Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:

Review

28 pages, 7218 KiB  
Review
Heterogeneous Wafer Bonding Technology and Thin-Film Transfer Technology-Enabling Platform for the Next Generation Applications beyond 5G
by Zhihao Ren, Jikai Xu, Xianhao Le and Chengkuo Lee
Micromachines 2021, 12(8), 946; https://doi.org/10.3390/mi12080946 - 11 Aug 2021
Cited by 44 | Viewed by 9352
Abstract
Wafer bonding technology is one of the most effective methods for high-quality thin-film transfer onto different substrates combined with ion implantation processes, laser irradiation, and the removal of the sacrificial layers. In this review, we systematically summarize and introduce applications of the thin [...] Read more.
Wafer bonding technology is one of the most effective methods for high-quality thin-film transfer onto different substrates combined with ion implantation processes, laser irradiation, and the removal of the sacrificial layers. In this review, we systematically summarize and introduce applications of the thin films obtained by wafer bonding technology in the fields of electronics, optical devices, on-chip integrated mid-infrared sensors, and wearable sensors. The fabrication of silicon-on-insulator (SOI) wafers based on the Smart CutTM process, heterogeneous integrations of wide-bandgap semiconductors, infrared materials, and electro-optical crystals via wafer bonding technology for thin-film transfer are orderly presented. Furthermore, device design and fabrication progress based on the platforms mentioned above is highlighted in this work. They demonstrate that the transferred films can satisfy high-performance power electronics, molecular sensors, and high-speed modulators for the next generation applications beyond 5G. Moreover, flexible composite structures prepared by the wafer bonding and de-bonding methods towards wearable electronics are reported. Finally, the outlooks and conclusions about the further development of heterogeneous structures that need to be achieved by the wafer bonding technology are discussed. Full article
(This article belongs to the Special Issue Micro-Nano Science and Engineering)
Show Figures

Figure 1

15 pages, 1887 KiB  
Review
Fiber-Based Thermoelectric Materials and Devices for Wearable Electronics
by Pengxiang Zhang, Biao Deng, Wenting Sun, Zijian Zheng and Weishu Liu
Micromachines 2021, 12(8), 869; https://doi.org/10.3390/mi12080869 - 24 Jul 2021
Cited by 14 | Viewed by 4354
Abstract
Fiber-based thermoelectric materials and devices have the characteristics of light-weight, stability, and flexibility, which can be used in wearable electronics, attracting the wide attention of researchers. In this work, we present a review of state-of-the-art fiber-based thermoelectric material fabrication, device assembling, and its [...] Read more.
Fiber-based thermoelectric materials and devices have the characteristics of light-weight, stability, and flexibility, which can be used in wearable electronics, attracting the wide attention of researchers. In this work, we present a review of state-of-the-art fiber-based thermoelectric material fabrication, device assembling, and its potential applications in temperature sensing, thermoelectric generation, and temperature management. In this mini review, we also shine some light on the potential application in the next generation of wearable electronics, and discuss the challenges and opportunities. Full article
(This article belongs to the Special Issue Advanced Energy Conversion and Storage Microdevices)
Show Figures

Figure 1

27 pages, 6347 KiB  
Review
Droplet Microfluidics for Food and Nutrition Applications
by Karin Schroen, Claire Berton-Carabin, Denis Renard, Mélanie Marquis, Adeline Boire, Rémy Cochereau, Chloé Amine and Sébastien Marze
Micromachines 2021, 12(8), 863; https://doi.org/10.3390/mi12080863 - 23 Jul 2021
Cited by 34 | Viewed by 7953
Abstract
Droplet microfluidics revolutionizes the way experiments and analyses are conducted in many fields of science, based on decades of basic research. Applied sciences are also impacted, opening new perspectives on how we look at complex matter. In particular, food and nutritional sciences still [...] Read more.
Droplet microfluidics revolutionizes the way experiments and analyses are conducted in many fields of science, based on decades of basic research. Applied sciences are also impacted, opening new perspectives on how we look at complex matter. In particular, food and nutritional sciences still have many research questions unsolved, and conventional laboratory methods are not always suitable to answer them. In this review, we present how microfluidics have been used in these fields to produce and investigate various droplet-based systems, namely simple and double emulsions, microgels, microparticles, and microcapsules with food-grade compositions. We show that droplet microfluidic devices enable unprecedented control over their production and properties, and can be integrated in lab-on-chip platforms for in situ and time-resolved analyses. This approach is illustrated for on-chip measurements of droplet interfacial properties, droplet–droplet coalescence, phase behavior of biopolymer mixtures, and reaction kinetics related to food digestion and nutrient absorption. As a perspective, we present promising developments in the adjacent fields of biochemistry and microbiology, as well as advanced microfluidics–analytical instrument coupling, all of which could be applied to solve research questions at the interface of food and nutritional sciences. Full article
(This article belongs to the Special Issue Microfluidics for Food and Nutrient Applications)
Show Figures

Figure 1

28 pages, 7562 KiB  
Review
Artificial Compound Eye Systems and Their Application: A Review
by Huu Lam Phan, Jungho Yi, Joonsung Bae, Hyoungho Ko, Sangmin Lee, Dongil Cho, Jong-Mo Seo and Kyo-in Koo
Micromachines 2021, 12(7), 847; https://doi.org/10.3390/mi12070847 - 20 Jul 2021
Cited by 22 | Viewed by 6102
Abstract
The natural compound eye system has many outstanding properties, such as a more compact size, wider-angle view, better capacity to detect moving objects, and higher sensitivity to light intensity, compared to that of a single-aperture vision system. Thanks to the development of micro- [...] Read more.
The natural compound eye system has many outstanding properties, such as a more compact size, wider-angle view, better capacity to detect moving objects, and higher sensitivity to light intensity, compared to that of a single-aperture vision system. Thanks to the development of micro- and nano-fabrication techniques, many artificial compound eye imaging systems have been studied and fabricated to inherit fascinating optical features of the natural compound eye. This paper provides a review of artificial compound eye imaging systems. This review begins by introducing the principle of the natural compound eye, and then, the analysis of two types of artificial compound eye systems. We equally present the applications of the artificial compound eye imaging systems. Finally, we suggest our outlooks about the artificial compound eye imaging system. Full article
Show Figures

Figure 1

36 pages, 9659 KiB  
Review
Membrane Fouling Phenomena in Microfluidic Systems: From Technical Challenges to Scientific Opportunities
by Andrea Iginio Cirillo, Giovanna Tomaiuolo and Stefano Guido
Micromachines 2021, 12(7), 820; https://doi.org/10.3390/mi12070820 - 13 Jul 2021
Cited by 24 | Viewed by 4253
Abstract
The almost ubiquitous, though undesired, deposition and accumulation of suspended/dissolved matter on solid surfaces, known as fouling, represents a crucial issue strongly affecting the efficiency and sustainability of micro-scale reactors. Fouling becomes even more detrimental for all the applications that require the use [...] Read more.
The almost ubiquitous, though undesired, deposition and accumulation of suspended/dissolved matter on solid surfaces, known as fouling, represents a crucial issue strongly affecting the efficiency and sustainability of micro-scale reactors. Fouling becomes even more detrimental for all the applications that require the use of membrane separation units. As a matter of fact, membrane technology is a key route towards process intensification, having the potential to replace conventional separation procedures, with significant energy savings and reduced environmental impact, in a broad range of applications, from water purification to food and pharmaceutical industries. Despite all the research efforts so far, fouling still represents an unsolved problem. The complex interplay of physical and chemical mechanisms governing its evolution is indeed yet to be fully unraveled and the role played by foulants’ properties or operating conditions is an area of active research where microfluidics can play a fundamental role. The aim of this review is to explore fouling through microfluidic systems, assessing the fundamental interactions involved and how microfluidics enables the comprehension of the mechanisms characterizing the process. The main mathematical models describing the fouling stages will also be reviewed and their limitations discussed. Finally, the principal dynamic investigation techniques in which microfluidics represents a key tool will be discussed, analyzing their employment to study fouling. Full article
(This article belongs to the Special Issue Micro-Reaction Engineering)
Show Figures

Figure 1

19 pages, 5184 KiB  
Review
Biocompatibility of SU-8 and Its Biomedical Device Applications
by Ziyu Chen and Jeong-Bong Lee
Micromachines 2021, 12(7), 794; https://doi.org/10.3390/mi12070794 - 4 Jul 2021
Cited by 30 | Viewed by 4463
Abstract
SU-8 is an epoxy-based, negative-tone photoresist that has been extensively utilized to fabricate myriads of devices including biomedical devices in the recent years. This paper first reviews the biocompatibility of SU-8 for in vitro and in vivo applications. Surface modification techniques as well [...] Read more.
SU-8 is an epoxy-based, negative-tone photoresist that has been extensively utilized to fabricate myriads of devices including biomedical devices in the recent years. This paper first reviews the biocompatibility of SU-8 for in vitro and in vivo applications. Surface modification techniques as well as various biomedical applications based on SU-8 are also discussed. Although SU-8 might not be completely biocompatible, existing surface modification techniques, such as O2 plasma treatment or grafting of biocompatible polymers, might be sufficient to minimize biofouling caused by SU-8. As a result, a great deal of effort has been directed to the development of SU-8-based functional devices for biomedical applications. This review includes biomedical applications such as platforms for cell culture and cell encapsulation, immunosensing, neural probes, and implantable pressure sensors. Proper treatments of SU-8 and slight modification of surfaces have enabled the SU-8 as one of the unique choices of materials in the fabrication of biomedical devices. Due to the versatility of SU-8 and comparative advantages in terms of improved Young’s modulus and yield strength, we believe that SU-8-based biomedical devices would gain wider proliferation among the biomedical community in the future. Full article
(This article belongs to the Special Issue 20 Years of SU8 as MEMS Material)
Show Figures

