves, 28% more branches, and 25% more leaf area than the other two varieties. Conversely, V2 displayed significantly higher yield-contributing traits, with 16% increment in panicle length and 50% more subpanicles compared to the other varieties. Woodchip biochar application significantly enhanced the root development (i.e., root biomass, length, surface, and projected area) and plant growth (i.e., plant height, leaf area, and absolute growth rate). Biochar significantly enhanced root growth, especially fresh and dry weights, by 122% and 127%, respectively. However, biochar application may lead to a trade-off between vegetative growth and panicle development under drought stress as shown for V3 grown in soil with woodchip biochar. However, V3B2 produced longer roots and more biomass. Collectively, we suggest exploring the effects of woodchip biochar addition to the soil on the varietal physiological responses such as stomatal regulations and mechanisms behind the increased quinoa yield under water stress conditions. Full article
Show Figures

Figure 1

34 pages, 13651 KB  
Article
Diplodia seriata Isolated from Declining Olive Trees in Salento (Apulia, Italy): Pathogenicity Trials Give a Glimpse That It Is More Virulent to Drought-Stressed Olive Trees and in a Warmth-Conditioned Environment
by Giuliano Manetti, Angela Brunetti, Lorenzo Sciarroni, Valentina Lumia, Sara Bechini, Paolo Marangi, Massimo Reverberi, Marco Scortichini and Massimo Pilotti
Plants 2024, 13(16), 2245; https://doi.org/10.3390/plants13162245 - 13 Aug 2024
Cited by 6 | Viewed by 2798
Abstract
The fungi Botryosphaeriaceae are involved in olive declines in both the world hemispheres and in all continents where this species is cultivated. In Salento (Apulia, Italy), the Botryosphaeriaceae Neofusicoccum mediterraneum and N. stellenboschiana have been reported as the agents of a branch and [...] Read more.
The fungi Botryosphaeriaceae are involved in olive declines in both the world hemispheres and in all continents where this species is cultivated. In Salento (Apulia, Italy), the Botryosphaeriaceae Neofusicoccum mediterraneum and N. stellenboschiana have been reported as the agents of a branch and twig dieback that overlaps with olive quick decline syndrome caused by Xylella fastidiosa subsp. pauca. In this study, we report the finding of Diplodia seriata, another Botryosphaeriaceae species, in Salento in Xylella fastidiosa-infected olive trees affected by symptoms of branch and twig dieback. Given that its presence was also reported in olive in the Americas and in Europe (Croatia) with different degrees of virulence, we were prompted to assess its role in the Apulian decline. We identified representative isolates based on morphological features and a multilocus phylogeny. In vitro tests showed that the optimum growth temperature of the isolates is around 25–30 °C, and that they are highly thermo-tolerant. In pathogenicity trials conducted over eleven months, D. seriata expressed a very low virulence. Nonetheless, when we imposed severe water stress before the inoculation, D. seriata significatively necrotized bark and wood in a time frame of 35 days. Moreover, the symptoms which resulted were much more severe in the trial performed in summer compared with that in autumn. In osmolyte-supplemented media with a water potential from −1 to −3 Mpa, the isolates increased or maintained their growth rate compared with non-supplemented media, and they also grew, albeit to a lesser extent, on media with a water potential as low as −7 Mpa. This suggests that olives with a low water potential, namely those subjected to drought, may offer a suitable environment for the fungus’ development. The analysis of the meteorological parameters, temperatures and rainfall, in Salento in the timeframe 1989–2023, showed that this area is subjected to a progressive increase of temperature and drought during the summer. Thus, overall, D. seriata has to be considered a contributor to the manifestation of branch and twig dieback of olive in Salento. Coherently with the spiral decline concept of trees, our results suggest that heat and drought act as predisposing/inciting factors facilitating D. seriata as a contributor. The fact that several adverse factors, biotic and abiotic, are simultaneously burdening olive trees in Salento offers a cue to discuss the possible complex nature of the olive decline in Salento. Full article
(This article belongs to the Special Issue Mycology and Plant Pathology)
Show Figures

