Microbial Community Assembly Mechanisms of Groundwater Under Salinity–Oxygen Stress in the Golmud River Watershed, Northwest China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Sample Collection
2.2. Geochemical Parameters Analysis
2.3. DNA Extraction, PCR Amplification, and Bioinformatics Treatment
2.4. Statistical Analysis and Modeling
3. Results and Discussion
3.1. Regional Hydrochemical Characteristics
3.2. Microbial Alpha-Diversity and Composition Along Groundwater Flow Path
3.3. Driven Forces of Microbial Assemblages
3.4. Microbial Co-Occurrence Network
3.5. Microbial Community Assembly in Different Hydrochemical Conditions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McMahon, S.; Parnell, J. Weighing the Deep Continental Biosphere. FEMS Microbiol. Ecol. 2014, 87, 113–120. [Google Scholar] [CrossRef]
- Pilloni, G.; Bayer, A.; Ruth-Anneser, B.; Fillinger, L.; Engel, M.; Griebler, C.; Lueders, T. Dynamics of Hydrology and Anaerobic Hydrocarbon Degrader Communities in a Tar-Oil Contaminated Aquifer. Microorganisms 2019, 7, 46. [Google Scholar] [CrossRef] [PubMed]
- Xiu, W.; Ke, T.; Lloyd, J.R.; Shen, J.; Bassil, N.M.; Song, H.; Polya, D.A.; Zhao, Y.; Guo, H. Understanding Microbial Arsenic-Mobilization in Multiple Aquifers: Insight from DNA and RNA Analyses. Environ. Sci. Technol. 2021, 55, 15181–15195. [Google Scholar] [CrossRef]
- Chesson, P. Mechanisms of Maintenance of Species Diversity. Annu. Rev. Ecol. Syst. 2000, 31, 343–366. [Google Scholar] [CrossRef]
- Chave, J. Neutral Theory and Community Ecology. Ecol. Lett. 2004, 7, 241–253. [Google Scholar] [CrossRef]
- Zhou, J.; Ning, D. Stochastic Community Assembly: Does It Matter in Microbial Ecology? Microbiol. Mol. Biol. Rev. 2017, 81, e00002-17. [Google Scholar] [CrossRef]
- Stegen, J.C.; Lin, X.; Konopka, A.E.; Fredrickson, J.K. Stochastic and Deterministic Assembly Processes in Subsurface Microbial Communities. ISME J. 2012, 6, 1653–1664. [Google Scholar] [CrossRef]
- Sheng, Y.; Liu, Y.; Yang, J.; Dong, H.; Liu, B.; Zhang, H.; Li, A.; Wei, Y.; Li, G.; Zhang, D. History of Petroleum Disturbance Triggering the Depth-Resolved Assembly Process of Microbial Communities in the Vadose Zone. J. Hazard. Mater. 2021, 402, 124060. [Google Scholar] [CrossRef]
- Sheng, Y.; Li, G.; Dong, H.; Liu, Y.; Ma, L.; Yang, M.; Liu, Y.; Liu, J.; Deng, S.; Zhang, D. Distinct Assembly Processes Shape Bacterial Communities along Unsaturated, Groundwater Fluctuated, and Saturated Zones. Sci. Total Environ. 2021, 761, 143303. [Google Scholar] [CrossRef]
- Ning, D.; Wang, Y.; Fan, Y.; Wang, J.; Van Nostrand, J.D.; Wu, L.; Zhang, P.; Curtis, D.J.; Tian, R.; Lui, L.; et al. Environmental Stress Mediates Groundwater Microbial Community Assembly. Nat. Microbiol. 2024, 9, 490–501. [Google Scholar] [CrossRef]
