Characterization and Conservation of Vegetable Genetic Resources

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Plant Genetic Resources".

Deadline for manuscript submissions: 31 May 2025 | Viewed by 3052

Special Issue Editor


E-Mail Website
Guest Editor
Agronomy Department, Universidade Federal de Viçosa (UFV), PH Rolfs Avenue, Viçosa 36570-000, MG, Brazil
Interests: production and cultural treatments of vegetables; protected environment genetic resources sustainability

Special Issue Information

Dear Colleagues,

The characterization of vegetable genetic resources (CVR) is a fascinating task, constituting strategic access to the elucidation of crucial traits for the conservation of genetic resources and to the discovery of useful characteristics for agro-ecosystems or natural ecosystems. Currently, CRV assumes even greater importance given the continuous challenges faced in plant production, such as environmental changes and the demands for increasing productivity and sustainability in production. In this sense, there is a consensus that the usefulness of plant genetic resources is linked to the quantity and quality of information associated with these resources, corroborating the importance of efforts aimed at their adequate evaluation. In line with this, instruments such as The Second Report on the State of the World’s Plant Genetic Resources for Food and Agriculture establish a series of guidelines aimed at greater efficiency in the conservation and use of plant germplasm, such as improvements in the evaluation and identification of accessions with characteristics of economic importance. However, those involved in the characterization and conservation of plant germplasm may witness challenges intrinsic to these activities. As an example of these challenges, these activities often receive secondary attention in the allocation of financial and human resources. In view of this, this Special Issue warmly invites the submission of studies involving the characterization of plant genetic resources.

Prof. Dr. Derly Silva
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • accessions
  • agrobiodiversity
  • germplasm collections
  • plant germplasm
  • germplasm management

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

20 pages, 4626 KiB  
Article
Genetic Diversity of Common Bean (Phaseolus vulgaris L.) Landraces Based on Morphological Traits and Molecular Markers
by Evaldo de Paula, Rafael Nunes de Almeida, Talles de Oliveira Santos, José Dias de Souza Neto, Elaine Manelli Riva-Souza, Sheila Cristina Prucoli Posse, Maurício Novaes Souza, Aparecida de Fátima Madella de Oliveira, Alexandre Cristiano Santos Júnior, Jardel Oliveira Santos, Samy Pimenta, Cintia dos Santos Bento and Monique Moreira Moulin
Plants 2024, 13(18), 2584; https://doi.org/10.3390/plants13182584 - 15 Sep 2024
Cited by 1 | Viewed by 1474
Abstract
The objective of this study was to evaluate the genetic diversity among traditional common bean accessions through morphological descriptors and molecular markers. Sixty-seven common bean accessions from the Germplasm bank of the Instituto Federal of Espírito Santo—Campus de Alegre were evaluated. For this, [...] Read more.
The objective of this study was to evaluate the genetic diversity among traditional common bean accessions through morphological descriptors and molecular markers. Sixty-seven common bean accessions from the Germplasm bank of the Instituto Federal of Espírito Santo—Campus de Alegre were evaluated. For this, 25 specific morphological descriptors were used, namely 12 quantitative and 13 qualitative ones. A diversity analysis based on morphological descriptors was carried out using the Gower algorithm. For molecular characterization, 23 ISSR primers were used to estimate dissimilarity using the Jaccard Index. Based on the dendrograms obtained by the UPGMA method, for morphological and molecular characterization, high genetic variability was observed between the common bean genotypes studied, evidenced by cophenetic correlation values in the order of 0.99, indicating an accurate representation of the dissimilarity matrix by the UPGMA clustering. In the morphological characterization, high phenotypic diversity was observed between the accessions, with grains of different shapes, colors, and sizes, and the accessions were grouped into nine distinct groups. Molecular characterization was efficient in separating the genotypes in the Andean and Mesoamerican groups, with the 23 ISSR primers studied generating an average of 6.35 polymorphic bands. The work identified divergent accessions that can serve different market niches, which can be indicated as parents to form breeding programs in order to obtain progenies with high genetic variability. Full article
(This article belongs to the Special Issue Characterization and Conservation of Vegetable Genetic Resources)
Show Figures

Figure 1

12 pages, 679 KiB  
Article
Characterization of Lithuanian Tomato Varieties and Hybrids Using Phenotypic Traits and Molecular Markers
by Audrius Radzevičius, Jūratė Bronė Šikšnianienė, Rasa Karklelienė, Danguolė Juškevičienė, Raminta Antanynienė, Edvinas Misiukevičius, Aurelijus Starkus, Vidmantas Stanys and Birutė Frercks
Plants 2024, 13(15), 2143; https://doi.org/10.3390/plants13152143 - 2 Aug 2024
Viewed by 1075
Abstract
The aim of this study was to evaluate phenotypic traits and genetic diversity of the 13 tomato (Solanum lycopersicum L.) varieties and 6 hybrids developed at the Institute of Horticulture Lithuanian Research Centre for Agriculture and Forestry (LRCAF IH). For the molecular [...] Read more.
The aim of this study was to evaluate phenotypic traits and genetic diversity of the 13 tomato (Solanum lycopersicum L.) varieties and 6 hybrids developed at the Institute of Horticulture Lithuanian Research Centre for Agriculture and Forestry (LRCAF IH). For the molecular characterisation, seven previously published microsatellite markers (SSR) were used. A24 and 26 alleles were detected in tomato varieties and hybrids, respectively. Based on the polymorphism information content (PIC) value, the most informative SSR primers for varieties were TMS52, TGS0007, LEMDDNa and Tom236-237, and the most informative SSR primers for hybrids were SSR248 and TMS52. In UPGMA cluster analysis, tomato varieties are grouped in some cases due to genetic relationships, as the same cluster cultivars ‘Viltis’ (the parent of cv. ‘Laukiai’) and ‘Aušriai’ (the progeny of cv. ‘Jurgiai’) are present. The grouping of all hybrids in the dendrogram is related to the parental forms, and it shows the usefulness of molecular markers for tomato breeding, as they can be used to trace the origin of hybrids and, eventually, varieties accurately. The knowledge about the genetic background of Lithuanian tomato cultivars will help plan targeted crosses in tomato breeding programs. Full article
(This article belongs to the Special Issue Characterization and Conservation of Vegetable Genetic Resources)
Show Figures

Figure 1

Back to TopTop