Figure 1

16 pages, 12537 KiB  
Review
Recent Development and Perspectives of Optimization Design Methods for Piezoelectric Ultrasonic Transducers
by Dongdong Chen, Linwei Wang, Xingjun Luo, Chunlong Fei, Di Li, Guangbao Shan and Yintang Yang
Micromachines 2021, 12(7), 779; https://doi.org/10.3390/mi12070779 - 30 Jun 2021
Cited by 19 | Viewed by 4083
Abstract
A piezoelectric ultrasonic transducer (PUT) is widely used in nondestructive testing, medical imaging, and particle manipulation, etc., and the performance of the PUT determines its functional performance and effectiveness in these applications. The optimization design method of a PUT is very important for [...] Read more.
A piezoelectric ultrasonic transducer (PUT) is widely used in nondestructive testing, medical imaging, and particle manipulation, etc., and the performance of the PUT determines its functional performance and effectiveness in these applications. The optimization design method of a PUT is very important for the fabrication of a high-performance PUT. In this paper, traditional and efficient optimization design methods for a PUT are presented. The traditional optimization design methods are mainly based on an analytical model, an equivalent circuit model, or a finite element model and the design parameters are adjusted by a trial-and-error method, which relies on the experience of experts and has a relatively low efficiency. Recently, by combining intelligent optimization algorithms, efficient optimization design methods for a PUT have been developed based on a traditional model or a data-driven model, which can effectively improve the design efficiency of a PUT and reduce its development cycle and cost. The advantages and disadvantages of the presented methods are compared and discussed. Finally, the optimization design methods for PUT are concluded, and their future perspectives are discussed. Full article
Show Figures

Figure 1

17 pages, 3541 KiB  
Review
Functionalized Mesoporous Thin Films for Biotechnology
by Barbara Sartori, Heinz Amenitsch and Benedetta Marmiroli
Micromachines 2021, 12(7), 740; https://doi.org/10.3390/mi12070740 - 24 Jun 2021
Cited by 8 | Viewed by 2973
Abstract
Mesoporous materials bear great potential for biotechnological applications due to their biocompatibility and versatility. Their high surface area and pore interconnection allow the immobilization of molecules and their subsequent controlled delivery. Modifications of the mesoporous material with the addition of different chemical species, [...] Read more.
Mesoporous materials bear great potential for biotechnological applications due to their biocompatibility and versatility. Their high surface area and pore interconnection allow the immobilization of molecules and their subsequent controlled delivery. Modifications of the mesoporous material with the addition of different chemical species, make them particularly suitable for the production of bioactive coatings. Functionalized thin films of mesoporous silica and titania can be used as scaffolds with properties as diverse as promotion of cell growth, inhibition of biofilms formation, or development of sensors based on immobilized enzymes. The possibility to pattern them increase their appeal as they can be incorporated into devices and can be tailored both with respect to architecture and functionalization. In fact, selective surface manipulation is the ground for the fabrication of advanced micro devices that combine standard micro/nanofluids with functional materials. In this review, we will present the advantages of the functionalization of silica and titania mesoporous materials deposited in thin film. Different functional groups used to modify their properties will be summarized, as well as functionalization methods and some examples of applications of modified materials, thus giving an overview of the essential role of functionalization to improve the performance of such innovative materials. Full article
(This article belongs to the Special Issue Advances in Biomedical Nanotechnology)
Show Figures

Graphical abstract

19 pages, 5654 KiB  
Review
A Review of the Progress of Thin-Film Transistors and Their Technologies for Flexible Electronics
by Mohammad Javad Mirshojaeian Hosseini and Robert A. Nawrocki
Micromachines 2021, 12(6), 655; https://doi.org/10.3390/mi12060655 - 2 Jun 2021
Cited by 58 | Viewed by 8139
Abstract
Flexible electronics enable various technologies to be integrated into daily life and fuel the quests to develop revolutionary applications, such as artificial skins, intelligent textiles, e-skin patches, and on-skin displays. Mechanical characteristics, including the total thickness and the bending radius, are of paramount [...] Read more.
Flexible electronics enable various technologies to be integrated into daily life and fuel the quests to develop revolutionary applications, such as artificial skins, intelligent textiles, e-skin patches, and on-skin displays. Mechanical characteristics, including the total thickness and the bending radius, are of paramount importance for physically flexible electronics. However, the limitation regarding semiconductor fabrication challenges the mechanical flexibility of thin-film electronics. Thin-Film Transistors (TFTs) are a key component in thin-film electronics that restrict the flexibility of thin-film systems. Here, we provide a brief overview of the trends of the last three decades in the physical flexibility of various semiconducting technologies, including amorphous-silicon, polycrystalline silicon, oxides, carbon nanotubes, and organics. The study demonstrates the trends of the mechanical properties, including the total thickness and the bending radius, and provides a vision for the future of flexible TFTs. Full article
Show Figures

Graphical abstract

27 pages, 3878 KiB  
Review
Light-Emitting Textiles: Device Architectures, Working Principles, and Applications
by Marco Cinquino, Carmela Tania Prontera, Marco Pugliese, Roberto Giannuzzi, Daniela Taurino, Giuseppe Gigli and Vincenzo Maiorano
Micromachines 2021, 12(6), 652; https://doi.org/10.3390/mi12060652 - 2 Jun 2021
Cited by 28 | Viewed by 8097
Abstract
E-textiles represent an emerging technology aiming toward the development of fabric with augmented functionalities, enabling the integration of displays, sensors, and other electronic components into textiles. Healthcare, protective clothing, fashion, and sports are a few examples application areas of e-textiles. Light-emitting textiles can [...] Read more.
E-textiles represent an emerging technology aiming toward the development of fabric with augmented functionalities, enabling the integration of displays, sensors, and other electronic components into textiles. Healthcare, protective clothing, fashion, and sports are a few examples application areas of e-textiles. Light-emitting textiles can have different applications: sensing, fashion, visual communication, light therapy, etc. Light emission can be integrated with textiles in different ways: fabricating light-emitting fibers and planar light-emitting textiles or employing side-emitting polymer optical fibers (POFs) coupled with light-emitting diodes (LEDs). Different kinds of technology have been investigated: alternating current electroluminescent devices (ACELs), inorganic and organic LEDs, and light-emitting electrochemical cells (LECs). The different device working principles and architectures are discussed in this review, highlighting the most relevant aspects and the possible approaches for their integration with textiles. Regarding POFs, the methodology to obtain side emissions and the critical aspects for their integration into textiles are discussed in this review. The main applications of light-emitting fabrics are illustrated, demonstrating that LEDs, alone or coupled with POFs, represent the most robust technology. On the other hand, OLEDs (Organic LEDs) are very promising for the future of light-emitting fabrics, but some issues still need to be addressed. Full article
Show Figures

Figure 1

31 pages, 8928 KiB  
Review
Lateral-Type Spin-Photonics Devices: Development and Applications
by Nozomi Nishizawa and Hiro Munekata
Micromachines 2021, 12(6), 644; https://doi.org/10.3390/mi12060644 - 31 May 2021
Cited by 16 | Viewed by 4242
Abstract
Spin-photonic devices, represented by spin-polarized light emitting diodes and spin-polarized photodiodes, have great potential for practical use in circularly polarized light (CPL) applications. Focusing on the lateral-type spin-photonic devices that can exchange CPL through their side facets, this review describes their functions in [...] Read more.
Spin-photonic devices, represented by spin-polarized light emitting diodes and spin-polarized photodiodes, have great potential for practical use in circularly polarized light (CPL) applications. Focusing on the lateral-type spin-photonic devices that can exchange CPL through their side facets, this review describes their functions in practical CPL applications in terms of: (1) Compactness and integrability, (2) stand-alone (monolithic) nature, (3) room temperature operation, (4) emission with high circular polarization, (5) polarization controllability, and (6) CPL detection. Furthermore, it introduces proposed CPL applications in a wide variety of fields and describes the application of these devices in biological diagnosis using CPL scattering. Finally, it discusses the current state of spin-photonic devices and their applications and future prospects. Full article
(This article belongs to the Special Issue Spin-Photonic Devices and Its Applications)
Show Figures

Figure 1

45 pages, 13379 KiB  
Review
Additive Manufacture of Small-Scale Metamaterial Structures for Acoustic and Ultrasonic Applications
by Alicia Gardiner, Paul Daly, Roger Domingo-Roca, James F. C. Windmill, Andrew Feeney and Joseph C. Jackson-Camargo
Micromachines 2021, 12(6), 634; https://doi.org/10.3390/mi12060634 - 29 May 2021
Cited by 13 | Viewed by 7438
Abstract
Acoustic metamaterials are large-scale materials with small-scale structures. These structures allow for unusual interaction with propagating sound and endow the large-scale material with exceptional acoustic properties not found in normal materials. However, their multi-scale nature means that the manufacture of these materials is [...] Read more.
Acoustic metamaterials are large-scale materials with small-scale structures. These structures allow for unusual interaction with propagating sound and endow the large-scale material with exceptional acoustic properties not found in normal materials. However, their multi-scale nature means that the manufacture of these materials is not trivial, often requiring micron-scale resolution over centimetre length scales. In this review, we bring together a variety of acoustic metamaterial designs and separately discuss ways to create them using the latest trends in additive manufacturing. We highlight the advantages and disadvantages of different techniques that act as barriers towards the development of realisable acoustic metamaterials for practical audio and ultrasonic applications and speculate on potential future developments. Full article
(This article belongs to the Special Issue 3D/4D Printing of Metamaterials and Multifunctional Structures)
Show Figures

Figure 1

36 pages, 8285 KiB  
Review
Microfluidic Based Physical Approaches towards Single-Cell Intracellular Delivery and Analysis
by Kiran Kaladharan, Ashish Kumar, Pallavi Gupta, Kavitha Illath, Tuhin Subhra Santra and Fan-Gang Tseng
Micromachines 2021, 12(6), 631; https://doi.org/10.3390/mi12060631 - 28 May 2021
Cited by 14 | Viewed by 6612
Abstract
The ability to deliver foreign molecules into a single living cell with high transfection efficiency and high cell viability is of great interest in cell biology for applications in therapeutic development, diagnostics, and drug delivery towards personalized medicine. Various physical delivery methods have [...] Read more.
The ability to deliver foreign molecules into a single living cell with high transfection efficiency and high cell viability is of great interest in cell biology for applications in therapeutic development, diagnostics, and drug delivery towards personalized medicine. Various physical delivery methods have long demonstrated the ability to deliver cargo molecules directly to the cytoplasm or nucleus and the mechanisms underlying most of the approaches have been extensively investigated. However, most of these techniques are bulk approaches that are cell-specific and have low throughput delivery. In comparison to bulk measurements, single-cell measurement technologies can provide a better understanding of the interactions among molecules, organelles, cells, and the microenvironment, which can aid in the development of therapeutics and diagnostic tools. To elucidate distinct responses during cell genetic modification, methods to achieve transfection at the single-cell level are of great interest. In recent years, single-cell technologies have become increasingly robust and accessible, although limitations exist. This review article aims to cover various microfluidic-based physical methods for single-cell intracellular delivery such as electroporation, mechanoporation, microinjection, sonoporation, optoporation, magnetoporation, and thermoporation and their analysis. The mechanisms of various physical methods, their applications, limitations, and prospects are also elaborated. Full article
(This article belongs to the Special Issue Micro/Nanofluidic Devices for Single Cell Analysis, Volume III)
Show Figures