- Liu, S.; Chen, Q.; Li, J.; Li, Y.; Zhong, S.; Hu, J.; Cai, H.; Sun, W.; Ni, J. Different Spatiotemporal Dynamics, Ecological Drivers and Assembly Processes of Bacterial, Archaeal and Fungal Communities in Brackish-Saline Groundwater. Water Res. 2022, 214, 118193. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Wang, G.; Sheng, Y.; Shi, Z.; Sun, X. Groundwater Microbial Communities and Their Connection to Hydrochemical Environment in Golmud, Northwest China. Sci. Total Environ. 2019, 695, 133848. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Shao, J.; Frape, S.K.; Cui, Y.; Dang, X.; Wang, S.; Ji, Y. Groundwater Origin, Flow Regime and Geochemical Evolution in Arid Endorheic Watersheds: A Case Study from the Qaidam Basin, Northwestern China. Hydrol. Earth Syst. Sci. 2018, 22, 4381–4400. [Google Scholar] [CrossRef]
- Guo, L.; Ding, Y.; Fang, H.; An, C.; Wang, G.; Mao, H.; Yang, N. Regional Variations and Hydrochemical Evolution in Golmud River Watershed (Qaidam Basin, China): An Integration of Self-Organizing Maps and Multi-Statistic Approaches. Environ. Earth Sci. 2025, 84, 143. [Google Scholar] [CrossRef]
- Yang, N.; Wang, G. Moisture Sources and Climate Evolution during the Last 30 Kyr in Northeastern Tibetan Plateau: Insights from Groundwater Isotopes (2H, 18O, 3H and 14C) and Water Vapour Trajectories Modeling. Quat. Sci. Rev. 2020, 242, 106426. [Google Scholar] [CrossRef]
- Sheng, Y.; Wang, G.; Zhao, D.; Hao, C.; Liu, C.; Cui, L.; Zhang, G. Groundwater Microbial Communities Along a Generalized Flowpath in Nomhon Area, Qaidam Basin, China. Groundwater 2018, 56, 719–731. [Google Scholar] [CrossRef]
- Guo, L.; Chen, X.; Sheng, Y.; Yang, N.; Hou, E.; Fang, H. Impact of Soil Fissure Status on Microbial Community in Mining-Disturbed Area, the Northern Shaanxi Province. Front. Microbiol. 2024, 15, 1463665. [Google Scholar] [CrossRef]
- Sheng, Y.; Bibby, K.; Grettenberger, C.; Kaley, B.; Macalady, J.L.; Wang, G.; Burgos, W.D. Geochemical and Temporal Influences on the Enrichment of Acidophilic Iron-Oxidizing Bacterial Communities. Appl. Environ. Microbiol. 2016, 82, 3611–3621. [Google Scholar] [CrossRef]
- Zhao, Y.; Cao, J.; Chen, P. Enhanced Effect of Phytoextraction on Arsenic-Contaminated Soil by Microbial Reduction. Appl. Sci. 2023, 13, 10921. [Google Scholar] [CrossRef]
- Edgar, R.C. UPARSE: Highly Accurate OTU Sequences from Microbial Amplicon Reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naive Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef] [PubMed]
- Van Buuren, S.; Groothuis-Oudshoorn, K. Mice: Multivariate Imputation by Chained Equations in R. J. Stat. Softw. 2011, 45, 1–67. [Google Scholar] [CrossRef]
- De Winter, J.C.; Gosling, S.D.; Potter, J. Comparing the Pearson and Spearman Correlation Coefficients across Distributions and Sample Sizes: A Tutorial Using Simulations and Empirical Data. Psychol. Methods 2016, 21, 273. [Google Scholar] [CrossRef]
- Cordella, C.B. PCA: The Basic Building Block of Chemometrics. Anal. Chem. 2012, 47, 567. [Google Scholar] [CrossRef]
- Danielsson, P.-E. Euclidean Distance Mapping. Comput. Graph. Image Process. 1980, 14, 227–248. [Google Scholar] [CrossRef]
- Bray, J.R.; Curtis, J.T. An Ordination of the Upland Forest Communities of Southern Wisconsin. Ecol. Monogr. 1957, 27, 326–349. [Google Scholar] [CrossRef]
- McKight, P.E.; Najab, J. Kruskal-wallis Test. In The Corsini Encyclopedia of Psychology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010; p. 1. [Google Scholar] [CrossRef]
