The Impact of Aging on Meniscal Tears and Chondral Lesions in Men: Insights from First-Time Arthroscopic Knee Evaluation
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACL | Anterior cruciate ligament |
BMI | Body mass index |
CI | Confidence interval |
ICRS | International Cartilage Repair Society |
LMD | Lateral meniscus damage |
MMD | medial meniscus damage |
MRI | Magnetic resonance imaging |
NSAID | Nonsteroidal anti-inflammatory drugs |
OR | Odds ratio |
PTD | Any patellar damage |
SCJU | County Emergency Clinical Hospital |
VAG | Vibroarthrography |
References
- Adams, B.G.; Houston, M.N.; Cameron, K.L. The epidemiology of meniscus injury. Sports Med. Arthrosc. Rev. 2021, 29, e24–e33. [Google Scholar] [CrossRef]
- Snoeker, B.A.; Bakker, E.W.; Kegel, C.A.; Lucas, C. Risk factors for meniscal tears: A systematic review including meta-analysis. J. Orthop. Sports Phys. Ther. 2013, 43, 352–367. [Google Scholar] [CrossRef]
- Waldman, S.D. Medial meniscal tear. In Atlas of Common Pain Syndromes, 5th ed.; Waldman, S.D., Ed.; Elsevier: Philadelphia, PA, USA, 2024; pp. 554–559. [Google Scholar] [CrossRef]
- Edmonds, C.J.; Foglia, E.; Booth, P.; Fu, C.H.; Gardner, M. Dehydration in older people: A systematic review of the effects of dehydration on health outcomes, healthcare costs and cognitive performance. Arch. Gerontol. Geriatr. 2021, 95, 104380. [Google Scholar] [CrossRef]
- Englund, M.; Guermazi, A.; Gale, D.; Hunter, D.J.; Aliabadi, P.; Clancy, M.; Felson, D.T. Incidental meniscal findings on knee MRI in middle-aged and elderly persons. N. Engl. J. Med. 2008, 359, 1108–1115. [Google Scholar] [CrossRef]
- Englund, M. Degenerative meniscus lesions, cartilage degeneration, and osteoarthritis of the knee. In Osteoarthritis: Diagnosis and Medical/Surgical Management; Hulet, C., Pereira, H., Peretti, G., Denti, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 79–91. [Google Scholar] [CrossRef]
- Pereira, H.; Cengiz, I.F.; Silva-Correia, J.; Oliveira, J.M.; Reis, R.L.; Espregueira-Mendes, J. The role of arthroscopy in the treatment of degenerative meniscus tear. In Artroscopy, 1st ed.; Randelli, P., Dejour, D., van Dijk, C.N., Denti, M., Seil, R., Eds.; Springer: Cham, Switzerland, 2017; pp. 107–117. [Google Scholar] [CrossRef]
- Khan, H.I.; Aitken, D.; Ding, C.; Blizzard, L.; Pelletier, J.P.; Martel-Pelletier, J.; Cicuttini, F.; Jones, G. Natural history and clinical significance of meniscal tears over 8 years in a midlife cohort. BMC Musculoskelet. Disord. 2016, 17, 4. [Google Scholar] [CrossRef]
- Ridley, T.J.; McCarthy, M.A.; Bollier, M.J.; Wolf, B.R.; Amendola, A. Age differences in the prevalence of isolated medial and lateral meniscal tears in surgically treated patients. Iowa Orthop. J. 2017, 37, 91–94. [Google Scholar] [PubMed]
- Anwar, W.; Aziz, Z.; Rahman, N.; Khattak, S.K.; Ahmad, I.; Khan, A.H. Arthroscopic evaluation of articular cartilage in knee injuries: A predictor of early osteoarthritis in young population. Prof. Med. J. 2023, 30, 654–658. [Google Scholar] [CrossRef]
- Cole, B.J.; Burnett, R.A.; Kunze, K.N.; Tauro, T.; Chahla, J. Focal chondral injuries. In Evidence-Based Management of Complex Knee Injuries, 1st ed.; LaPrade, R.F., Chahla, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 253–272. [Google Scholar] [CrossRef]