Figure 1

17 pages, 4068 KiB  
Review
Recent Progress on Plant-Inspired Soft Robotics with Hydrogel Building Blocks: Fabrication, Actuation and Application
by Zhenyu Xu, Yongsen Zhou, Baoping Zhang, Chao Zhang, Jianfeng Wang and Zuankai Wang
Micromachines 2021, 12(6), 608; https://doi.org/10.3390/mi12060608 - 24 May 2021
Cited by 17 | Viewed by 4360
Abstract
Millions of years’ evolution has imparted life on earth with excellent environment adaptability. Of particular interest to scientists are some plants capable of macroscopically and reversibly altering their morphological and mechanical properties in response to external stimuli from the surrounding environment. These intriguing [...] Read more.
Millions of years’ evolution has imparted life on earth with excellent environment adaptability. Of particular interest to scientists are some plants capable of macroscopically and reversibly altering their morphological and mechanical properties in response to external stimuli from the surrounding environment. These intriguing natural phenomena and underlying actuation mechanisms have provided important design guidance and principles for man-made soft robotic systems. Constructing bio-inspired soft robotic systems with effective actuation requires the efficient supply of mechanical energy generated from external inputs, such as temperature, light, and electricity. By combining bio-inspired designs with stimuli-responsive materials, various intelligent soft robotic systems that demonstrate promising and exciting results have been developed. As one of the building materials for soft robotics, hydrogels are gaining increasing attention owing to their advantageous properties, such as ultra-tunable modulus, high compliance, varying stimuli-responsiveness, good biocompatibility, and high transparency. In this review article, we summarize the recent progress on plant-inspired soft robotics assembled by stimuli-responsive hydrogels with a particular focus on their actuation mechanisms, fabrication, and application. Meanwhile, some critical challenges and problems associated with current hydrogel-based soft robotics are briefly introduced, and possible solutions are proposed. We expect that this review would provide elementary tutorial guidelines to audiences who are interested in the study on nature-inspired soft robotics, especially hydrogel-based intelligent soft robotic systems. Full article
Show Figures

Figure 1

20 pages, 5397 KiB  
Review
Plasmon Induced Photocatalysts for Light-Driven Nanomotors
by Enrique Contreras, Christian Palacios, I. Brian Becerril-Castro and José M. Romo-Herrera
Micromachines 2021, 12(5), 577; https://doi.org/10.3390/mi12050577 - 19 May 2021
Cited by 6 | Viewed by 3589
Abstract
Micro/nanomachines (MNMs) correspond to human-made devices with motion in aqueous solutions. There are different routes for powering these devices. Light-driven MNMs are gaining increasing attention as fuel-free devices. On the other hand, Plasmonic nanoparticles (NPs) and their photocatalytic activity have shown great potential [...] Read more.
Micro/nanomachines (MNMs) correspond to human-made devices with motion in aqueous solutions. There are different routes for powering these devices. Light-driven MNMs are gaining increasing attention as fuel-free devices. On the other hand, Plasmonic nanoparticles (NPs) and their photocatalytic activity have shown great potential for photochemistry reactions. Here we review several photocatalyst nanosystems, with a special emphasis in Plasmon induced photocatalytic reactions, as a novel proposal to be explored by the MNMs community in order to extend the light-driven motion of MNMs harnessing the visible and near-infrared (NIR) light spectrum. Full article
(This article belongs to the Special Issue Nano/Micromotors for Energy Applications)
Show Figures

Graphical abstract

28 pages, 66273 KiB  
Review
Study of Mosquito Aerodynamics for Imitation as a Small Robot and Flight in a Low-Density Environment
by Balbir Singh, Noorfaizal Yidris, Adi Azriff Basri, Raghuvir Pai and Kamarul Arifin Ahmad
Micromachines 2021, 12(5), 511; https://doi.org/10.3390/mi12050511 - 2 May 2021
Cited by 4 | Viewed by 5202
Abstract
In terms of their flight and unusual aerodynamic characteristics, mosquitoes have become a new insect of interest. Despite transmitting the most significant infectious diseases globally, mosquitoes are still among the great flyers. Depending on their size, they typically beat at a high flapping [...] Read more.
In terms of their flight and unusual aerodynamic characteristics, mosquitoes have become a new insect of interest. Despite transmitting the most significant infectious diseases globally, mosquitoes are still among the great flyers. Depending on their size, they typically beat at a high flapping frequency in the range of 600 to 800 Hz. Flapping also lets them conceal their presence, flirt, and help them remain aloft. Their long, slender wings navigate between the most anterior and posterior wing positions through a stroke amplitude about 40 to 45°, way different from their natural counterparts (>120°). Most insects use leading-edge vortex for lift, but mosquitoes have additional aerodynamic characteristics: rotational drag, wake capture reinforcement of the trailing-edge vortex, and added mass effect. A comprehensive look at the use of these three mechanisms needs to be undertaken—the pros and cons of high-frequency, low-stroke angles, operating far beyond the normal kinematic boundary compared to other insects, and the impact on the design improvements of miniature drones and for flight in low-density atmospheres such as Mars. This paper systematically reviews these unique unsteady aerodynamic characteristics of mosquito flight, responding to the potential questions from some of these discoveries as per the existing literature. This paper also reviews state-of-the-art insect-inspired robots that are close in design to mosquitoes. The findings suggest that mosquito-based small robots can be an excellent choice for flight in a low-density environment such as Mars. Full article
Show Figures

Figure 1

22 pages, 14527 KiB  
Review
Single-Molecular Förster Resonance Energy Transfer Measurement on Structures and Interactions of Biomolecules
by Yi Qiao, Yuhan Luo, Naiyun Long, Yi Xing and Jing Tu
Micromachines 2021, 12(5), 492; https://doi.org/10.3390/mi12050492 - 27 Apr 2021
Cited by 15 | Viewed by 5616
Abstract
Single-molecule Förster resonance energy transfer (smFRET) inherits the strategy of measurement from the effective “spectroscopic ruler” FRET and can be utilized to observe molecular behaviors with relatively high throughput at nanometer scale. The simplicity in principle and configuration of smFRET make it easy [...] Read more.
Single-molecule Förster resonance energy transfer (smFRET) inherits the strategy of measurement from the effective “spectroscopic ruler” FRET and can be utilized to observe molecular behaviors with relatively high throughput at nanometer scale. The simplicity in principle and configuration of smFRET make it easy to apply and couple with other technologies to comprehensively understand single-molecule dynamics in various application scenarios. Despite its widespread application, smFRET is continuously developing and novel studies based on the advanced platforms have been done. Here, we summarize some representative examples of smFRET research of recent years to exhibit the versatility and note typical strategies to further improve the performance of smFRET measurement on different biomolecules. Full article
(This article belongs to the Special Issue Advances in Biomedical Nanotechnology)
Show Figures

Figure 1

28 pages, 5806 KiB  
Review
Optical-Trapping Laser Techniques for Characterizing Airborne Aerosol Particles and Its Application in Chemical Aerosol Study
by Aimable Kalume, Chuji Wang and Yong-Le Pan
Micromachines 2021, 12(4), 466; https://doi.org/10.3390/mi12040466 - 20 Apr 2021
Cited by 13 | Viewed by 4774
Abstract
We present a broad assessment on the studies of optically-trapped single airborne aerosol particles, particularly chemical aerosol particles, using laser technologies. To date, extensive works have been conducted on ensembles of aerosols as well as on their analogous bulk samples, and a decent [...] Read more.
We present a broad assessment on the studies of optically-trapped single airborne aerosol particles, particularly chemical aerosol particles, using laser technologies. To date, extensive works have been conducted on ensembles of aerosols as well as on their analogous bulk samples, and a decent general description of airborne particles has been drawn and accepted. However, substantial discrepancies between observed and expected aerosols behavior have been reported. To fill this gap, single-particle investigation has proved to be a unique intersection leading to a clear representation of microproperties and size-dependent comportment affecting the overall aerosol behavior, under various environmental conditions. In order to achieve this objective, optical-trapping technologies allow holding and manipulating a single aerosol particle, while offering significant advantages such as contactless handling, free from sample collection and preparation, prevention of contamination, versatility to any type of aerosol, and flexibility to accommodation of various analytical systems. We review spectroscopic methods that are based on the light-particle interaction, including elastic light scattering, light absorption (cavity ring-down and photoacoustic spectroscopies), inelastic light scattering and emission (Raman, laser-induced breakdown, and laser-induced fluorescence spectroscopies), and digital holography. Laser technologies offer several benefits such as high speed, high selectivity, high accuracy, and the ability to perform in real-time, in situ. This review, in particular, discusses each method, highlights the advantages and limitations, early breakthroughs, and recent progresses that have contributed to a better understanding of single particles and particle ensembles in general. Full article
Show Figures

Figure 1

36 pages, 2624 KiB  
Review
Review of Design Considerations for Brain-on-a-Chip Models
by Tiffany Cameron, Tanya Bennet, Elyn M. Rowe, Mehwish Anwer, Cheryl L. Wellington and Karen C. Cheung
Micromachines 2021, 12(4), 441; https://doi.org/10.3390/mi12040441 - 15 Apr 2021
Cited by 25 | Viewed by 6763
Abstract
In recent years, the need for sophisticated human in vitro models for integrative biology has motivated the development of organ-on-a-chip platforms. Organ-on-a-chip devices are engineered to mimic the mechanical, biochemical and physiological properties of human organs; however, there are many important considerations when [...] Read more.
In recent years, the need for sophisticated human in vitro models for integrative biology has motivated the development of organ-on-a-chip platforms. Organ-on-a-chip devices are engineered to mimic the mechanical, biochemical and physiological properties of human organs; however, there are many important considerations when selecting or designing an appropriate device for investigating a specific scientific question. Building microfluidic Brain-on-a-Chip (BoC) models from the ground-up will allow for research questions to be answered more thoroughly in the brain research field, but the design of these devices requires several choices to be made throughout the design development phase. These considerations include the cell types, extracellular matrix (ECM) material(s), and perfusion/flow considerations. Choices made early in the design cycle will dictate the limitations of the device and influence the end-point results such as the permeability of the endothelial cell monolayer, and the expression of cell type-specific markers. To better understand why the engineering aspects of a microfluidic BoC need to be influenced by the desired biological environment, recent progress in microfluidic BoC technology is compared. This review focuses on perfusable blood–brain barrier (BBB) and neurovascular unit (NVU) models with discussions about the chip architecture, the ECM used, and how they relate to the in vivo human brain. With increased knowledge on how to make informed choices when selecting or designing BoC models, the scientific community will benefit from shorter development phases and platforms curated for their application. Full article
(This article belongs to the Special Issue Microfluidic Brain-on-a-Chip)
Show Figures