- McArdle, B.H.; Anderson, M.J. Fitting Multivariate Models to Community Data: A Comment on Distance-based Redundancy Analysis. Ecology 2001, 82, 290–297. [Google Scholar] [CrossRef]
- Lai, J.; Zou, Y.; Zhang, S.; Zhang, X.; Mao, L. Glmm. Hp: An R Package for Computing Individual Effect of Predictors in Generalized Linear Mixed Models. J. Plant Ecol. 2022, 15, 1302–1307. [Google Scholar] [CrossRef]
- Hair, J.F.; Risher, J.J.; Sarstedt, M.; Ringle, C.M. When to Use and How to Report the Results of PLS-SEM. Eur. Bus. Rev. 2019, 31, 2–24. [Google Scholar] [CrossRef]
- Feng, K.; Peng, X.; Zhang, Z.; Gu, S.; He, Q.; Shen, W.; Wang, Z.; Wang, D.; Hu, Q.; Li, Y.; et al. iNAP: An Integrated Network Analysis Pipeline for Microbiome Studies. iMeta 2022, 1, e13. [Google Scholar] [CrossRef]
- Ning, D.; Deng, Y.; Tiedje, J.M.; Zhou, J. A General Framework for Quantitatively Assessing Ecological Stochasticity. Proc. Natl. Acad. Sci. USA 2019, 116, 16892–16898. [Google Scholar] [CrossRef]
- Qu, J.; Lin, J.; Wang, J.; Yan, T.; Ren, K.; Zhou, J.; Li, Y. Analysis of the Evolution and Causes of Groundwater Chemistry after Ecological Water Replenishment of the Jialu River, China. Sci. Rep. 2024, 14, 18759. [Google Scholar] [CrossRef] [PubMed]
- Carol, E.S.; Kruse, E.E.; Laurencena, P.C.; Rojo, A.; Deluchi, M.H. Ionic Exchange in Groundwater Hydrochemical Evolution. Study Case: The Drainage Basin of El Pescado Creek (Buenos Aires Province, Argentina). Environ. Earth Sci. 2012, 65, 421–428. [Google Scholar] [CrossRef]
- Whittleston, R.A.; Stewart, D.I.; Mortimer, R.J.G.; Ashley, D.J.; Burke, I.T. Effect of Microbially Induced Anoxia on Cr (VI) Mobility at a Site Contaminated with Hyperalkaline Residue from Chromite Ore Processing. Geomicrobiol. J. 2011, 28, 68–82. [Google Scholar] [CrossRef]
- Yang, N.; Wang, G.; Shi, Z.; Zhao, D.; Jiang, W.; Guo, L.; Liao, F.; Zhou, P. Application of Multiple Approaches to Investigate the Hydrochemistry Evolution of Groundwater in an Arid Region: Nomhon, Northwestern China. Water 2018, 10, 1667. [Google Scholar] [CrossRef]
- Sleutels, T.H.; Molenaar, S.D.; Heijne, A.T.; Buisman, C.J. Low Substrate Loading Limits Methanogenesis and Leads to High Coulombic Efficiency in Bioelectrochemical Systems. Microorganisms 2016, 4, 7. [Google Scholar] [CrossRef]
- Tang, X.; Xie, G.; Shao, K.; Hu, Y.; Cai, J.; Bai, C.; Gong, Y.; Gao, G. Contrast Diversity Patterns and Processes of Microbial Community Assembly in a River-Lake Continuum across a Catchment Scale in Northwestern China. Environ. Microbiome 2020, 15, 10. [Google Scholar] [CrossRef]
- Zhang, H.; Lv, Y.; Zhang, T.; Zhang, L.; Ma, X.; Liu, X.; Lian, S. Characteristics of Groundwater Microbial Community Composition and Environmental Response in the Yimuquan Aquifer, North China Plain. Water 2024, 16, 459. [Google Scholar] [CrossRef]
- Sleator, R.D.; Hill, C. Bacterial Osmoadaptation: The Role of Osmolytes in Bacterial Stress and Virulence. FEMS Microbiol. Rev. 2002, 26, 49–71. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, H.; Zhang, X.; Feng, Z.; Liu, J.; Wang, Y.; Shang, S.; Xu, J.; Liu, T.; Liu, L. Effects of Salt Stress on the Rhizosphere Soil Microbial Communities of Suaeda salsa (L.) Pall. in the Yellow River Delta. Ecol. Evol. 2024, 14, e70315. [Google Scholar] [CrossRef]