- Jarecki, J.; Waśko, M.K.; Widuchowski, W.; Tomczyk-Warunek, A.; Wójciak, M.; Sowa, I.; Blicharski, T. Knee cartilage lesion management—Current trends in clinical practice. J. Clin. Med. 2023, 12, 6434. [Google Scholar] [CrossRef] [PubMed]
- Widuchowski, W.; Widuchowski, J.; Trzaska, T.J. Articular cartilage defects: Study of 25,124 knee arthroscopies. Knee 2007, 14, 177–182. [Google Scholar] [CrossRef]
- Valderrama, J.; Carredano, X.; León, A.; Vigueras, C.; Marín, F.; Acevedo, M.; Marin, F. Prevalence of articular surface injuries in patients undergoing meniscal surgery: A retrospective analysis of 758 cases. Cureus 2024, 16, e66789. [Google Scholar] [CrossRef]
- Ozeki, N.; Koga, H.; Sekiya, I. Degenerative meniscus in knee osteoarthritis: From pathology to treatment. Life 2022, 12, 603. [Google Scholar] [CrossRef] [PubMed]
- Kutaish, H.; Klopfenstein, A.; Nasif Obeid Adorisio, S.; Tscholl, P.M.; Fucentese, S. Current trends in the treatment of focal cartilage lesions: A comprehensive review. EFORT Open Rev. 2025, 10, 203–212. [Google Scholar] [CrossRef]
- Milanovic, F.; Aksovic, N.; Bjelica, B.; Topalovic, N.; Arsenovic, M. Patellar chondromalacia among adolescent athletes—A systematic review. Arch. Sports Med. Physiother. 2021, 6, 1–3. [Google Scholar] [CrossRef]
- Bonnin, M.; Amendola, A.; Bellemans, J.; MacDonald, S.; Ménétrey, J.; Didden, K. Patellofemoral osteoarthritis: Pathophysiology, treatment, and results. In The Knee Joint: Surgical Techniques and Strategies, 1st ed.; Bonnin, M., Amendola, A., Belemans, J., MacDonald, S.J., Ménétrey, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 563–572. [Google Scholar]
- Vrgoč, G.; Vuletić, F.; Matolić, G.; Ivković, A.; Hudetz, D.; Bulat, S.; Janković, S. Clinical outcome of arthroscopic repair for isolated meniscus tear in athletes. Int. J. Environ. Res. Public Health 2023, 20, 5088. [Google Scholar] [CrossRef]
- Nakayama, H.; Kanto, R.; Kambara, S.; Kurosaka, K.; Onishi, S.; Yoshiya, S.; Yamaguchi, M. Clinical outcome of meniscus repair for isolated meniscus tear in athletes. Asia-Pac. J. Sports Med. Arthrosc. Rehabil. Technol. 2017, 10, 4–7. [Google Scholar] [CrossRef]
- Kim, S.H.; Park, Y.B.; Kim, B.S.; Lee, D.H.; Pujol, N. Incidence of associated lesions of multiligament knee injuries: A systematic review and meta-analysis. Orthop. J. Sports Med. 2021, 9, 23259671211010409. [Google Scholar] [CrossRef]
- Shamrock, A.G.; Hall, J.R.; Hajewski, C.J.; An, Q.; Duchman, K.R. Cartilage and meniscus injuries are more common in patients undergoing delayed multiligament reconstruction. J. Knee Surg. 2022, 35, 560–565. [Google Scholar] [CrossRef]
- Marigi, E.; Keyt, L.K.; Laprade, M.D.; Camp, C.L.; Levy, B.A.; Dahm, D.L.; Stuart, M.J.; Krych, A.J. Surgical treatment of isolated meniscal tears in competitive male wrestlers: Reoperations, outcomes, and return to sport. Orthop. J. Sports Med. 2021, 9, 2325967120969220. [Google Scholar] [CrossRef]
- Slauterbeck, J.R.; Kousa, P.; Clifton, B.C.; Naud, S.; Tourville, T.W.; Johnson, R.J.; Beynnon, B.D. Geographic mapping of meniscus and cartilage lesions associated with anterior cruciate ligament injuries. J. Bone Jt. Surg. Am. 2009, 91, 2094–2103. [Google Scholar] [CrossRef] [PubMed]
- Spitalul Clinic Județean de Urgență Arad. Secția Clinică Ortopedie și Traumatologie. Available online: https://www.scjarad.ro/ortopedie-si-traumatologie/ (accessed on 21 June 2025).