Figure 1

15 pages, 2563 KiB  
Review
Wearable Sensors and Systems for Wound Healing-Related pH and Temperature Detection
by Ning Tang, Youbin Zheng, Xue Jiang, Cheng Zhou, Han Jin, Ke Jin, Weiwei Wu and Hossam Haick
Micromachines 2021, 12(4), 430; https://doi.org/10.3390/mi12040430 - 14 Apr 2021
Cited by 53 | Viewed by 8981
Abstract
Wound healing is a complex tissue regeneration process involving many changes in multiple physiological parameters. The pH and temperature of a wound site have long been recognized as important biomarkers for assessing wound healing status. For effective wound management, wound dressings integrated with [...] Read more.
Wound healing is a complex tissue regeneration process involving many changes in multiple physiological parameters. The pH and temperature of a wound site have long been recognized as important biomarkers for assessing wound healing status. For effective wound management, wound dressings integrated with wearable sensors and systems used for continuous monitoring of pH and temperature have received much attention in recent years. Herein, recent advances in the development of wearable pH and temperature sensors and systems based on different sensing mechanisms for wound status monitoring and treatment are comprehensively summarized. Challenges in the areas of sensing performance, infection identification threshold, large-area 3-dimensional detection, and long-term reliable monitoring in current wearable sensors/systems and emerging solutions are emphasized, providing critical insights into the development of wearable sensors and systems for wound healing monitoring and management. Full article
(This article belongs to the Special Issue Flexible Sensors and Actuators for Biomedicine)
Show Figures

Figure 1

19 pages, 1299 KiB  
Review
Affinity Sensors for the Diagnosis of COVID-19
by Maryia Drobysh, Almira Ramanaviciene, Roman Viter and Arunas Ramanavicius
Micromachines 2021, 12(4), 390; https://doi.org/10.3390/mi12040390 - 2 Apr 2021
Cited by 57 | Viewed by 9608
Abstract
The coronavirus disease 2019 (COVID-19) outbreak caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was proclaimed a global pandemic in March 2020. Reducing the dissemination rate, in particular by tracking the infected people and their contacts, is the main instrument against infection [...] Read more.
The coronavirus disease 2019 (COVID-19) outbreak caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was proclaimed a global pandemic in March 2020. Reducing the dissemination rate, in particular by tracking the infected people and their contacts, is the main instrument against infection spreading. Therefore, the creation and implementation of fast, reliable and responsive methods suitable for the diagnosis of COVID-19 are required. These needs can be fulfilled using affinity sensors, which differ in applied detection methods and markers that are generating analytical signals. Recently, nucleic acid hybridization, antigen-antibody interaction, and change of reactive oxygen species (ROS) level are mostly used for the generation of analytical signals, which can be accurately measured by electrochemical, optical, surface plasmon resonance, field-effect transistors, and some other methods and transducers. Electrochemical biosensors are the most consistent with the general trend towards, acceleration, and simplification of the bioanalytical process. These biosensors mostly are based on the determination of antigen-antibody interaction and are robust, sensitive, accurate, and sometimes enable label-free detection of an analyte. Along with the specification of biosensors, we also provide a brief overview of generally used testing techniques, and the description of the structure, life cycle and immune host response to SARS-CoV-2, and some deeper details of analytical signal detection principles. Full article
(This article belongs to the Special Issue Micro/Nano Immunosensor Devices)
Show Figures

Figure 1

38 pages, 9793 KiB  
Review
Recapitulating Cardiac Structure and Function In Vitro from Simple to Complex Engineering
by Ana Rita M. P. Santos, Yongjun Jang, Inwoo Son, Jongseong Kim and Yongdoo Park
Micromachines 2021, 12(4), 386; https://doi.org/10.3390/mi12040386 - 1 Apr 2021
Cited by 9 | Viewed by 5681
Abstract
Cardiac tissue engineering aims to generate in vivo-like functional tissue for the study of cardiac development, homeostasis, and regeneration. Since the heart is composed of various types of cells and extracellular matrix with a specific microenvironment, the fabrication of cardiac tissue in vitro [...] Read more.
Cardiac tissue engineering aims to generate in vivo-like functional tissue for the study of cardiac development, homeostasis, and regeneration. Since the heart is composed of various types of cells and extracellular matrix with a specific microenvironment, the fabrication of cardiac tissue in vitro requires integrating technologies of cardiac cells, biomaterials, fabrication, and computational modeling to model the complexity of heart tissue. Here, we review the recent progress of engineering techniques from simple to complex for fabricating matured cardiac tissue in vitro. Advancements in cardiomyocytes, extracellular matrix, geometry, and computational modeling will be discussed based on a technology perspective and their use for preparation of functional cardiac tissue. Since the heart is a very complex system at multiscale levels, an understanding of each technique and their interactions would be highly beneficial to the development of a fully functional heart in cardiac tissue engineering. Full article
(This article belongs to the Special Issue Bio-MEMS for Cell and Tissue Engineering)
Show Figures

Graphical abstract

23 pages, 4999 KiB  
Review
Biofabrication in Congenital Cardiac Surgery: A Plea from the Operating Theatre, Promise from Science
by Laszlo Kiraly and Sanjairaj Vijayavenkataraman
Micromachines 2021, 12(3), 332; https://doi.org/10.3390/mi12030332 - 21 Mar 2021
Cited by 8 | Viewed by 3905
Abstract
Despite significant advances in numerous fields of biofabrication, clinical application of biomaterials combined with bioactive molecules and/or cells largely remains a promise in an individualized patient settings. Three-dimensional (3D) printing and bioprinting evolved as promising techniques used for tissue-engineering, so that several kinds [...] Read more.
Despite significant advances in numerous fields of biofabrication, clinical application of biomaterials combined with bioactive molecules and/or cells largely remains a promise in an individualized patient settings. Three-dimensional (3D) printing and bioprinting evolved as promising techniques used for tissue-engineering, so that several kinds of tissue can now be printed in layers or as defined structures for replacement and/or reconstruction in regenerative medicine and surgery. Besides technological, practical, ethical and legal challenges to solve, there is also a gap between the research labs and the patients’ bedside. Congenital and pediatric cardiac surgery mostly deal with reconstructive patient-scenarios when defects are closed, various segments of the heart are connected, valves are implanted. Currently available biomaterials lack the potential of growth and conduits, valves derange over time surrendering patients to reoperations. Availability of viable, growing biomaterials could cancel reoperations that could entail significant public health benefit and improved quality-of-life. Congenital cardiac surgery is uniquely suited for closing the gap in translational research, rapid application of new techniques, and collaboration between interdisciplinary teams. This article provides a succinct review of the state-of-the art clinical practice and biofabrication strategies used in congenital and pediatric cardiac surgery, and highlights the need and avenues for translational research and collaboration. Full article
Show Figures

Figure 1

20 pages, 4825 KiB  
Review
Nanopatterning with Photonic Nanojets: Review and Perspectives in Biomedical Research
by Salvatore Surdo, Martí Duocastella and Alberto Diaspro
Micromachines 2021, 12(3), 256; https://doi.org/10.3390/mi12030256 - 3 Mar 2021
Cited by 28 | Viewed by 4465
Abstract
Nanostructured surfaces and devices offer astounding possibilities for biomedical research, including cellular and molecular biology, diagnostics, and therapeutics. However, the wide implementation of these systems is currently limited by the lack of cost-effective and easy-to-use nanopatterning tools. A promising solution is to use [...] Read more.
Nanostructured surfaces and devices offer astounding possibilities for biomedical research, including cellular and molecular biology, diagnostics, and therapeutics. However, the wide implementation of these systems is currently limited by the lack of cost-effective and easy-to-use nanopatterning tools. A promising solution is to use optical methods based on photonic nanojets, namely, needle-like beams featuring a nanometric width. In this review, we survey the physics, engineering strategies, and recent implementations of photonic nanojets for high-throughput generation of arbitrary nanopatterns, along with applications in optics, electronics, mechanics, and biosensing. An outlook of the potential impact of nanopatterning technologies based on photonic nanojets in several relevant biomedical areas is also provided. Full article
(This article belongs to the Special Issue Nanostructured Surfaces and Devices for Biomedical Applications)
Show Figures

Figure 1

43 pages, 5180 KiB  
Review
Inertial Microfluidics Enabling Clinical Research
by Srivathsan Kalyan, Corinna Torabi, Harrison Khoo, Hyun Woo Sung, Sung-Eun Choi, Wenzhao Wang, Benjamin Treutler, Dohyun Kim and Soojung Claire Hur
Micromachines 2021, 12(3), 257; https://doi.org/10.3390/mi12030257 - 3 Mar 2021
Cited by 29 | Viewed by 5471
Abstract
Fast and accurate interrogation of complex samples containing diseased cells or pathogens is important to make informed decisions on clinical and public health issues. Inertial microfluidics has been increasingly employed for such investigations to isolate target bioparticles from liquid samples with size and/or [...] Read more.
Fast and accurate interrogation of complex samples containing diseased cells or pathogens is important to make informed decisions on clinical and public health issues. Inertial microfluidics has been increasingly employed for such investigations to isolate target bioparticles from liquid samples with size and/or deformability-based manipulation. This phenomenon is especially useful for the clinic, owing to its rapid, label-free nature of target enrichment that enables further downstream assays. Inertial microfluidics leverages the principle of inertial focusing, which relies on the balance of inertial and viscous forces on particles to align them into size-dependent laminar streamlines. Several distinct microfluidic channel geometries (e.g., straight, curved, spiral, contraction-expansion array) have been optimized to achieve inertial focusing for a variety of purposes, including particle purification and enrichment, solution exchange, and particle alignment for on-chip assays. In this review, we will discuss how inertial microfluidics technology has contributed to improving accuracy of various assays to provide clinically relevant information. This comprehensive review expands upon studies examining both endogenous and exogenous targets from real-world samples, highlights notable hybrid devices with dual functions, and comments on the evolving outlook of the field. Full article
(This article belongs to the Special Issue Inertial Microfluidics)
Show Figures