- Chen, Y.-H.; Lu, C.-W.; Shyu, Y.-T.; Lin, S.-S. Revealing the Saline Adaptation Strategies of the Halophilic Bacterium Halomonas Beimenensis through High-Throughput Omics and Transposon Mutagenesis Approaches. Sci. Rep. 2017, 7, 13037. [Google Scholar] [CrossRef]
- León-Zayas, R.; Peoples, L.; Biddle, J.F.; Podell, S.; Novotny, M.; Cameron, J.; Lasken, R.S.; Bartlett, D.H. The Metabolic Potential of the Single Cell Genomes Obtained from the Challenger Deep, M Ariana T Rench within the Candidate Superphylum P Arcubacteria (OD 1). Environ. Microbiol. 2017, 19, 2769–2784. [Google Scholar] [CrossRef]
- Lai, J.; Zou, Y.; Zhang, J.; Peres-Neto, P.R. Generalizing Hierarchical and Variation Partitioning in Multiple Regression and Canonical Analyses Using the Rdacca. Hp R Package. Methods Ecol. Evol. 2022, 13, 782–788. [Google Scholar] [CrossRef]
- Lai, J.; Zhu, W.; Cui, D.; Mao, L. Extension of the Glmm. Hp Package to Zero-Inflated Generalized Linear Mixed Models and Multiple Regression. J. Plant Ecol. 2023, 16, rtad038. [Google Scholar] [CrossRef]
- Kumawat, C.; Kumar, A.; Parshad, J.; Sharma, S.S.; Patra, A.; Dogra, P.; Yadav, G.K.; Dadhich, S.K.; Verma, R.; Kumawat, G.L. Microbial Diversity and Adaptation under Salt-Affected Soils: A Review. Sustainability 2022, 14, 9280. [Google Scholar] [CrossRef]
- Kracke, F.; Vassilev, I.; Krömer, J.O. Microbial Electron Transport and Energy Conservation–the Foundation for Optimizing Bioelectrochemical Systems. Front. Microbiol. 2015, 6, 575. [Google Scholar] [CrossRef]
- Kwon, M.J.; Yun, S.-T.; Ham, B.; Lee, J.-H.; Oh, J.-S.; Jheong, W.-W. Impacts of Leachates from Livestock Carcass Burial and Manure Heap Sites on Groundwater Geochemistry and Microbial Community Structure. PLoS ONE 2017, 12, e0182579. [Google Scholar] [CrossRef]
- Bowers, K.J.; Mesbah, N.M.; Wiegel, J. Biodiversity of Poly-Extremophilic Bacteria: Does Combining the Extremes of High Salt, Alkaline pH and Elevated Temperature Approach a Physico-Chemical Boundary for Life? Saline Syst. 2009, 5, 9. [Google Scholar] [CrossRef]
- Jiao, K.; Zhang, X.B.; Xu, M.; Liu, X.J.; An, Q.D.; Zhang, C.Y. Depth-Related Characteristics of Soil Microbial Community along the Soil Profile of Typical Dark Coniferous Forest in Southeast Tibet. Acta Ecol. Sin. 2021, 41, 4864–4875. [Google Scholar] [CrossRef]
- Zhao, X.; Zhu, D.; Tan, J.; Wang, R.; Qi, G. Cooperative Action of Fulvic Acid and Bacillus Paralicheniformis Ferment in Regulating Soil Microbiota and Improving Soil Fertility and Plant Resistance to Bacterial Wilt Disease. Microbiol. Spectr. 2023, 11, e0407922. [Google Scholar] [CrossRef]
- Deng, Y.; Zhang, P.; Qin, Y.; Tu, Q.; Yang, Y.; He, Z.; Schadt, C.W.; Zhou, J. Network Succession Reveals the Importance of Competition in Response to Emulsified Vegetable Oil Amendment for Uranium Bioremediation. Environ. Microbiol. 2016, 18, 205–218. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; He, C.; Lloyd, K.G.; Vishnivetskaya, T.A.; Cui, H.; Li, B.; Gong, D.; Fan, X.; Zhang, D.; Jiang, H.; et al. Comparative Genomics Reveals the High Diversity and Adaptation Strategies of Polaromonas from Polar Environments. BMC Genom. 2025, 26, 248. [Google Scholar] [CrossRef]