Figure 1

24 pages, 1437 KB  
Review
Tissue Culture Innovations for Propagation and Conservation of Myrteae—A Globally Important Myrtaceae Tribe
by Jingyin Bao, Billy O’Donohue, Karen D. Sommerville, Neena Mitter, Chris O’Brien and Alice Hayward
Plants 2024, 13(16), 2244; https://doi.org/10.3390/plants13162244 - 13 Aug 2024
Cited by 1 | Viewed by 5822
Abstract
Myrteae is the most species-rich tribe in the Myrtaceae family, represented by a range of socioeconomically and ecologically significant species. Many of these species, including commercially relevant ones, have become increasingly threatened in the wild, and now require conservation actions. Tissue culture presents [...] Read more.
Myrteae is the most species-rich tribe in the Myrtaceae family, represented by a range of socioeconomically and ecologically significant species. Many of these species, including commercially relevant ones, have become increasingly threatened in the wild, and now require conservation actions. Tissue culture presents an appropriate in vitro tool to facilitate medium-term and long-term wild germplasm conservation, as well as for commercial propagation to maintain desirable traits of commercial cultivars. So far, tissue culture has not been extensively achieved for Myrteae. Here, tissue culture for Eugenia, one of the most species-rich genera in Myrteae, is reviewed, giving directions for other related Myrteae. This review also focuses on ex situ conservation of Australian Myrteae, including using seed banking and field banking. Despite some progress, challenges to conserve these species remain, mostly due to the increasing threats in the wild and limited research. Research into in vitro methods (tissue culture and cryopreservation) is paramount given that at least some of the species are ‘non-orthodox’. There is an urgent need to develop long-term in vitro conservation for capturing the remaining germplasm of threatened Myrteae. Full article
(This article belongs to the Special Issue Advances and Applications in Plant Tissue Culture—2nd Edition)
Show Figures

Figure 1

25 pages, 4817 KB  
Article
Biochar Improves Yield by Reducing Saline–Alkaline Stress, Enhancing Filling Rate of Rice in Soda Saline–Alkaline Paddy Fields
by Weikang Che, Xuebin Li, Junlong Piao, Yue Zhang, Shihao Miao, Hongyue Wang, Liming Xie and Feng Jin
Plants 2024, 13(16), 2237; https://doi.org/10.3390/plants13162237 - 12 Aug 2024
Cited by 6 | Viewed by 2033
Abstract
Soda saline–alkaline stress significantly impedes the rice grain filling process and ultimately impacts rice yield. Biochar has been shown to mitigate the negative impacts of saline–alkaline stress on plants. However, the exact mechanism by which biochar influences the rice grain-filling rate in soda [...] Read more.
Soda saline–alkaline stress significantly impedes the rice grain filling process and ultimately impacts rice yield. Biochar has been shown to mitigate the negative impacts of saline–alkaline stress on plants. However, the exact mechanism by which biochar influences the rice grain-filling rate in soda saline–alkaline soil is still not fully understood. A two-year field experiment was conducted with two nitrogen fertilizer levels (0 and 225 kg ha−1) and five biochar application rates [0% (B0), 0.5% (B1), 1.5% (B2), 3.0% (B3), and 4.5% (B4) biochar, w/w]. The results demonstrated that biochar had a significant impact on reducing the Na+ concentration and Na+/K+ ratio in rice grown in soda saline–alkaline lands, while also improving its stress physiological conditions. B1, B2, B3, and B4 showed a notable increase in the average grain-filling rate by 5.76%, 6.59%, 9.80%, and 10.79%, respectively, compared to B0; the time to reach the maximum grain-filling rate and the maximum grain weight saw increases ranging from 6.02% to 12.47% and from 7.85% to 14.68%, respectively. Meanwhile, biochar, particularly when used in conjunction with nitrogen fertilizer, notably enhanced the activities of sucrose synthase (SuSase), ADPG pyrophosphorylase (AGPase), starch synthase (StSase), and starch branching enzyme (SBE) of rice grains in soda saline–alkaline lands. Furthermore, rice yield increased by 11.95–42.74% in the B1, B2, B3, and B4 treatments compared to the B0 treatment. These findings showed that biochar improves yield by regulating ionic balance, physiological indicators, starch synthesis key enzyme activities, and the grain-filling rate in soda saline–alkaline paddy fields. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