Figure 1

29 pages, 5721 KiB  
Review
Liquid Crystal Devices for Beam Steering Applications
by Rowan Morris, Cliff Jones and Mamatha Nagaraj
Micromachines 2021, 12(3), 247; https://doi.org/10.3390/mi12030247 - 28 Feb 2021
Cited by 25 | Viewed by 5283
Abstract
Liquid crystals are valuable materials for applications in beam steering devices. In this paper, an overview of the use of liquid crystals in the field of adaptive optics specifically for beam steering and lensing devices is presented. The paper introduces the properties of [...] Read more.
Liquid crystals are valuable materials for applications in beam steering devices. In this paper, an overview of the use of liquid crystals in the field of adaptive optics specifically for beam steering and lensing devices is presented. The paper introduces the properties of liquid crystals that have made them useful in this field followed by a more detailed discussion of specific liquid crystal devices that act as switchable optical components of refractive and diffractive types. The relative advantages and disadvantages of the different devices and techniques are summarised. Full article
(This article belongs to the Special Issue Beam Steering via Arrayed Micromachines)
Show Figures

Figure 1

21 pages, 5273 KiB  
Review
Electrochemical Biosensors for the Detection of SARS-CoV-2 and Other Viruses
by Saim Imran, Soha Ahmadi and Kagan Kerman
Micromachines 2021, 12(2), 174; https://doi.org/10.3390/mi12020174 - 10 Feb 2021
Cited by 50 | Viewed by 6740
Abstract
The last few decades have been plagued by viral outbreaks that present some of the biggest challenges to public safety. The current coronavirus (COVID-19) disease pandemic has exponentiated these concerns. Increased research on diagnostic tools is currently being implemented in order to assist [...] Read more.
The last few decades have been plagued by viral outbreaks that present some of the biggest challenges to public safety. The current coronavirus (COVID-19) disease pandemic has exponentiated these concerns. Increased research on diagnostic tools is currently being implemented in order to assist with rapid identification of the virus, as mass diagnosis and containment is the best way to prevent the outbreak of the virus. Accordingly, there is a growing urgency to establish a point-of-care device for the rapid detection of coronavirus to prevent subsequent spread. This device needs to be sensitive, selective, and exhibit rapid diagnostic capabilities. Electrochemical biosensors have demonstrated these traits and, hence, serve as promising candidates for the detection of viruses. This review summarizes the designs and features of electrochemical biosensors developed for some past and current pandemic or epidemic viruses, including influenza, HIV, Ebola, and Zika. Alongside the design, this review also discusses the detection principles, fabrication techniques, and applications of the biosensors. Finally, research and perspective of biosensors as potential detection tools for the rapid identification of SARS-CoV-2 is discussed. Full article
(This article belongs to the Special Issue Recent Trends in Biosensors)
Show Figures

Figure 1

21 pages, 7176 KiB  
Review
Textile-Based Triboelectric Nanogenerators for Wearable Self-Powered Microsystems
by Peng Huang, Dan-Liang Wen, Yu Qiu, Ming-Hong Yang, Cheng Tu, Hong-Sheng Zhong and Xiao-Sheng Zhang
Micromachines 2021, 12(2), 158; https://doi.org/10.3390/mi12020158 - 5 Feb 2021
Cited by 34 | Viewed by 6359
Abstract
In recent years, wearable electronic devices have made considerable progress thanks to the rapid development of the Internet of Things. However, even though some of them have preliminarily achieved miniaturization and wearability, the drawbacks of frequent charging and physical rigidity of conventional lithium [...] Read more.
In recent years, wearable electronic devices have made considerable progress thanks to the rapid development of the Internet of Things. However, even though some of them have preliminarily achieved miniaturization and wearability, the drawbacks of frequent charging and physical rigidity of conventional lithium batteries, which are currently the most commonly used power source of wearable electronic devices, have become technical bottlenecks that need to be broken through urgently. In order to address the above challenges, the technology based on triboelectric effect, i.e., triboelectric nanogenerator (TENG), is proposed to harvest energy from ambient environment and considered as one of the most promising methods to integrate with functional electronic devices to form wearable self-powered microsystems. Benefited from excellent flexibility, high output performance, no materials limitation, and a quantitative relationship between environmental stimulation inputs and corresponding electrical outputs, TENGs present great advantages in wearable energy harvesting, active sensing, and driving actuators. Furthermore, combined with the superiorities of TENGs and fabrics, textile-based TENGs (T-TENGs) possess remarkable breathability and better non-planar surface adaptability, which are more conducive to the integrated wearable electronic devices and attract considerable attention. Herein, for the purpose of advancing the development of wearable electronic devices, this article reviews the recent development in materials for the construction of T-TENGs and methods for the enhancement of electrical output performance. More importantly, this article mainly focuses on the recent representative work, in which T-TENGs-based active sensors, T-TENGs-based self-driven actuators, and T-TENGs-based self-powered microsystems are studied. In addition, this paper summarizes the critical challenges and future opportunities of T-TENG-based wearable integrated microsystems. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

28 pages, 3995 KiB  
Review
Next-Generation Diamond Electrodes for Neurochemical Sensing: Challenges and Opportunities
by Erin K. Purcell, Michael F. Becker, Yue Guo, Seth A. Hara, Kip A. Ludwig, Collin J. McKinney, Elizabeth M. Monroe, Robert Rechenberg, Cory A. Rusinek, Akash Saxena, James R. Siegenthaler, Caryl E. Sortwell, Cort H. Thompson, James K. Trevathan, Suzanne Witt and Wen Li
Micromachines 2021, 12(2), 128; https://doi.org/10.3390/mi12020128 - 26 Jan 2021
Cited by 13 | Viewed by 5523
Abstract
Carbon-based electrodes combined with fast-scan cyclic voltammetry (FSCV) enable neurochemical sensing with high spatiotemporal resolution and sensitivity. While their attractive electrochemical and conductive properties have established a long history of use in the detection of neurotransmitters both in vitro and in vivo, carbon [...] Read more.
Carbon-based electrodes combined with fast-scan cyclic voltammetry (FSCV) enable neurochemical sensing with high spatiotemporal resolution and sensitivity. While their attractive electrochemical and conductive properties have established a long history of use in the detection of neurotransmitters both in vitro and in vivo, carbon fiber microelectrodes (CFMEs) also have limitations in their fabrication, flexibility, and chronic stability. Diamond is a form of carbon with a more rigid bonding structure (sp3-hybridized) which can become conductive when boron-doped. Boron-doped diamond (BDD) is characterized by an extremely wide potential window, low background current, and good biocompatibility. Additionally, methods for processing and patterning diamond allow for high-throughput batch fabrication and customization of electrode arrays with unique architectures. While tradeoffs in sensitivity can undermine the advantages of BDD as a neurochemical sensor, there are numerous untapped opportunities to further improve performance, including anodic pretreatment, or optimization of the FSCV waveform, instrumentation, sp2/sp3 character, doping, surface characteristics, and signal processing. Here, we review the state-of-the-art in diamond electrodes for neurochemical sensing and discuss potential opportunities for future advancements of the technology. We highlight our team’s progress with the development of an all-diamond fiber ultramicroelectrode as a novel approach to advance the performance and applications of diamond-based neurochemical sensors. Full article
Show Figures

Figure 1

50 pages, 11413 KiB  
Review
Electrophysiology Read-Out Tools for Brain-on-Chip Biotechnology
by Csaba Forro, Davide Caron, Gian Nicola Angotzi, Vincenzo Gallo, Luca Berdondini, Francesca Santoro, Gemma Palazzolo and Gabriella Panuccio
Micromachines 2021, 12(2), 124; https://doi.org/10.3390/mi12020124 - 24 Jan 2021
Cited by 28 | Viewed by 9038
Abstract
Brain-on-Chip (BoC) biotechnology is emerging as a promising tool for biomedical and pharmaceutical research applied to the neurosciences. At the convergence between lab-on-chip and cell biology, BoC couples in vitro three-dimensional brain-like systems to an engineered microfluidics platform designed to provide an in [...] Read more.
Brain-on-Chip (BoC) biotechnology is emerging as a promising tool for biomedical and pharmaceutical research applied to the neurosciences. At the convergence between lab-on-chip and cell biology, BoC couples in vitro three-dimensional brain-like systems to an engineered microfluidics platform designed to provide an in vivo-like extrinsic microenvironment with the aim of replicating tissue- or organ-level physiological functions. BoC therefore offers the advantage of an in vitro reproduction of brain structures that is more faithful to the native correlate than what is obtained with conventional cell culture techniques. As brain function ultimately results in the generation of electrical signals, electrophysiology techniques are paramount for studying brain activity in health and disease. However, as BoC is still in its infancy, the availability of combined BoC–electrophysiology platforms is still limited. Here, we summarize the available biological substrates for BoC, starting with a historical perspective. We then describe the available tools enabling BoC electrophysiology studies, detailing their fabrication process and technical features, along with their advantages and limitations. We discuss the current and future applications of BoC electrophysiology, also expanding to complementary approaches. We conclude with an evaluation of the potential translational applications and prospective technology developments. Full article
(This article belongs to the Special Issue Microfluidic Brain-on-a-Chip)
Show Figures

Figure 1

36 pages, 3420 KiB  
Review
Carbon Dots: An Emerging Smart Material for Analytical Applications
by Smita Das, Lightson Ngashangva and Pranab Goswami
Micromachines 2021, 12(1), 84; https://doi.org/10.3390/mi12010084 - 15 Jan 2021
Cited by 46 | Viewed by 7759
Abstract
Carbon dots (CDs) are optically active carbon-based nanomaterials. These nanomaterials can change their light emission properties in response to various external stimuli such as pH, temperature, pressure, and light. The CD’s remarkable stimuli-responsive smart material properties have recently stimulated massive research interest for [...] Read more.
Carbon dots (CDs) are optically active carbon-based nanomaterials. These nanomaterials can change their light emission properties in response to various external stimuli such as pH, temperature, pressure, and light. The CD’s remarkable stimuli-responsive smart material properties have recently stimulated massive research interest for their exploitation to develop various sensor platforms. Herein, an effort has been made to review the major advances made on CDs, focusing mainly on its smart material attributes and linked applications. Since the CD’s material properties are largely linked to their synthesis approaches, various synthesis methods, including surface passivation and functionalization of CDs and the mechanisms reported so far in their photophysical properties, are also delineated in this review. Finally, the challenges of using CDs and the scope for their further improvement as an optical signal transducer to expand their application horizon for developing analytical platforms have been discussed. Full article
Show Figures