- Mordecai, S.C.; Al-Hadithy, N.; Ware, H.E.; Gupte, C.M. Treatment of meniscal tears: An evidence-based approach. World J. Orthop. 2014, 5, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Sterne, J.A.; Hernán, M.A.; McAleenan, A.; Reeves, B.C.; Higgins, J.P.T. Assessing risk of bias in a non-randomized study. In Cochrane Handbook for Systematic Reviews of Interventions, 2nd ed.; Version 6; Higgins, J.P.T., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M.J., Welch, V.A., Eds.; John Wiley & Sons: Chichester, UK, 2019; pp. 621–641. [Google Scholar] [CrossRef]
- Şuşan, M.; Cristea, A.M.; Drăghici, G.A.; Nica, D.V.; Florescu, S.; Damian, C.G. Patterns of meniscal injuries in adults aged 35 and older: A retrospective analysis of surgical cases. Medicina 2025, 61, 643. [Google Scholar] [CrossRef]
- Ventura, M.; Seabra, P.; Oliveira, J.; Sousa, P.; Quesado, M.; Sousa, H.; Oliveira, J. Meniscal injuries in patients aged 40 years or older: A comparative study between meniscal repair and partial meniscectomy. Cureus 2023, 15, e33270. [Google Scholar] [CrossRef]
- Brittberg, M.; Winalski, C.S. Evaluation of Cartilage Injuries and Repair. J. Bone Jt. Surg. Am. 2003, 85, 58–69. [Google Scholar] [CrossRef]
- Georgescu, M.; Drăghici, G.A.; Oancea, E.-F.; Dehelean, C.A.; Șoica, C.; Vlăduț, N.-V.; Nica, D.V. Effects of cadmium sulfate on the brown garden snail Cornu aspersum: Implications for DNA methylation. Toxics 2021, 9, 306. [Google Scholar] [CrossRef] [PubMed]
- Nica, D.V.; Bordean, D.M.; Pet, I.; Pet, E.; Alda, S.; Gergen, I. A novel exploratory chemometric approach to environmental monitoring by combining block clustering with Partial Least Square (PLS) analysis. Chem. Cent. J. 2013, 7, 145. [Google Scholar] [CrossRef] [PubMed]
- Luvsannyam, E.; Jain, M.S.; Leitao, A.R.; Maikawa, N.; Leitao, A.E. Meniscus tear: Pathology, incidence, and management. Cureus 2022, 14, e25121. [Google Scholar] [CrossRef]
- Fodor, P.; Sályom, Á.; Ivănescu, A.; Fodor, R.; Bățagă, T. Prevalence of chondral lesions in knee arthroscopy. J. Interdiscip. Med. 2018, 3, 21–24. [Google Scholar] [CrossRef]
- Çolak, C.; Naveen, S.; Bullen, J.; Ilaslan, H. Incidence of medial meniscal tears in various age groups. J. Acad. Res. Med. 2018, 8, 203–206. [Google Scholar] [CrossRef]
- Taunton, J.E.; Ryan, M.B.; Clement, D.B.; McKenzie, D.C.; Lloyd-Smith, D.R.; Zumbo, B.D. A retrospective case-control analysis of 2002 running injuries. Br. J. Sports Med. 2002, 36, 95–101. [Google Scholar] [CrossRef]
- Buchbinder, R.; Harris, I.A.; Sprowson, A. Management of degenerative meniscal tears and the role of surgery. BMJ 2015, 350, h2212. [Google Scholar] [CrossRef]
- Stoker, D.J. Knee Arthrography, 1st ed.; Springer: Boston, MA, USA, 1980; pp. 21–32. [Google Scholar]
- Nakamae, A.; Sumen, Y.; Tsukisaka, K.; Deie, M.; Fujimoto, E.; Ishikawa, M.; Adachi, N. A larger side-to-side difference in anterior knee laxity increases the prevalence of medial and lateral meniscal injuries in patients with ACL injuries. Knee Surg. Sports Traumatol. Arthrosc. 2022, 30, 1560–1567. [Google Scholar] [CrossRef] [PubMed]