17 pages, 4682 KB  
Article
Improving Rice Quality by Regulating the Heading Dates of Rice Varieties without Yield Penalties
by Jianguo Liu, Qinqin Yi, Guojun Dong, Yuyu Chen, Longbiao Guo, Zhenyu Gao, Li Zhu, Deyong Ren, Qiang Zhang, Qing Li, Jingyong Li, Qiangming Liu, Guangheng Zhang, Qian Qian and Lan Shen
Plants 2024, 13(16), 2221; https://doi.org/10.3390/plants13162221 - 10 Aug 2024
Cited by 3 | Viewed by 2432
Abstract
The heading date, a critical trait influencing the rice yield and quality, has always been a hot topic in breeding research. Appropriately delaying the flowering time of excellent northern rice varieties is of great significance for improving yields and enhancing regional adaptability during [...] Read more.
The heading date, a critical trait influencing the rice yield and quality, has always been a hot topic in breeding research. Appropriately delaying the flowering time of excellent northern rice varieties is of great significance for improving yields and enhancing regional adaptability during the process for introducing varieties from north to south. In this study, genes influencing the heading date were identified through genome-wide association studies (GWAS). Using KenDao 12 (K12), an excellent cultivar from northern China, as the material, the specific flowering activator, OsMADS50, was edited using the genome-editing method to regulate the heading date to adapt to the southern planting environment. The results indicated that the osmads50 mutant line of K12 flowered about a week later, with a slight increase in the yield and good adaptability in the southern region in China. Additionally, the expressions of key flowering regulatory genes, such as Hd1, Ghd7, Ehd1, Hd3a, and RFT1, were reduced in the mutant plants, corroborating the delayed flowering phenotype. Yield trait analysis revealed that the primary factor for improved yield was an increase in the number of effective tillers, although there is potential for further enhancements in the seed-setting rate and grain plumpness. Furthermore, there were significant increases in the length-to-width ratio of the rice grains, fat content, and seed transparency, all contributing to an overall improvement in the rice quality. In summary, this study successfully obtained a rice variety with a delayed growth period through OsMADS50 gene editing, effectively implementing the strategy for adapting northern rice varieties to southern climates. This achievement significantly supports efforts to enhance the rice yield and quality as well as to optimize production management practices. Full article
(This article belongs to the Special Issue Rice Genetics and Molecular Design Breeding)
Show Figures

Figure 1

15 pages, 7528 KB  
Article
Effect of Hemp Extraction Procedures on Cannabinoid and Terpenoid Composition
by Francisco T. Chacon, Wesley M. Raup-Konsavage, Kent E. Vrana and Joshua J. Kellogg
Plants 2024, 13(16), 2222; https://doi.org/10.3390/plants13162222 - 10 Aug 2024
Cited by 4 | Viewed by 3791
Abstract
A variety of techniques have been developed to extract hemp phytochemicals for research and consumption. Some of the most common processes in the industry include supercritical CO2 extraction, hydrodistillation, and solvent-based (ethanol) extractions. Each of these processes has the potential to differentially [...] Read more.
A variety of techniques have been developed to extract hemp phytochemicals for research and consumption. Some of the most common processes in the industry include supercritical CO2 extraction, hydrodistillation, and solvent-based (ethanol) extractions. Each of these processes has the potential to differentially extract various phytochemicals, which would impact their efficacy, tolerability, and safety. However, despite these differences, there has been no direct comparison of the methods and the resulting phytochemical composition. This work aimed to compare cannabinoid and terpene profiles using the three primary commercial procedures, using hemp inflorescence from a CBD/CBG dominant Cannabis sativa L. cultivar. Extracts were then evaluated for their terpene and cannabinoid content using GC-MS and LC-MS/MS, respectively. Hydrodistilled extracts contained the most variety and abundance of terpenes with β-caryophyllene to be the most concentrated terpene (25–42 mg/g). Supercritical CO2 extracts displayed a minimal variety of terpenes, but the most variety and abundance of cannabinoids with CBD ranging from 12.8–20.6 mg/g. Ethanol extracts contained the most acidic cannabinoids with 3.2–4.1 mg/g of CBDA along with minor terpene levels. The resulting extracts demonstrated substantially different chemical profiles and highlight how the process used to extract hemp can play a large role in product composition and potential biological effects. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