Graphical abstract

22 pages, 4512 KiB  
Review
Recent Advances in Single Crystal Diamond Device Fabrication for Photonics, Sensing and Nanomechanics
by Dipti Rani, Oliver Roman Opaluch and Elke Neu
Micromachines 2021, 12(1), 36; https://doi.org/10.3390/mi12010036 - 30 Dec 2020
Cited by 10 | Viewed by 5222
Abstract
In the last two decades, the use of diamond as a material for applications in nanophotonics, optomechanics, quantum information, and sensors tremendously increased due to its outstanding mechanical properties, wide optical transparency, and biocompatibility. This has been possible owing to advances in methods [...] Read more.
In the last two decades, the use of diamond as a material for applications in nanophotonics, optomechanics, quantum information, and sensors tremendously increased due to its outstanding mechanical properties, wide optical transparency, and biocompatibility. This has been possible owing to advances in methods for growth of high-quality single crystal diamond (SCD), nanofabrication methods and controlled incorporation of optically active point defects (e.g., nitrogen vacancy centers) in SCD. This paper reviews the recent advances in SCD nano-structuring methods for realization of micro- and nano-structures. Novel fabrication methods are discussed and the different nano-structures realized for a wide range of applications are summarized. Moreover, the methods for color center incorporation in SCD and surface treatment methods to enhance their properties are described. Challenges in the upscaling of SCD nano-structure fabrication, their commercial applications and future prospects are discussed. Full article
(This article belongs to the Special Issue Diamond: Materials, Devices and Applications)
Show Figures

Figure 1

25 pages, 3388 KiB  
Review
Recent Advances in the Fabrication and Application of Graphene Microfluidic Sensors
by Shigang Wu, Xin Wang, Zongwen Li, Shijie Zhang and Fei Xing
Micromachines 2020, 11(12), 1059; https://doi.org/10.3390/mi11121059 - 30 Nov 2020
Cited by 27 | Viewed by 4505
Abstract
This review reports the progress of the recent development of graphene-based microfluidic sensors. The introduction of microfluidics technology provides an important possibility for the advance of graphene biosensor devices for a broad series of applications including clinical diagnosis, biological detection, health, and environment [...] Read more.
This review reports the progress of the recent development of graphene-based microfluidic sensors. The introduction of microfluidics technology provides an important possibility for the advance of graphene biosensor devices for a broad series of applications including clinical diagnosis, biological detection, health, and environment monitoring. Compared with traditional (optical, electrochemical, and biological) sensing systems, the combination of graphene and microfluidics produces many advantages, such as achieving miniaturization, decreasing the response time and consumption of chemicals, improving the reproducibility and sensitivity of devices. This article reviews the latest research progress of graphene microfluidic sensors in the fields of electrochemistry, optics, and biology. Here, the latest development trends of graphene-based microfluidic sensors as a new generation of detection tools in material preparation, device assembly, and chip materials are summarized. Special emphasis is placed on the working principles and applications of graphene-based microfluidic biosensors, especially in the detection of nucleic acid molecules, protein molecules, and bacterial cells. This article also discusses the challenges and prospects of graphene microfluidic biosensors. Full article
(This article belongs to the Special Issue Microfluidic Machines)
Show Figures

Figure 1

24 pages, 5861 KiB  
Review
Recent Advances in Microswimmers for Biomedical Applications
by Ada-Ioana Bunea and Rafael Taboryski
Micromachines 2020, 11(12), 1048; https://doi.org/10.3390/mi11121048 - 27 Nov 2020
Cited by 50 | Viewed by 7082
Abstract
Microswimmers are a rapidly developing research area attracting enormous attention because of their many potential applications with high societal value. A particularly promising target for cleverly engineered microswimmers is the field of biomedical applications, where many interesting examples have already been reported for [...] Read more.
Microswimmers are a rapidly developing research area attracting enormous attention because of their many potential applications with high societal value. A particularly promising target for cleverly engineered microswimmers is the field of biomedical applications, where many interesting examples have already been reported for e.g., cargo transport and drug delivery, artificial insemination, sensing, indirect manipulation of cells and other microscopic objects, imaging, and microsurgery. Pioneered only two decades ago, research studies on the use of microswimmers in biomedical applications are currently progressing at an incredibly fast pace. Given the recent nature of the research, there are currently no clinically approved microswimmer uses, and it is likely that several years will yet pass before any clinical uses can become a reality. Nevertheless, current research is laying the foundation for clinical translation, as more and more studies explore various strategies for developing biocompatible and biodegradable microswimmers fueled by in vivo-friendly means. The aim of this review is to provide a summary of the reported biomedical applications of microswimmers, with focus on the most recent advances. Finally, the main considerations and challenges for clinical translation and commercialization are discussed. Full article
(This article belongs to the Special Issue Advances in Microswimmers)
Show Figures

Figure 1

35 pages, 5349 KiB  
Review
Applications of CMOS Devices for the Diagnosis and Control of Infectious Diseases
by Saghi Forouhi and Ebrahim Ghafar-Zadeh
Micromachines 2020, 11(11), 1003; https://doi.org/10.3390/mi11111003 - 13 Nov 2020
Cited by 11 | Viewed by 4847
Abstract
Emerging infectious diseases such as coronavirus disease of 2019 (COVID-19), Ebola, influenza A, severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) in recent years have threatened the health and security of the global community as one of the greatest factors [...] Read more.
Emerging infectious diseases such as coronavirus disease of 2019 (COVID-19), Ebola, influenza A, severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) in recent years have threatened the health and security of the global community as one of the greatest factors of mortality in the world. Accurate and immediate diagnosis of infectious agents and symptoms is a key to control the outbreak of these diseases. Rapid advances in complementary metal-oxide-semiconductor (CMOS) technology offers great advantages like high accuracy, high throughput and rapid measurements in biomedical research and disease diagnosis. These features as well as low cost, low power and scalability of CMOS technology can pave the way for the development of powerful devices such as point-of-care (PoC) systems, lab-on-chip (LoC) platforms and symptom screening devices for accurate and timely diagnosis of infectious diseases. This paper is an overview of different CMOS-based devices such as optical, electrochemical, magnetic and mechanical sensors developed by researchers to mitigate the problems associated with these diseases. Full article
(This article belongs to the Special Issue Biologically Inspired Sensor and Actuator (BioSA) Platforms)
Show Figures

Figure 1

17 pages, 16524 KiB  
Review
The Future Application of Organ-on-a-Chip Technologies as Proving Grounds for MicroBioRobots
by Haley C. Fuller, Ting-Yen Wei, Michael R. Behrens and Warren C. Ruder
Micromachines 2020, 11(10), 947; https://doi.org/10.3390/mi11100947 - 20 Oct 2020
Cited by 8 | Viewed by 4639
Abstract
An evolving understanding of disease pathogenesis has compelled the development of new drug delivery approaches. Recently, bioinspired microrobots have gained traction as drug delivery systems. By leveraging the microscale phenomena found in physiological systems, these microrobots can be designed with greater maneuverability, which [...] Read more.
An evolving understanding of disease pathogenesis has compelled the development of new drug delivery approaches. Recently, bioinspired microrobots have gained traction as drug delivery systems. By leveraging the microscale phenomena found in physiological systems, these microrobots can be designed with greater maneuverability, which enables more precise, controlled drug release. Their function could be further improved by testing their efficacy in physiologically relevant model systems as part of their development. In parallel with the emergence of microscale robots, organ-on-a-chip technologies have become important in drug discovery and physiological modeling. These systems reproduce organ-level functions in microfluidic devices, and can also incorporate specific biological, chemical, and physical aspects of a disease. This review highlights recent developments in both microrobotics and organ-on-a-chip technologies and envisions their combined use for developing future drug delivery systems. Full article
Show Figures

Figure 1

30 pages, 5835 KiB  
Review
Electro-Hydrodynamics of Emulsion Droplets: Physical Insights to Applications
by Muhammad Salman Abbasi, Ryungeun Song, Seongsu Cho and Jinkee Lee
Micromachines 2020, 11(10), 942; https://doi.org/10.3390/mi11100942 - 18 Oct 2020
Cited by 21 | Viewed by 5377
Abstract
The field of droplet electrohydrodynamics (EHD) emerged with a seminal work of G.I. Taylor in 1966, who presented the so-called leaky dielectric model (LDM) to predict the droplet shapes undergoing distortions under an electric field. Since then, the droplet EHD has evolved in [...] Read more.
The field of droplet electrohydrodynamics (EHD) emerged with a seminal work of G.I. Taylor in 1966, who presented the so-called leaky dielectric model (LDM) to predict the droplet shapes undergoing distortions under an electric field. Since then, the droplet EHD has evolved in many ways over the next 55 years with numerous intriguing phenomena reported, such as tip and equatorial streaming, Quincke rotation, double droplet breakup modes, particle assemblies at the emulsion interface, and many more. These phenomena have a potential of vast applications in different areas of science and technology. This paper presents a review of prominent droplet EHD studies pertaining to the essential physical insight of various EHD phenomena. Here, we discuss the dynamics of a single-phase emulsion droplet under weak and strong electric fields. Moreover, the effect of the presence of particles and surfactants at the emulsion interface is covered in detail. Furthermore, the EHD of multi-phase double emulsion droplet is included. We focus on features such as deformation, instabilities, and breakups under varying electrical and physical properties. At the end of the review, we also discuss the potential applications of droplet EHD and various challenges with their future perspectives. Full article
(This article belongs to the Special Issue Electrokinetics in Micro-/nanofluidic Devices)
Show Figures

Graphical abstract

42 pages, 14997 KiB  
Review
MEMS Ultrasound Transducers for Endoscopic Photoacoustic Imaging Applications
by Haoran Wang, Yifei Ma, Hao Yang, Huabei Jiang, Yingtao Ding and Huikai Xie
Micromachines 2020, 11(10), 928; https://doi.org/10.3390/mi11100928 - 12 Oct 2020
Cited by 30 | Viewed by 9241
Abstract
Photoacoustic imaging (PAI) is drawing extensive attention and gaining rapid development as an emerging biomedical imaging technology because of its high spatial resolution, large imaging depth, and rich optical contrast. PAI has great potential applications in endoscopy, but the progress of endoscopic PAI [...] Read more.
Photoacoustic imaging (PAI) is drawing extensive attention and gaining rapid development as an emerging biomedical imaging technology because of its high spatial resolution, large imaging depth, and rich optical contrast. PAI has great potential applications in endoscopy, but the progress of endoscopic PAI was hindered by the challenges of manufacturing and assembling miniature imaging components. Over the last decade, microelectromechanical systems (MEMS) technology has greatly facilitated the development of photoacoustic endoscopes and extended the realm of applicability of the PAI. As the key component of photoacoustic endoscopes, micromachined ultrasound transducers (MUTs), including piezoelectric MUTs (pMUTs) and capacitive MUTs (cMUTs), have been developed and explored for endoscopic PAI applications. In this article, the recent progress of pMUTs (thickness extension mode and flexural vibration mode) and cMUTs are reviewed and discussed with their applications in endoscopic PAI. Current PAI endoscopes based on pMUTs and cMUTs are also introduced and compared. Finally, the remaining challenges and future directions of MEMS ultrasound transducers for endoscopic PAI applications are given. Full article
(This article belongs to the Special Issue MEMS for Ultrasound)
Show Figures