- Makris, E.A.; Hadidi, P.; Athanasiou, K.A. The knee meniscus: Structure–function, pathophysiology, current repair techniques, and prospects for regeneration. Biomaterials 2011, 32, 7411–7431. [Google Scholar] [CrossRef] [PubMed]
- Gee, S.M.; Tennent, D.J.; Cameron, K.L.; Posner, M.A. The burden of meniscus injury in young and physically active populations. Clin. Sports Med. 2020, 39, 13–27. [Google Scholar] [CrossRef]
- Giarmatzis, G.; Aggelousis, N.; Marinidis, M.; Fotiadou, S.; Giannakou, E.; Makri, E.; Vadikolias, K. Asymmetric knee joint loading in post-stroke gait: A musculoskeletal modeling analysis of medial and lateral compartment forces. Biomechanics 2025, 5, 39. [Google Scholar] [CrossRef]
- Florescu, S.; Minda, D.; Damian, C.G. First-time meniscal surgeries reveal age-linked rise in medial tears and sex-based injury difference. Appl. Sci. 2025, 15, 5095. [Google Scholar] [CrossRef]
- Yang, G.Y.; Guo, H.L.; Li, T.; Shang, H.B.; Zhao, Y.F.; Shi, Y.Y. The medial compartment and patellofemoral joint degenerate more severely in early stage knee osteoarthritis: A cross-sectional study. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 10120–10126. [Google Scholar] [CrossRef]
- Liu, Y.; Shah, K.M.; Luo, J. Strategies for articular cartilage repair and regeneration. Front. Bioeng. Biotechnol. 2021, 9, 770655. [Google Scholar] [CrossRef]
- Sadeghi, M.M.; Açıkgöz, E.; Emans, P.; Zijta, F.; Tömer, N.; Tuijthof, G.; Roth, A. Knee focal cartilage defect location heat map and local surface morphology characterisation: Insights for focal knee resurfacing implant design. J. Exp. Orthop. 2025, 12, e70216. [Google Scholar] [CrossRef]
- Vincent, K.R.; Conrad, B.P.; Fregly, B.J.; Vincent, H.K. The pathophysiology of osteoarthritis: A mechanical perspective on the knee joint. PM&R 2012, 4, S3–S9. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.S.; In, Y.; Kim, H.; Jeong, J.; Sohn, S. Why hoop tension matters: A biomechanical perspective on medial meniscus posterior root tears—A narrative review. Bioengineering 2025, 12, 638. [Google Scholar] [CrossRef]
- Hsu, H.; Siwiec, R.M. Knee osteoarthritis. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK507884/ (accessed on 20 June 2025).
- Kręcisz, K.; Bąk, D.; Krzemień-Szymanowska, A. Using nonlinear vibroarthrographic parameters for age-related changes assessment in knee arthrokinematics. Sensors 2022, 22, 5549. [Google Scholar] [CrossRef]
- Ding, C.; Cicuttini, F.; Scott, F.; Glisson, M.; Jones, G. Sex differences in knee cartilage volume in adults: Role of body and bone size, age and physical activity. Rheumatology 2003, 42, 1317–1323. [Google Scholar] [CrossRef]
- Değirmenci, E.; Yücel, İ.; Özturan, K.E.; Karaduman, Z.O.; Karaca, E. Evaluation of the age and gender-related changes in the Blumensaat line. Surg. Radiol. Anat. 2020, 42, 641–645. [Google Scholar] [CrossRef]
- Hudelmaier, M.; Glaser, C.; Hohe, J.; Englmeier, K.H.; Reiser, M.; Putz, R.; Eckstein, F. Age-related changes in the morphology and deformational behavior of knee joint cartilage. Arthritis Rheum. 2001, 44, 2556–2561. [Google Scholar] [CrossRef]