13 pages, 299 KB  
Article
Influence of the Extraction Method on the Biological Potential of Solidago virgaurea L. Essential Oil and Hydrolates
by Marko Malićanin, Ivana Karabegović, Natalija Đorđević, Stojan Mančić, Sandra Stamenković Stojanović, Duško Brković and Bojana Danilović
Plants 2024, 13(16), 2187; https://doi.org/10.3390/plants13162187 - 7 Aug 2024
Cited by 5 | Viewed by 2886
Abstract
Solidago virgaurea L., or European goldenrod, has a long tradition in folk medicine due to the wide range of its biological activity. This paper aimed to investigate the antimicrobial and antioxidative potential of S. virgaurea essential oil and hydrolates obtained by traditional and [...] Read more.
Solidago virgaurea L., or European goldenrod, has a long tradition in folk medicine due to the wide range of its biological activity. This paper aimed to investigate the antimicrobial and antioxidative potential of S. virgaurea essential oil and hydrolates obtained by traditional and novel extraction techniques. For that purpose, hydrodistillation, microwave-assisted hydrodistillation and solvent-free extraction were performed. Analysis of the composition of essential oils indicated the presence of 59 different compounds with cyclocolorenone, germacrene D and spathulenol being the dominant in all essential oil samples. Antimicrobial activity was detected in all the analyzed samples, with higher effect on Gram-positive microorganisms compared to Gram-negative. Regarding the type of performed extraction process, the introduction of microwaves induced higher antimicrobial and antioxidative potential in both essential oils and hydrolates. Hydrolates obtained in microwave-assisted processes had pronounced antioxidative activity, which creates a good basis for further investigation of this side product’s potential use in the food, cosmetic and pharmaceutical industries. Full article
21 pages, 1921 KB  
Article
Enhancing Solanum lycopersicum Resilience: Bacterial Cellulose Alleviates Low Irrigation Stress and Boosts Nutrient Uptake
by Noelia De la Cruz Gómez, César Poza-Carrión, Lucía Del Castillo-González, Ángel Isidro Martínez Sánchez, Ana Moliner, Inmaculada Aranaz and Marta Berrocal-Lobo
Plants 2024, 13(15), 2158; https://doi.org/10.3390/plants13152158 - 4 Aug 2024
Cited by 1 | Viewed by 2542
Abstract
The use of natural-origin biomaterials in bioengineering has led to innovative approaches in agroforestry. Bacterial cellulose (BC), sharing the same chemical formula as plant-origin cellulose (PC), exhibits significantly different biochemical properties, including a high degree of crystallinity and superior water retention capacity. Previous [...] Read more.
The use of natural-origin biomaterials in bioengineering has led to innovative approaches in agroforestry. Bacterial cellulose (BC), sharing the same chemical formula as plant-origin cellulose (PC), exhibits significantly different biochemical properties, including a high degree of crystallinity and superior water retention capacity. Previous research showed that natural-origin glucose-based chitin enhanced plant growth in both herbaceous and non-herbaceous plants. In this study, we produced BC in the laboratory and investigated its effects on the substrate and on Solanum lycopersicum seedlings. Soil amended with BC increased root growth compared with untreated seedlings. Additionally, under limited irrigation conditions, BC increased global developmental parameters including fresh and dry weight, as well as total carbon and nitrogen content. Under non-irrigation conditions, BC contributed substantially to plant survival. RNA sequencing (Illumina®) on BC-treated seedlings revealed that BC, despite its bacterial origin, did not stress the plants, confirming its innocuous nature, and it lightly induced genes related to root development and cell division as well as inhibition of stress responses and defense. The presence of BC in the organic substrate increased soil availability of phosphorus (P), iron (Fe), and potassium (K), correlating with enhanced nutrient uptake in plants. Our results demonstrate the potential of BC for improving soil nutrient availability and plant tolerance to low irrigation, making it valuable for agricultural and forestry purposes in the context of global warming. Full article
(This article belongs to the Topic Plant Responses to Environmental Stress)
Show Figures