Figure 1

21 pages, 5429 KiB  
Review
Acoustic Microfluidic Separation Techniques and Bioapplications: A Review
by Yuan Gao, Mengren Wu, Yang Lin and Jie Xu
Micromachines 2020, 11(10), 921; https://doi.org/10.3390/mi11100921 - 2 Oct 2020
Cited by 71 | Viewed by 8559
Abstract
Microfluidic separation technology has garnered significant attention over the past decade where particles are being separated at a micro/nanoscale in a rapid, low-cost, and simple manner. Amongst a myriad of separation technologies that have emerged thus far, acoustic microfluidic separation techniques are extremely [...] Read more.
Microfluidic separation technology has garnered significant attention over the past decade where particles are being separated at a micro/nanoscale in a rapid, low-cost, and simple manner. Amongst a myriad of separation technologies that have emerged thus far, acoustic microfluidic separation techniques are extremely apt to applications involving biological samples attributed to various advantages, including high controllability, biocompatibility, and non-invasive, label-free features. With that being said, downsides such as low throughput and dependence on external equipment still impede successful commercialization from laboratory-based prototypes. Here, we present a comprehensive review of recent advances in acoustic microfluidic separation techniques, along with exemplary applications. Specifically, an inclusive overview of fundamental theory and background is presented, then two sets of mechanisms underlying acoustic separation, bulk acoustic wave and surface acoustic wave, are introduced and discussed. Upon these summaries, we present a variety of applications based on acoustic separation. The primary focus is given to those associated with biological samples such as blood cells, cancer cells, proteins, bacteria, viruses, and DNA/RNA. Finally, we highlight the benefits and challenges behind burgeoning developments in the field and discuss the future perspectives and an outlook towards robust, integrated, and commercialized devices based on acoustic microfluidic separation. Full article
(This article belongs to the Special Issue Microfluidic Sensors II)
Show Figures

Figure 1

41 pages, 4549 KiB  
Review
Recent Advances of Wearable Antennas in Materials, Fabrication Methods, Designs, and Their Applications: State-of-the-Art
by Shahid M. Ali, Cheab Sovuthy, Muhammad A. Imran, Soeung Socheatra, Qammer H. Abbasi and Zuhairiah Zainal Abidin
Micromachines 2020, 11(10), 888; https://doi.org/10.3390/mi11100888 - 24 Sep 2020
Cited by 69 | Viewed by 7894
Abstract
The demand for wearable technologies has grown tremendously in recent years. Wearable antennas are used for various applications, in many cases within the context of wireless body area networks (WBAN). In WBAN, the presence of the human body poses a significant challenge to [...] Read more.
The demand for wearable technologies has grown tremendously in recent years. Wearable antennas are used for various applications, in many cases within the context of wireless body area networks (WBAN). In WBAN, the presence of the human body poses a significant challenge to the wearable antennas. Specifically, such requirements are required to be considered on a priority basis in the wearable antennas, such as structural deformation, precision, and accuracy in fabrication methods and their size. Various researchers are active in this field and, accordingly, some significant progress has been achieved recently. This article attempts to critically review the wearable antennas especially in light of new materials and fabrication methods, and novel designs, such as miniaturized button antennas and miniaturized single and multi-band antennas, and their unique smart applications in WBAN. Finally, the conclusion has been drawn with respect to some future directions. Full article
(This article belongs to the Special Issue Future Wearable and Implants)
Show Figures

Figure 1

21 pages, 3226 KiB  
Review
Advances in Label-Free Detections for Nanofluidic Analytical Devices
by Thu Hac Huong Le, Hisashi Shimizu and Kyojiro Morikawa
Micromachines 2020, 11(10), 885; https://doi.org/10.3390/mi11100885 - 23 Sep 2020
Cited by 18 | Viewed by 3945
Abstract
Nanofluidics, a discipline of science and engineering of fluids confined to structures at the 1–1000 nm scale, has experienced significant growth over the past decade. Nanofluidics have offered fascinating platforms for chemical and biological analyses by exploiting the unique characteristics of liquids and [...] Read more.
Nanofluidics, a discipline of science and engineering of fluids confined to structures at the 1–1000 nm scale, has experienced significant growth over the past decade. Nanofluidics have offered fascinating platforms for chemical and biological analyses by exploiting the unique characteristics of liquids and molecules confined in nanospaces; however, the difficulty to detect molecules in extremely small spaces hampers the practical applications of nanofluidic devices. Laser-induced fluorescence microscopy with single-molecule sensitivity has been so far a major detection method in nanofluidics, but issues arising from labeling and photobleaching limit its application. Recently, numerous label-free detection methods have been developed to identify and determine the number of molecules, as well as provide chemical, conformational, and kinetic information of molecules. This review focuses on label-free detection techniques designed for nanofluidics; these techniques are divided into two groups: optical and electrical/electrochemical detection methods. In this review, we discuss on the developed nanofluidic device architectures, elucidate the mechanisms by which the utilization of nanofluidics in manipulating molecules and controlling light–matter interactions enhances the capabilities of biological and chemical analyses, and highlight new research directions in the field of detections in nanofluidics. Full article
(This article belongs to the Special Issue Advances in Nanofluidics)
Show Figures

Figure 1

21 pages, 5529 KiB  
Review
A Review and Perspective for the Development of Triboelectric Nanogenerator (TENG)-Based Self-Powered Neuroprosthetics
by Hao Wang, Tianzhun Wu, Qi Zeng and Chengkuo Lee
Micromachines 2020, 11(9), 865; https://doi.org/10.3390/mi11090865 - 18 Sep 2020
Cited by 27 | Viewed by 6060
Abstract
Neuroprosthetics have become a powerful toolkit for clinical interventions of various diseases that affect the central nervous or peripheral nervous systems, such as deep brain stimulation (DBS), functional electrical stimulation (FES), and vagus nerve stimulation (VNS), by electrically stimulating different neuronal structures. To [...] Read more.
Neuroprosthetics have become a powerful toolkit for clinical interventions of various diseases that affect the central nervous or peripheral nervous systems, such as deep brain stimulation (DBS), functional electrical stimulation (FES), and vagus nerve stimulation (VNS), by electrically stimulating different neuronal structures. To prolong the lifetime of implanted devices, researchers have developed power sources with different approaches. Among them, the triboelectric nanogenerator (TENG) is the only one to achieve direct nerve stimulations, showing great potential in the realization of a self-powered neuroprosthetic system in the future. In this review, the current development and progress of the TENG-based stimulation of various kinds of nervous systems are systematically summarized. Then, based on the requirements of the neuroprosthetic system in a real application and the development of current techniques, a perspective of a more sophisticated neuroprosthetic system is proposed, which includes components of a thin-film TENG device with a biocompatible package, an amplification circuit to enhance the output, and a self-powered high-frequency switch to generate high-frequency current pulses for nerve stimulations. Then, we review and evaluate the recent development and progress of each part. Full article
(This article belongs to the Special Issue Implantable Microdevices, Volume II)
Show Figures

Figure 1

24 pages, 3665 KiB  
Review
Microphysiological Systems for Neurodegenerative Diseases in Central Nervous System
by Mihyeon Bae, Hee-Gyeong Yi, Jinah Jang and Dong-Woo Cho
Micromachines 2020, 11(9), 855; https://doi.org/10.3390/mi11090855 - 16 Sep 2020
Cited by 10 | Viewed by 5211
Abstract
Neurodegenerative diseases are among the most severe problems in aging societies. Various conventional experimental models, including 2D and animal models, have been used to investigate the pathogenesis of (and therapeutic mechanisms for) neurodegenerative diseases. However, the physiological gap between humans and the current [...] Read more.
Neurodegenerative diseases are among the most severe problems in aging societies. Various conventional experimental models, including 2D and animal models, have been used to investigate the pathogenesis of (and therapeutic mechanisms for) neurodegenerative diseases. However, the physiological gap between humans and the current models remains a hurdle to determining the complexity of an irreversible dysfunction in a neurodegenerative disease. Therefore, preclinical research requires advanced experimental models, i.e., those more physiologically relevant to the native nervous system, to bridge the gap between preclinical stages and patients. The neural microphysiological system (neural MPS) has emerged as an approach to summarizing the anatomical, biochemical, and pathological physiology of the nervous system for investigation of neurodegenerative diseases. This review introduces the components (such as cells and materials) and fabrication methods for designing a neural MPS. Moreover, the review discusses future perspectives for improving the physiological relevance to native neural systems. Full article
Show Figures

Graphical abstract

25 pages, 2719 KiB  
Review
Immune Organs and Immune Cells on a Chip: An Overview of Biomedical Applications
by Margaretha A. J. Morsink, Niels G. A. Willemen, Jeroen Leijten, Ruchi Bansal and Su Ryon Shin
Micromachines 2020, 11(9), 849; https://doi.org/10.3390/mi11090849 - 12 Sep 2020
Cited by 43 | Viewed by 10730
Abstract
Understanding the immune system is of great importance for the development of drugs and the design of medical implants. Traditionally, two-dimensional static cultures have been used to investigate the immune system in vitro, while animal models have been used to study the immune [...] Read more.
Understanding the immune system is of great importance for the development of drugs and the design of medical implants. Traditionally, two-dimensional static cultures have been used to investigate the immune system in vitro, while animal models have been used to study the immune system’s function and behavior in vivo. However, these conventional models do not fully emulate the complexity of the human immune system or the human in vivo microenvironment. Consequently, many promising preclinical findings have not been reproduced in human clinical trials. Organ-on-a-chip platforms can provide a solution to bridge this gap by offering human micro-(patho)physiological systems in which the immune system can be studied. This review provides an overview of the existing immune-organs-on-a-chip platforms, with a special emphasis on interorgan communication. In addition, future challenges to develop a comprehensive immune system-on-chip model are discussed. Full article
Show Figures