- Al-Bayati, Z.; Coskun Benlidayi, I.; Gokcen, N. Posture of the foot: Don’t keep it out of sight, out of mind in knee osteoarthritis. Gait Posture 2018, 66, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Bottomley, J.; Al-Dadah, O. Arthroscopic meniscectomy vs meniscal repair: Comparison of clinical outcomes. Cureus 2023, 15, e44122. [Google Scholar] [CrossRef] [PubMed]
- Howell, R.; Kumar, N.S.; Patel, N.; Tom, J. Degenerative meniscus: Pathogenesis, diagnosis, and treatment options. World J. Orthop. 2014, 5, 597–602. [Google Scholar] [CrossRef]
- Atik, I.; Gul, E.; Atik, S. evaluation of the relationship between knee osteoarthritis and meniscus pathologies. Malawi Med. J. 2024, 36, 48–52. [Google Scholar] [CrossRef]
- Zech, A.; Hollander, K.; Junge, A.; Steib, S.; Groll, A.; Heiner, J.; Rahlf, A.L. Sex differences in injury rates in team-sport athletes: A systematic review and meta-regression analysis. J. Sport Health Sci. 2022, 11, 104–114. [Google Scholar] [CrossRef]
- Di Martino, A.; Barile, F.; D’Agostino, C.; Castafaro, V.; Cerasoli, T.; Mora, P.; Ruffilli, A.; Traina, F.; Faldini, C. Are there gender-specific differences in hip and knee cartilage composition and degeneration? A systematic literature review. Eur. J. Orthop. Surg. Traumatol. 2024, 34, 1901–1910. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, I.; Radhakrishnan, A.; Khatri, C.; Metcalfe, A.J. Meniscal tears are more common than previously identified; however, less than a quarter of people with a tear undergo arthroscopy. Knee Surg. Sports Traumatol. Arthrosc. 2021, 29, 3892–3898. [Google Scholar] [CrossRef]
- Elkaïm, M.; Thès, A.; Lopes, R.; Andrieu, M.; Cordier, G.; Molinier, F.; Benoist, J.; Colin, F.; Boniface, O.; Guillo, S.; et al. Agreement between arthroscopic and imaging study findings in chronic anterior talo-fibular ligament injuries. Orthop. Traumatol. Surg. Res. 2018, 104, S213–S218. [Google Scholar] [CrossRef] [PubMed]
- Sim, J.; Wright, C. The kappa statistic in reliability studies: Use, interpretation, and sample size requirements. Phys. Ther. 2005, 85, 257–268. [Google Scholar] [CrossRef] [PubMed]
Age Range | n | MMD | LMD | PTD | |||
---|---|---|---|---|---|---|---|
No | Yes | No | Yes | No | Yes | ||
<30 years | 348 | 168 (48.28%) | 180 (51.72%) | 191 (54.89%) | 157 (45.11%) | 270 (77.61%) | 78 (22.39%) |
30–39 years | 194 | 78 (42.39%) | 106 (57.61%) | 105 (57.07%) | 79 (42.93%) | 140 (76.09%) | 44 (23.91%) |
40–49 years | 86 | 36 (41.86%) | 50 (58.14%) | 52 (60.47%) | 34 (39.53%) | 80 (88.89%) | 10 (11.11%) |
50–59 years | 128 | 48 (37.50%) | 80 (62.50%) | 72 (56.25%) | 56 (43.75%) | 110 (76.39%) | 34 (23.61%) |
≥60 years | 120 | 40 (33.33%) | 80 (66.67%) | 75 (62.5%) | 45 (37.5%) | 90 (75.00%) | 30 (25.00%) |
Variable | β | SE | Wald z | p-Value | OR (95% CI) |
---|---|---|---|---|---|
MMD | −0.03 | 0.01 | 2.98 | 0.003 ** | 1.03 (1.01–1.04) |
LMD | 0.02 | 0.011 | −0.02 | 0.985 | 1.00 (0.98–1.02) |
PTD | 0.03 | 0.02 | 1.85 | 0.064 | 1.03 (0.98–1.07) |
Variable | LMD | PTD |
---|---|---|
<30 years | ||
MMD | −0.06 | 0.25 *** |
PTD | −0.08 | |
30–39 years | ||
MMD | −0.29 ** | 0.13 |
PTD | 0.04 | |
40–49 years | ||
MMD | −0.25 | 0.11 |