Figure 1

21 pages, 4067 KB  
Article
Variability in Maize Seed Bacterization and Survival Correlating with Root Colonization by Pseudomonas Isolates with Plant-Probiotic Traits
by Melani G. Lorch, Claudio Valverde and Betina C. Agaras
Plants 2024, 13(15), 2130; https://doi.org/10.3390/plants13152130 - 1 Aug 2024
Cited by 2 | Viewed by 2718
Abstract
Seed treatment with plant growth-promoting bacteria represents the primary strategy to incorporate them into agricultural ecosystems, particularly for crops under extensive management, such as maize. In this study, we evaluated the seed bacterization levels, root colonization patterns, and root competitiveness of a collection [...] Read more.
Seed treatment with plant growth-promoting bacteria represents the primary strategy to incorporate them into agricultural ecosystems, particularly for crops under extensive management, such as maize. In this study, we evaluated the seed bacterization levels, root colonization patterns, and root competitiveness of a collection of autochthonous Pseudomonas isolates that have demonstrated several plant-probiotic abilities in vitro. Our findings indicate that the seed bacterization level, both with and without the addition of various protectants, is specific to each Pseudomonas strain, including their response to seed pre-hydration. Bacterization kinetics revealed that while certain isolates persisted on seed surfaces for up to 4 days post-inoculation (dpi), others experienced a rapid decline in viability after 1 or 2 dpi. The observed differences in seed bacterization levels were consistent with the root colonization densities observed through confocal microscopy analysis, and with root competitiveness quantified via selective plate counts. Notably, isolates P. protegens RBAN4 and P. chlororaphis subsp. aurantiaca SMMP3 demonstrated effective competition with the natural microflora for colonizing the maize rhizosphere and both promoted shoot and root biomass production in maize assessed at the V3 grown stage. Conversely, P. donghuensis SVBP6 was detected at very low levels in the maize rhizosphere, but still exhibited a positive effect on plant parameters, suggesting a growth-stimulatory effect during the early stages of plant development. In conclusion, there is a considerable strain-specific variability in the maize seed bacterization and survival capacities of Pseudomonas isolates with plant-probiotic traits, with a correlation in their root competitiveness under natural conditions. This variability must be understood to optimize their adoption as inputs for the agricultural system. Our experimental approach emphasizes the critical importance of tailoring seed bacterization treatments for each inoculant candidate, including the selection and incorporation of protective substances. It should not be assumed that all bacterial cells exhibit a similar performance. Full article
Show Figures

Figure 1

13 pages, 1504 KB  
Article
Establishment of Novel Simple Sequence Repeat (SSR) Markers from Chimonanthus praecox Transcriptome Data and Their Application in the Identification of Varieties
by Bin Liu, Hua-Feng Wu, Yin-Zhu Cao, Xi-Meng Yang and Shun-Zhao Sui
Plants 2024, 13(15), 2131; https://doi.org/10.3390/plants13152131 - 1 Aug 2024
Cited by 5 | Viewed by 1635
Abstract
Chimonanthus praecox, a member of the Calycanthaceae family, is a unique, traditional, and famous flowering economic tree species in China. Despite the existence of several varieties, only a few cultivars have been formally named. Currently, expression sequence tag–simple sequence repeat (EST-SSR) markers [...] Read more.
Chimonanthus praecox, a member of the Calycanthaceae family, is a unique, traditional, and famous flowering economic tree species in China. Despite the existence of several varieties, only a few cultivars have been formally named. Currently, expression sequence tag–simple sequence repeat (EST-SSR) markers are extensively used to identify different species and varieties; a large number of microsatellites can be identified from transcriptome databases. A total of 162,638 unigenes were assembled using RNA-seq; 82,778 unigenes were annotated using the Nr, Nt, Swiss-Prot, Pfam, GO, KOG, and KEGG databases. In total, 13,556 SSR loci were detected from 11,691 unigenes, with trinucleotide repeat motifs being the most abundant among the six repeat motifs. To develop the markers, 64,440 pairs of SSR primers with polymorphism potential were designed, and 75 pairs of primers were randomly selected for amplification. Among these markers, seven pairs produced amplified fragments of the expected size with high polymorphism. Using these markers, 12 C. praecox varieties were clustered into two monophyletic clades. Microsatellites in the transcriptome of C. praecox exhibit rich types, strong specificity, and great polymorphism potential. These EST-SSR markers serve as molecular technical methods for identifying different varieties of C. praecox and facilitate the exploration of a large number of candidate genes associated with important traits. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