Figure 1

25 pages, 3154 KiB  
Review
Electrical Impedance Spectroscopy for Monitoring Chemoresistance of Cancer Cells
by Lexi L. Crowell, Juan S. Yakisich, Brian Aufderheide and Tayloria N. G. Adams
Micromachines 2020, 11(9), 832; https://doi.org/10.3390/mi11090832 - 31 Aug 2020
Cited by 33 | Viewed by 5770
Abstract
Electrical impedance spectroscopy (EIS) is an electrokinetic method that allows for the characterization of intrinsic dielectric properties of cells. EIS has emerged in the last decade as a promising method for the characterization of cancerous cells, providing information on inductance, capacitance, and impedance [...] Read more.
Electrical impedance spectroscopy (EIS) is an electrokinetic method that allows for the characterization of intrinsic dielectric properties of cells. EIS has emerged in the last decade as a promising method for the characterization of cancerous cells, providing information on inductance, capacitance, and impedance of cells. The individual cell behavior can be quantified using its characteristic phase angle, amplitude, and frequency measurements obtained by fitting the input frequency-dependent cellular response to a resistor–capacitor circuit model. These electrical properties will provide important information about unique biomarkers related to the behavior of these cancerous cells, especially monitoring their chemoresistivity and sensitivity to chemotherapeutics. There are currently few methods to assess drug resistant cancer cells, and therefore it is difficult to identify and eliminate drug-resistant cancer cells found in static and metastatic tumors. Establishing techniques for the real-time monitoring of changes in cancer cell phenotypes is, therefore, important for understanding cancer cell dynamics and their plastic properties. EIS can be used to monitor these changes. In this review, we will cover the theory behind EIS, other impedance techniques, and how EIS can be used to monitor cell behavior and phenotype changes within cancerous cells. Full article
(This article belongs to the Special Issue Microfluidic Devices for Biosensing)
Show Figures

Figure 1

20 pages, 4522 KiB  
Review
Recent Advances in Vertically Aligned Nanowires for Photonics Applications
by Sehui Chang, Gil Ju Lee and Young Min Song
Micromachines 2020, 11(8), 726; https://doi.org/10.3390/mi11080726 - 26 Jul 2020
Cited by 13 | Viewed by 5160
Abstract
Over the past few decades, nanowires have arisen as a centerpiece in various fields of application from electronics to photonics, and, recently, even in bio-devices. Vertically aligned nanowires are a particularly decent example of commercially manufacturable nanostructures with regard to its packing fraction [...] Read more.
Over the past few decades, nanowires have arisen as a centerpiece in various fields of application from electronics to photonics, and, recently, even in bio-devices. Vertically aligned nanowires are a particularly decent example of commercially manufacturable nanostructures with regard to its packing fraction and matured fabrication techniques, which is promising for mass-production and low fabrication cost. Here, we track recent advances in vertically aligned nanowires focused in the area of photonics applications. Begin with the core optical properties in nanowires, this review mainly highlights the photonics applications such as light-emitting diodes, lasers, spectral filters, structural coloration and artificial retina using vertically aligned nanowires with the essential fabrication methods based on top-down and bottom-up approaches. Finally, the remaining challenges will be briefly discussed to provide future directions. Full article
(This article belongs to the Special Issue Nanowires and Nanoprobes – Functionalized Arrays)
Show Figures

Figure 1

33 pages, 2680 KiB  
Review
Tissue-Engineered Models for Glaucoma Research
by Renhao Lu, Paul A. Soden and Esak Lee
Micromachines 2020, 11(6), 612; https://doi.org/10.3390/mi11060612 - 24 Jun 2020
Cited by 7 | Viewed by 5377
Abstract
Glaucoma is a group of optic neuropathies characterized by the progressive degeneration of retinal ganglion cells (RGCs). Patients with glaucoma generally experience elevations in intraocular pressure (IOP), followed by RGC death, peripheral vision loss and eventually blindness. However, despite the substantial economic and [...] Read more.
Glaucoma is a group of optic neuropathies characterized by the progressive degeneration of retinal ganglion cells (RGCs). Patients with glaucoma generally experience elevations in intraocular pressure (IOP), followed by RGC death, peripheral vision loss and eventually blindness. However, despite the substantial economic and health-related impact of glaucoma-related morbidity worldwide, the surgical and pharmacological management of glaucoma is still limited to maintaining IOP within a normal range. This is in large part because the underlying molecular and biophysical mechanisms by which glaucomatous changes occur are still unclear. In the present review article, we describe current tissue-engineered models of the intraocular space that aim to advance the state of glaucoma research. Specifically, we critically evaluate and compare both 2D and 3D-culture models of the trabecular meshwork and nerve fiber layer, both of which are key players in glaucoma pathophysiology. Finally, we point out the need for novel organ-on-a-chip models of glaucoma that functionally integrate currently available 3D models of the retina and the trabecular outflow pathway. Full article
(This article belongs to the Special Issue Mechanobiology and Biologically Inspired Engineering)
Show Figures

Figure 1

17 pages, 8494 KiB  
Review
Sperm Cell Driven Microrobots—Emerging Opportunities and Challenges for Biologically Inspired Robotic Design
by Ajay Vikram Singh, Mohammad Hasan Dad Ansari, Mihir Mahajan, Shubhangi Srivastava, Shubham Kashyap, Prajjwal Dwivedi, Vaibhav Pandit and Uma Katha
Micromachines 2020, 11(4), 448; https://doi.org/10.3390/mi11040448 - 23 Apr 2020
Cited by 71 | Viewed by 12896
Abstract
With the advent of small-scale robotics, several exciting new applications like Targeted Drug Delivery, single cell manipulation and so forth, are being discussed. However, some challenges remain to be overcome before any such technology becomes medically usable; among which propulsion and biocompatibility are [...] Read more.
With the advent of small-scale robotics, several exciting new applications like Targeted Drug Delivery, single cell manipulation and so forth, are being discussed. However, some challenges remain to be overcome before any such technology becomes medically usable; among which propulsion and biocompatibility are the main challenges. Propulsion at micro-scale where the Reynolds number is very low is difficult. To overcome this, nature has developed flagella which have evolved over millions of years to work as a micromotor. Among the microscopic cells that exhibit this mode of propulsion, sperm cells are considered to be fast paced. Here, we give a brief review of the state-of-the-art of Spermbots—a new class of microrobots created by coupling sperm cells to mechanical loads. Spermbots utilize the flagellar movement of the sperm cells for propulsion and as such do not require any toxic fuel in their environment. They are also naturally biocompatible and show considerable speed of motion thereby giving us an option to overcome the two challenges of propulsion and biocompatibility. The coupling mechanisms of physical load to the sperm cells are discussed along with the advantages and challenges associated with the spermbot. A few most promising applications of spermbots are also discussed in detail. A brief discussion of the future outlook of this extremely promising category of microrobots is given at the end. Full article
(This article belongs to the Special Issue Advances in Microswimmers)
Show Figures

Figure 1

Other

13 pages, 3719 KiB  
Technical Note
Design and Massaging Force Analysis of Wearable Flexible Single Point Massager Imitating Traditional Chinese Medicine
by Zhou Zhou, Yixuan Wang, Chenjun Zhang, Ao Meng, Bingshan Hu and Hongliu Yu
Micromachines 2022, 13(3), 370; https://doi.org/10.3390/mi13030370 - 26 Feb 2022
Cited by 2 | Viewed by 3029
Abstract
In the theory of traditional Chinese medicine, acupoints refer to special points and areas on the meridian line of the human body. Traditional Chinese medicine believes that the application of unique techniques such as pressing, kneading, rubbing, pushing, and patting to acupoints or [...] Read more.
In the theory of traditional Chinese medicine, acupoints refer to special points and areas on the meridian line of the human body. Traditional Chinese medicine believes that the application of unique techniques such as pressing, kneading, rubbing, pushing, and patting to acupoints or massage with the help of specific tools has the effects of promoting blood circulation, dredging meridians, and eliminating fatigue. At present, most automatic massage devices are for large-area massage of the trunk, and few are specifically for acupoint massage of the limbs. First, this paper analyzes the characteristics of traditional Chinese medical acupoint massage and then obtains the design index of an automatic acupoint massage device. After that, based on the principle of a series elastic actuating mechanism, a flexible uni-acupoint massage device and control system, imitating the acupoint massage technique of traditional Chinese medicine, were designed. In order to analyze the massage force of the massage device, the man–machine contact dynamic model of the massage device was established, and the force of the massage device was simulated and analyzed. Finally, an experimental platform was built to verify the massage force and massage process of the massage device. The experimental results show that the massage device designed in this paper meets the indexes of traditional Chinese medical massage, in terms of the massage process and massage force, and verify the rationality of the design. Full article
(This article belongs to the Special Issue Wearable Robotics)
Show Figures

Figure 1

11 pages, 925 KiB  
Conference Report
Advances in the Field of Micro- and Nanotechnologies Applied to Extracellular Vesicle Research: Take-Home Message from ISEV2021
by Silvia Picciolini, Francesca Rodà, Marzia Bedoni and Alice Gualerzi
Micromachines 2021, 12(12), 1563; https://doi.org/10.3390/mi12121563 - 16 Dec 2021
Cited by 3 | Viewed by 2222
Abstract
Extracellular Vesicles (EVs) are naturally secreted nanoparticles with a plethora of functions in the human body and remarkable potential as diagnostic and therapeutic tools. Starting from their discovery, EV nanoscale dimensions have hampered and slowed new discoveries in the field, sometimes generating confusion [...] Read more.
Extracellular Vesicles (EVs) are naturally secreted nanoparticles with a plethora of functions in the human body and remarkable potential as diagnostic and therapeutic tools. Starting from their discovery, EV nanoscale dimensions have hampered and slowed new discoveries in the field, sometimes generating confusion and controversies among experts. Microtechnological and especially nanotechnological advances have sped up biomedical research dealing with EVs, but efforts are needed to further clarify doubts and knowledge gaps. In the present review, we summarize some of the most interesting data presented in the Annual Meeting of the International Society for Extracellular Vesicles (ISEV), ISEV2021, to stimulate discussion and to share knowledge with experts from all fields of research. Indeed, EV research requires a multidisciplinary knowledge exchange and effort. EVs have demonstrated their importance and significant biological role; still, further technological achievements are crucial to avoid artifacts and misleading conclusions in order to enable outstanding discoveries. Full article
Show Figures

Figure 1

Back to TopTop