Feature Papers in Journal of Composites Science in 2025

A special issue of Journal of Composites Science (ISSN 2504-477X).

Deadline for manuscript submissions: 31 December 2025 | Viewed by 899

Special Issue Editor


grade E-Mail Website
Guest Editor
Department of Innovation Engineering, University of Salento, 73100 Lecce, Italy
Interests: theory of shells, plates, arches, and beams; generalized differential quadrature; FEM; SFEM; WFEM; IGA; advanced composite materials; functionally graded materials; nanomaterials and nanotechnology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

As Editor-in-Chief of the Journal of Composites Science, I am pleased to announce this Special Issue, entitled “Feature Papers in Journal of Composites Science in 2025”. This Special Issue will be a collection of articles from Editorial Board Members, Guest Editors, and Leading Researchers discussing new knowledge or new cutting-edge developments in the science of composites in 2025. Potential topics include but are not limited to the following items:

  • Fiber-reinforced composites;
  • Novel composites;
  • Nanocomposites;
  • Biomedical composites;
  • Energy composites;
  • Modeling, nondestructive evaluation;
  • Processing and manufacturing, properties and performance;
  • Repair, testing, nanotechnology;
  • Physics, chemistry, and mechanics characterization of composites.

Dr. Francesco Tornabene
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Composites Science is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • fiber-reinforced composites
  • novel composites
  • nanocomposites
  • biomedical composites
  • energy composites
  • modeling, nondestructive evaluation
  • processing and manufacturing, properties and performance
  • repair, testing, nanotechnology
  • physics, chemistry, and mechanics characterization of composites

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

24 pages, 1148 KiB  
Article
Three-Dimensional Magneto-Elastic Analysis of Functionally Graded Plates and Shells
by Salvatore Brischetto and Domenico Cesare
J. Compos. Sci. 2025, 9(5), 214; https://doi.org/10.3390/jcs9050214 - 28 Apr 2025
Viewed by 33
Abstract
This work shows a three-dimensional (3D) layerwise model for static and free vibration analyses of functionally graded piezomagnetic materials (FGPM) spherical shell structures where magnetic and elastic fields are completely coupled. The 3D magneto-elastic governing equations for spherical shells are made of the [...] Read more.
This work shows a three-dimensional (3D) layerwise model for static and free vibration analyses of functionally graded piezomagnetic materials (FGPM) spherical shell structures where magnetic and elastic fields are completely coupled. The 3D magneto-elastic governing equations for spherical shells are made of the three equations of equilibrium in three-dimensional form and the three-dimensional divergence equation for the magnetic induction. Governing equations are written in the orthogonal mixed curvilinear reference system (α, β, z) allowing the analysis of several curved and flat geometries (plates, cylindrical shells and spherical shells) thanks to proper considerations of the radii of curvature. The static cases, actuator and sensor configurations and free vibration investigations are proposed. The resolution method uses the imposition of the Navier’s harmonic forms in the two in-plane directions and the exponential matrix methodology in the transverse normal direction. Single-layered and multilayered simply-supported FGPM structures have been investigated. In order to understand the behavior of FGPM structures, numerical values and trends along the thickness direction for displacements, stresses, magnetic potential, magnetic induction and free vibration modes are proposed. In the results section, a first assessment phase is proposed to demonstrate the validity of the formulation and to fix proper values for the convergence of results. Therefore, a new benchmark section is presented. Different cases are proposed for several material configurations, load boundary conditions and geometries. The possible effects involved in this problem (magneto-elastic coupling and effects related to embedded materials and thickness values of the layers) are discussed in depth for each thickness ratio. The innovative feature proposed in the present paper is the exact 3D study of magneto-elastic coupling effects in FGPM plates and shells for static and free vibration analyses by means of a unique and general formulation. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2025)
Show Figures

Figure 1

18 pages, 9576 KiB  
Article
Cold Forming Hybrid Aluminium–Carbon Fibre-Reinforced Polymer Sheets Joined by Mechanical Interlocking
by Núria Latorre, Daniel Casellas, Josep Costa, Eduard Garcia-Llamas and Jaume Pujante
J. Compos. Sci. 2025, 9(5), 204; https://doi.org/10.3390/jcs9050204 - 24 Apr 2025
Viewed by 152
Abstract
Forming hybrid structures into complex shapes is key to address lightweighting of automotive parts. Recently, an innovative joining technique between aluminium and Carbon Fibre-Reinforced Polymer (CFRP) based on mechanical interlocking through sheet punching has been developed. However, scaling up the solution requires the [...] Read more.
Forming hybrid structures into complex shapes is key to address lightweighting of automotive parts. Recently, an innovative joining technique between aluminium and Carbon Fibre-Reinforced Polymer (CFRP) based on mechanical interlocking through sheet punching has been developed. However, scaling up the solution requires the assessment of challenges, such as multi-material forming and joint integrity, after forming operations. Therefore, this work proves the feasibility of forming aluminium–CFRP prepreg panels into complex omega-shaped profiles following a conventional cold-stamping process. Forming without defects was possible even in specimens featuring mechanical joints generated through punching. The effect of the CFRP position (in the inner or the outer side of the formed profile), the number of mechanical joints, the addition of a Glass Fibre-Reinforced Polymer (GFRP) intermediate layer to prevent galvanic corrosion and adequate lubrication on necking, cracking, springback behaviour and the final geometry after curing were studied. Compression tests were performed to assess the mechanical response of the hybrid profile, and the results showed that the addition of CFRP in the aluminium omega profile changed the buckling behaviour from global bending to axial folding, increasing the maximum compression load. Additionally, the presence of mechanical interlocking joints further improved the mechanical performance and led to a more controlled failure due to buckling localization in the geometric discontinuity. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2025)
Show Figures