PTD | 0.10 | |
50–59 years | ||
MMD | 0.21 | 0.40 * |
PTD | 0.15 | |
≥60 years | ||
MMD | −0.31 | 0.20 |
PTD | 0.44 |
Medial Femoral Condyle Chondropathy | |||||
---|---|---|---|---|---|
Age Range | 0 | 1 | 2 | 3 | 4 |
<30 years | 166 (47.7%) | 14 (4.02%) | 120 (34.48%) | 32 (9.2%) | 16 (4.6%) |
30–39 years | 80 (43.48%) | 2 (1.09%) | 76 (41.3%) | 12 (6.52%) | 14 (7.61%) |
40–49 years | 28 (32.56%) | 2 (2.33%) | 24 (27.91%) | 4 (4.65%) | 28 (32.56%) |
50–59 years | 24 (37.5%) | 2 (6.25%) | 10 (15.62%) | 6 (9.38%) | 20 (31.25%) |
≥60 years | 20 (16.67%) | 0 (0.0%) | 20 (16.67%) | 0 (0.0%) | 80 (66.66%) |
Lateral Femoral Condyle Chondropathy | |||||
Age Range | 0 | 1 | 2 | 3 | 4 |
<30 years | 328 (94.25%) | 0 (0.0%) | 14 (4.02%) | 4 (1.15%) | 2(0.57%) |
30–39 years | 156 (84.78%) | 0 (0.0%) | 24 (13.04%) | 4 (2.17%) | 0 (0.0%) |
40–49 years | 72 (83.72%) | 0 (0.0%) | 4(4.65%) | 2 (2.33%) | 8 (9.3%) |
50–59 years | 56 (87.5%) | 0 (0.0%) | 6 (9.38%) | 0 (0.0%) | 2 (3.12%) |
≥60 years | 100 (83.33%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 20 (16.67%) |
Medial Tibial Plateau Chondropathy | |||||
---|---|---|---|---|---|
Age range | 0 | 1 | 2 | 3 | 4 |
<30 years | 264 (75.86%) | 26 (7.47%) | 42 (12.07%) | 10 (2.87%) | 6 (1.72%) |
30–39 years | 134 (72.83%) | 2 (1.09%) | 38 (20.65%) | 4 (2.17%) | 6 (3.26%) |
40–49 years | 50 (58.14%) | 4 (4.65%) | 10 (11.63%) | 18(20.93%) | 4 (4.65%) |
50–59 years | 34 (53.12%) | 4 (6.25%) | 8 (12.5%) | 10 (15.62%) | 8(12.5%) |
≥60 years | 4 (33.33%) | 0 (0.0%) | 0 (0.0%) | 2 (16.67%) | 6 (50.0%) |
Lateral Tibial Plateau Chondropathy | |||||
Age range | 0 | 1 | 2 | 3 | 4 |
<30 years | 294 (84.48%) | 10 (2.87%) | 32 (9.2%) | 10 (2.87%) | 2 (0.57%) |
30–39 years | 150 (81.52%) | 0 (0.0%) | 26 (14.13%) | 8 (4.35%) | 0 (0.0%) |
40–49 years | 60 (69.77%) | 4 (4.65%) | 10 (11.63%) | 10 (11.63%) | 2 (2.33%) |
50–59 years | 52 (81.25%) | 0 (0.0%) | 8 (12.5%) | 2 (3.12%) | 2 (3.12%) |
≥60 years | 6 (50.0%) | 0 (0.0%) | 2 (16.67%) | 2 (16.67%) | 2 (16.67%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Florescu, S.; Zaharia, C.; Drăghici, G.A.; Nica, D.V.; Damian, C.G. The Impact of Aging on Meniscal Tears and Chondral Lesions in Men: Insights from First-Time Arthroscopic Knee Evaluation. Life 2025, 15, 1305. https://doi.org/10.3390/life15081305
Florescu S, Zaharia C, Drăghici GA, Nica DV, Damian CG. The Impact of Aging on Meniscal Tears and Chondral Lesions in Men: Insights from First-Time Arthroscopic Knee Evaluation. Life. 2025; 15(8):1305. https://doi.org/10.3390/life15081305
Chicago/Turabian StyleFlorescu, Sorin, Cristian Zaharia, George Andrei Drăghici, Dragoş Vasile Nica, and Cosmin Grațian Damian. 2025. "The Impact of Aging on Meniscal Tears and Chondral Lesions in Men: Insights from First-Time Arthroscopic Knee Evaluation" Life 15, no. 8: 1305. https://doi.org/10.3390/life15081305
APA StyleFlorescu, S., Zaharia, C., Drăghici, G. A., Nica, D. V., & Damian, C. G. (2025). The Impact of Aging on Meniscal Tears and Chondral Lesions in Men: Insights from First-Time Arthroscopic Knee Evaluation. Life, 15(8), 1305. https://doi.org/10.3390/life15081305