- Wallace, M.; Cummings, J.; Roberts, A.G.; Puri, A.W. A Widespread Methylotroph Acyl-Homoserine Lactone Synthase Produces a New Quorum Sensing Signal That Regulates Swarming in Methylobacterium fujisawaense. Mbio 2024, 15, e0199923. [Google Scholar] [CrossRef] [PubMed]
- von Hoyningen-Huene, A.J.; Bang, C.; Rausch, P.; Rühlemann, M.; Fokt, H.; He, J.; Jensen, N.; Knop, M.; Petersen, C.; Schmittmann, L.; et al. The Archaeome in Metaorganism Research, with a Focus on Marine Models and Their Bacteria–Archaea Interactions. Front. Microbiol. 2024, 15, 1347422. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Huang, X.; Wang, H.; Yun, Y.; Cheng, X.; Liu, D.; Lu, X.; Qiu, X. Microbial Interactions Drive Distinct Taxonomic and Potential Metabolic Responses to Habitats in Karst Cave Ecosystem. Microbiol. Spectr. 2021, 9, e0115221. [Google Scholar] [CrossRef]
- Barka, E.A.; Vatsa, P.; Sanchez, L.; Gaveau-Vaillant, N.; Jacquard, C.; Klenk, H.-P.; Clément, C.; Ouhdouch, Y.; van Wezel, G.P. Taxonomy, Physiology, and Natural Products of Actinobacteria. Microbiol. Mol. Biol. Rev. 2016, 80, 1–43. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Xue, S. pH Mediated Assemblage of Carbon, Nitrogen, and Sulfur Related Microbial Communities in Petroleum Reservoirs. Front. Microbiol. 2022, 13, 952285. [Google Scholar] [CrossRef]
- Menéndez-Serra, M.; Ontiveros, V.J.; Barberán, A.; Casamayor, E.O. Absence of Stress-Promoted Facilitation Coupled with a Competition Decrease in the Microbiome of Ephemeral Saline Lakes. Ecology 2022, 103, e3834. [Google Scholar] [CrossRef]
Statistic | pH | T | EC | DO | ORP | TDS | Na+ | K+ | Ca2+ | Mg2+ | Cl− | SO42− | HCO3− | NO3− | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
°C | μs/cm | mg/L | mv | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | |||
Phreaticz water | n a | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 |
Max | 8.23 | 22.40 | 1300.00 | 9.54 | 280.00 | 755.03 | 122.00 | 5.38 | 68.30 | 54.70 | 209.00 | 188.00 | 241.00 | 4.87 | |
Min | 7.70 | 9.30 | 775.00 | 2.01 | 9.00 | 413.07 | 55.20 | 2.33 | 38.70 | 28.00 | 74.95 | 66.66 | 196.47 | 2.54 | |
Mean | 8.00 | 13.21 | 938.08 | 4.61 | 176.42 | 519.72 | 89.11 | 4.04 | 50.40 | 37.34 | 120.38 | 102.28 | 224.33 | 3.79 | |
SE b | 0.04 | 1.00 | 43.12 | 0.54 | 24.61 | 27.71 | 6.62 | 0.29 | 2.45 | 1.93 | 10.21 | 10.99 | 4.12 | 0.19 | |
Artesian water | n | 56 | 56 | 56 | 56 | 56 | 56 | 56 | 56 | 56 | 56 | 56 | 56 | 56 | 48 |
Max | 8.65 | 23.40 | 1485.00 | 8.29 | 272.00 | 1048.00 | 374.08 | 7.00 | 75.80 | 44.12 | 200.56 | 139.96 | 404.77 | 6.16 | |
Min | 7.75 | 6.80 | 659.00 | 0.39 | −234 | 383.14 | 64.80 | 2.68 | 4.93 | 7.77 | 79.70 | 54.48 | 176.61 | 0 | |
Mean | 8.04 | 13.59 | 865.55 | 3.29 | 60.95 | 486.01 | 98.71 | 5.50 | 37.77 | 33.80 | 103.34 | 77.34 | 251.10 | 1.85 | |
SE | 0.02 | 0.41 | 22.49 | 0.32 | 18.11 | 16.83 | 8.07 | 0.16 | 1.69 | 0.93 | 4.36 | 2.40 | 5.53 | 0.28 | |
High salinity water | n | 5 | - | - | - | - | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