19 pages, 6852 KB  
Article
Effects of Drought Stress on Photosynthesis and Chlorophyll Fluorescence in Blue Honeysuckle
by Weijiao Yan, Yongchuan Lu, Liangchuan Guo, Yan Liu, Mingkai Li, Boyuan Zhang, Bingxiu Zhang, Lijun Zhang, Dong Qin and Junwei Huo
Plants 2024, 13(15), 2115; https://doi.org/10.3390/plants13152115 - 30 Jul 2024
Cited by 22 | Viewed by 4182
Abstract
Blue honeysuckle (Lonicera caerulea L.) is a deciduous shrub with perennial rootstock found in China. The objectives of this study were to explore the drought tolerance of blue honeysuckle, determine the effect of drought stress on two photosystems, and examine the mechanism [...] Read more.
Blue honeysuckle (Lonicera caerulea L.) is a deciduous shrub with perennial rootstock found in China. The objectives of this study were to explore the drought tolerance of blue honeysuckle, determine the effect of drought stress on two photosystems, and examine the mechanism of acquired drought tolerance. In this study, blue honeysuckle under four levels of simulated field capacity (100%, 85%, 75%, and 65% RH) was grown in split-root pots for drought stress treatment, for measuring the changes in chlorophyll content, photosynthetic characteristics, and leaf chlorophyll fluorescence parameters. The chlorophyll content of each increased under mild stress and decreased under moderate and severe stress. The net photosynthetic rate, transpiration rate, intercellular carbon dioxide concentration, and stomatal conductance of blue honeysuckle decreased with the increase in water stress. However, the water utilization rate and stomatal limit system increased under mild and moderate stress and decreased under severe stress. The maximum fluorescence (Fm), maximum photochemical efficiency, and quantum efficiency of photosystem II decreased with the decrease in soil water content, and the initial fluorescence increased significantly (p < 0.01). With the decrease in soil water content, the energy allocation ratio parameters decreased under severe drought stress. The main activity of the unit reaction center parameters first increased and then decreased. ABS/CSm, TRo/CSm, ETo/CSm, and REo/CSm gradually declined. After a comprehensive analysis, the highest scores were obtained under adequate irrigation (CK). Overall, we concluded that the water irrigation system of blue honeysuckle should be considered adequate. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