Max | 6.72 | - | - | - | - | 381,960.22 | 61,385.00 | 16,739.00 | 5515.50 | 82,722.00 | 268,680.00 | 5698.00 | 824.44 | 44.90 | |
Min | 6.55 | - | - | - | - | 294,484.30 | 12,587.50 | 2969.00 | 1052.00 | 34,250.00 | 191,460.00 | 0.00 | 218.00 | 0.00 | |
Mean | 6.63 | - | - | - | - | 316,112.74 | 47,778.58 | 9123.33 | 2390.58 | 45,448.33 | 207,419.17 | 3686.50 | 458.91 | 28.62 | |
SE | 0.03 | - | - | - | - | 12,452.19 | 6573.28 | 2401.33 | 625.92 | 6878.09 | 11,263.49 | 736.91 | 94.17 | 5.88 | |
Surface water | n | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 |
Max | 8.49 | 26.10 | 696.00 | 4.63 | 249.00 | 377.11 | 58.00 | 4.08 | 46.60 | 30.60 | 117.00 | 72.60 | 198.00 | 4.21 | |
Min | 7.78 | 10.70 | 360.00 | 2.36 | 132.00 | 192.81 | 21.40 | 0.00 | 30.99 | 13.27 | 22.40 | 25.66 | 105.82 | 1.82 | |
Mean | 8.18 | 19.57 | 525.57 | 3.51 | 186.29 | 294.17 | 39.78 | 2.62 | 38.57 | 21.50 | 62.53 | 49.02 | 154.40 | 3.39 | |
SE | 0.08 | 2.06 | 50.34 | 0.31 | 15.07 | 24.58 | 5.05 | 0.50 | 1.90 | 2.15 | 10.89 | 6.40 | 14.47 | 0.28 |
Parameter | PC1 | PC2 | PC3 | PC4 |
---|---|---|---|---|
pH | −0.75 | 0.51 | 0.26 | −0.02 |
T | −0.17 | −0.12 | 0.39 | 0.85 |
EC | 0.99 | 0.06 | 0.06 | 0.01 |
DO | −0.1 | −0.22 | 0.84 | −0.07 |
ORP | 0.07 | −0.58 | 0.41 | −0.49 |
TDS | 0.99 | 0.06 | 0.06 | 0.01 |
Na+ | 0.94 | −0.28 | −0.14 | 0.09 |
K+ | 0.85 | 0.19 | 0.01 | 0.05 |
Ca2+ | 0.84 | 0.45 | 0.25 | −0.07 |
Mg2+ | 0.93 | 0.26 | 0.18 | −0.05 |
Cl− | 0.99 | 0.09 | 0.08 | 0 |
SO42− | 0.89 | −0.33 | −0.16 | 0.11 |
HCO3− | 0.64 | 0.6 | 0.09 | −0.09 |
NO3− | 0.83 | −0.51 | −0.04 | 0.09 |
Sample Types | Estimators | Sobs | Ace | Shannon | Simpson | Pielou_e |
---|---|---|---|---|---|---|
Phreatic water | Mean | 974.83 | 1197 | 3.88 | 0.081 | 0.593 |
SE | 208.93 | 249.97 | 0.26 | 0.01 | 0.03 | |
Artesian water | Mean | 756.84 | 958.57 | 3.64 | 0.096 | 0.596 |
SE | 118.67 | 144.91 | 0.15 | 0.01 | 0.02 | |
High-salinity water | Mean | 811.75 | 1028.5 | 3.52 | 0.108 | 0.536 |
SE | 111.73 | 188.52 | 0.34 | 0.03 | 0.06 | |
Surface water | Mean | 3757.6 | 4666 | 5.20 | 0.058 | 0.639 |
SE | 719.98 | 735.71 | 0.65 | 0.02 | 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, L.; Fang, H.; Ding, Y.; An, C.; Yang, N. Microbial Community Assembly Mechanisms of Groundwater Under Salinity–Oxygen Stress in the Golmud River Watershed, Northwest China. Life 2025, 15, 1301. https://doi.org/10.3390/life15081301
Guo L, Fang H, Ding Y, An C, Yang N. Microbial Community Assembly Mechanisms of Groundwater Under Salinity–Oxygen Stress in the Golmud River Watershed, Northwest China. Life. 2025; 15(8):1301. https://doi.org/10.3390/life15081301
Chicago/Turabian StyleGuo, Liang, Haisong Fang, Yuanyuan Ding, Chunxue An, and Nuan Yang. 2025. "Microbial Community Assembly Mechanisms of Groundwater Under Salinity–Oxygen Stress in the Golmud River Watershed, Northwest China" Life 15, no. 8: 1301. https://doi.org/10.3390/life15081301
APA StyleGuo, L., Fang, H., Ding, Y., An, C., & Yang, N. (2025). Microbial Community Assembly Mechanisms of Groundwater Under Salinity–Oxygen Stress in the Golmud River Watershed, Northwest China. Life, 15(8), 1301. https://doi.org/10.3390/life15081301