17 pages, 2719 KB  
Article
Genetic Diversity Analysis and Prediction of Potential Suitable Areas for the Rare and Endangered Wild Plant Henckelia longisepala
by Renfen Zhao, Nian Huang, Zhiyan Zhang, Wei Luo, Jianying Xiang, Yuanjie Xu and Yizhi Wang
Plants 2024, 13(15), 2093; https://doi.org/10.3390/plants13152093 - 29 Jul 2024
Cited by 4 | Viewed by 1425
Abstract
Henckelia longisepala (H. W. Li) D. J. Middleton & Mich. Möller is a rare and endangered plant species found only in Southeastern Yunnan, China, and Northern Vietnam. It is listed as a threatened species in China and recognized as a plant species with [...] Read more.
Henckelia longisepala (H. W. Li) D. J. Middleton & Mich. Möller is a rare and endangered plant species found only in Southeastern Yunnan, China, and Northern Vietnam. It is listed as a threatened species in China and recognized as a plant species with extremely small populations (PSESP), while also having high ornamental value and utilization potential. This study used ddRAD-seq technology to quantify genetic diversity and structure for 32 samples from three extant populations of H. longisepala. The H. longisepala populations were found to have low levels of genetic diversity (Ho = 0.1216, He = 0.1302, Pi = 0.1731, FIS = 0.1456), with greater genetic differentiation observed among populations (FST = 0.3225). As indicated by genetic structure and phylogenetic analyses, samples clustered into three distinct genetic groups that corresponded to geographically separate populations. MaxEnt modeling was used to identify suitable areas for H. longisepala across three time periods and two climate scenarios (SSP1-2.6, SSP5-8.5). High-suitability areas were identified in Southeastern Yunnan Province, Northern Vietnam, and Eastern Laos. Future H. longisepala distribution was predicted to remain centered in these areas, but with a decrease in the total amount of suitable habitat. The present study provides key data on H. longisepala genetic diversity, as well as a theoretical basis for the conservation, development, and utilization of its germplasm resources. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

21 pages, 7557 KB  
Article
Vitis rotundifolia Genes Introgressed with RUN1 and RPV1: Poor Recombination and Impact on V. vinifera Berry Transcriptome
by Mengyao Shi, Stefania Savoi, Gautier Sarah, Alexandre Soriano, Audrey Weber, Laurent Torregrosa and Charles Romieu
Plants 2024, 13(15), 2095; https://doi.org/10.3390/plants13152095 - 29 Jul 2024
Viewed by 2220
Abstract
Thanks to several Vitis vinifera backcrosses with an initial V. vinifera L. × V. rotundifolia (previously Muscadinia rotundifolia) interspecific cross, the MrRUN1/MrRPV1 locus (resistance to downy and powdery mildews) was introgressed in genotypes phenotypically close to V. vinifera varieties. To check the [...] Read more.
Thanks to several Vitis vinifera backcrosses with an initial V. vinifera L. × V. rotundifolia (previously Muscadinia rotundifolia) interspecific cross, the MrRUN1/MrRPV1 locus (resistance to downy and powdery mildews) was introgressed in genotypes phenotypically close to V. vinifera varieties. To check the consequences of introgressing parts of the V. rotundifolia genome on gene expression during fruit development, we conducted a comparative RNA-seq study on single berries from different V. vinifera cultivars and V. vinifera × V. rotundifolia hybrids, including ‘G5’ and two derivative microvine lines, ‘MV102’ (resistant) and ‘MV32’ (susceptible) segregating for the MrRUN1/RPV1 locus. RNA-Seq profiles were analyzed on a comprehensive set of single berries from the end of the herbaceous plateau to the ripe stage. Pair-end reads were aligned both on V. vinifera PN40024.V4 reference genome, V. rotundifolia cv ‘Trayshed’ and cv ‘Carlos’, and to the few resistance genes from the original V. rotundifolia cv ‘52’ parent available at NCBI. Weighted Gene Co-expression Network Analysis (WGCNA) led to classifying the differentially expressed genes into 15 modules either preferentially correlated with resistance or berry phenology and composition. Resistance positively correlated transcripts predominantly mapped on the 4–5 Mb distal region of V. rotundifolia chromosome 12 beginning with the MrRUN1/MrRPV1 locus, while the negatively correlated ones mapped on the orthologous V. vinifera region, showing this large extremity of LG12 remained recalcitrant to internal recombination during the successive backcrosses. Some constitutively expressed V. rotundifolia genes were also observed at lower densities outside this region. Genes overexpressed in developing berries from resistant accessions, either introgressed from V. rotundifolia or triggered by these in the vinifera genome, spanned various functional groups, encompassing calcium signal transduction, hormone signaling, transcription factors, plant–pathogen-associated interactions, disease resistance proteins, ROS and phenylpropanoid biosynthesis. This transcriptomic insight provides a foundation for understanding the disease resistance inherent in these hybrid cultivars and suggests a constitutive expression of NIR NBS LRR triggering calcium signaling. Moreover, these results illustrate the magnitude of transcriptomic changes caused by the introgressed V. rotundifolia background in backcrossed hybrids, on a large number of functions largely exceeding the ones constitutively expressed in single resistant gene transformants. Full article
(This article belongs to the Collection Advances in Plant Breeding)
Show Figures

Figure 1

19 pages, 6937 KB  
Article
Orchestrated Movement Sequences and Shape-Memory-like Effects in Pine Cones
by Martin Horstmann, Thomas Speck and Simon Poppinga
Plants 2024, 13(15), 2078; https://doi.org/10.3390/plants13152078 - 26 Jul 2024
Cited by 3 | Viewed by 2373
Abstract
Hygroscopic seed-scale movement is responsible for the weather-adaptive opening and closing of pine cones and for facilitating seed dispersal under favorable environmental conditions. Although this phenomenon has long been investigated, many involved processes are still not fully understood. To gain a deeper mechanical [...] Read more.
Hygroscopic seed-scale movement is responsible for the weather-adaptive opening and closing of pine cones and for facilitating seed dispersal under favorable environmental conditions. Although this phenomenon has long been investigated, many involved processes are still not fully understood. To gain a deeper mechanical and structural understanding of the cone and its functional units, namely the individual seed scales, we have investigated their desiccation- and wetting-induced movement processes in a series of analyses and manipulative experiments. We found, for example, that the abaxial scale surface is responsible for the evaporation of water from the closed cone and subsequent cone opening. Furthermore, we tested the capability of dry and deformed scales to restore their original shape and biomechanical properties by wetting. These results shed new light on the orchestration of scale movement in cones and the involved forces and provide information about the functional robustness and resilience of cones, leading to a better understanding of the mechanisms behind hygroscopic pine cone opening, the respective ecological framework, and, possibly, to the development of smart biomimetic actuators. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Graphical abstract

24 pages, 3987 KB  
Review
Advance in the Thermoinhibition of Lettuce (Lactuca sativa L.) Seed Germination
by Jinpeng Wei, Qi Zhang, Yixin Zhang, Le Yang, Zhaoqi Zeng, Yuliang Zhou and Bingxian Chen
Plants 2024, 13(15), 2051; https://doi.org/10.3390/plants13152051 - 25 Jul 2024
Cited by 6 | Viewed by 4649
Abstract
Thermoinhibition refers to the inability of seeds to germinate when inhibited by high temperatures, but when environmental conditions return to normal, the seeds are able to germinate rapidly again, which is different from thermodormancy. Meanwhile, with global warming, the effect of the thermoinhibition [...] Read more.
Thermoinhibition refers to the inability of seeds to germinate when inhibited by high temperatures, but when environmental conditions return to normal, the seeds are able to germinate rapidly again, which is different from thermodormancy. Meanwhile, with global warming, the effect of the thermoinhibition phenomenon on the yield and quality of crops in agricultural production is becoming common. Lettuce, as a horticultural crop sensitive to high temperature, is particularly susceptible to the effects of thermoinhibition, resulting in yield reduction. Therefore, it is crucial to elucidate the intrinsic mechanism of action of thermoinhibition in lettuce seeds. This review mainly outlines several factors affecting thermoinhibition of lettuce seed germination, including endosperm hardening, alteration of endogenous or exogenous phytohormone concentrations, action of photosensitizing pigments, production and inhibition of metabolites, maternal effects, genetic expression, and other physical and chemical factors. Finally, we also discuss the challenges and potential of lettuce seed germination thermoinhibition research. The purpose of this study is to provide theoretical support for future research on lettuce seed germination thermoinhibition, and with the aim of revealing the mechanisms and effects behind lettuce seed thermoinhibition. This will enable the identification of more methods to alleviate seed thermoinhibition or the development of superior heat-tolerant lettuce seeds. Full article
(This article belongs to the Section Horticultural Science and Ornamental Plants)
Show Figures

Figure 1

Back to TopTop