Figure 1

14 pages, 1706 KiB  
Article
Thermal Stabilization Activities of Metal Oxide γ-Irradiated Styrene–Isoprene–Styrene Nanocomposites
by Traian Zaharescu, Ademar B. Lugāo, Violeta Mangalagiu and Radu Mirea
J. Compos. Sci. 2025, 9(4), 192; https://doi.org/10.3390/jcs9040192 - 17 Apr 2025
Viewed by 203
Abstract
This study provides insights into the stabilization effects of certain oxides (CeO2, Cr2O3, Cd2O3, In2O3, MnO2, MgO, Nd2O3, and Pr2O3 [...] Read more.
This study provides insights into the stabilization effects of certain oxides (CeO2, Cr2O3, Cd2O3, In2O3, MnO2, MgO, Nd2O3, and Pr2O3) in styrene–isoprene–styrene triblock copolymers with respect to neat materials. This study was performed via chemiluminescence (CL), which allowed for the determination of the main parameters characterizing the interphase coexistence: the oxidation induction times, oxidation rates, and onset oxidation temperatures. The improvement in the thermal performances of the pristine and γ-ray-processed samples at a moderate dose was highlighted differently due to the electronic interactions on the particle surface. While the non-isothermal CL measurements pointed to a weaker evolution of oxidation in the studied composites at a higher temperature range over 160 °C, the isothermal CL determinations revealed a delayed start of oxidation, slower oxidation rates, and greater activation energies in the nanocomposite aging patterns. The different individual behaviors of the investigated formulations were ascribed to the dissimilar electronic interactions between the particles and the surrounding matrix, where the oxidation initiators were formed by the molecular fragmentation of the polymer macromolecules. The kinetic features illustrate the influence of the peculiarities due to the electronic interactions. The higher resistance shown by the irradiated samples compared with the non-processed compositions demonstrates the stabilization efficiency of the fillers studied. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2025)
Show Figures

Graphical abstract

17 pages, 14026 KiB  
Article
Analysis of the Deformation Mechanisms of Fabrics Based on rCF Staple Fiber Yarns for Thermoset Composite Applications
by Tobias Georg Lang, Mir Mohammad Badrul Hasan, Anwar Abdkader, Chokri Cherif and Thomas Gereke
J. Compos. Sci. 2025, 9(4), 173; https://doi.org/10.3390/jcs9040173 - 2 Apr 2025
Viewed by 320
Abstract
The draping of textile semi-finished products for complex geometries is still prone to errors, e.g., wrinkles, gaps, and fiber undulations, leading to reduced mechanical properties of the composite. Reinforcing textiles made from carbon fiber (CF) rovings (i.e., endless continuous fibers) can be draped [...] Read more.
The draping of textile semi-finished products for complex geometries is still prone to errors, e.g., wrinkles, gaps, and fiber undulations, leading to reduced mechanical properties of the composite. Reinforcing textiles made from carbon fiber (CF) rovings (i.e., endless continuous fibers) can be draped mainly based on their ability to deform under in-plane shearing. However, CF rovings are hardly stretchable in the fiber direction. These limited degrees of freedom make the production of complex shell-shaped geometries from standard CF-roving fabrics challenging. Contrary to continuous rovings, this paper investigates the processing of spun yarns made of recycled carbon fibers (rCFs), which are discontinuous staple fibers with defined lengths. rCFs are obtained from end-of-life composites or production waste, making them a sustainable alternative to virgin carbon fibers in the high-performance components of, e.g., automobiles, boats, or sporting goods. These staple fiber-spun yarns are considerably more stretchable, which is due to the ability of the individual fibers to slide against each other when deformed, resulting in improved formability of fabrics made from rCF yarns, enabling the draping of much more complex structures. This study aims to develop and characterize woven fabrics based on previous studies of rCF yarns for thermoset composites. In order to investigate staple fiber-spun yarns, a previous micro-scale modeling approach is extended. The formability of fabrics made from those rCF yarns is investigated through experimental forming tests and meso-scale simulations. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2025)
Show Figures

Figure 1

16 pages, 12954 KiB  
Article
A Study on the Charging–Discharging Mechanism of All Solid-State Aluminum–Carbon Composite Secondary Batteries
by Jia-Ying Lin, Bo-Ding Wu and Fei-Yi Hung
J. Compos. Sci. 2025, 9(4), 166; https://doi.org/10.3390/jcs9040166 - 29 Mar 2025
Viewed by 265
Abstract
Aluminum solid-state batteries are emerging as one of the most promising energy storage systems, offering advantages such as low cost and high safety. This study adopts a safe and cost-effective approach by alloying and doping the all-solid-state aluminum-ion battery to enhance its electrochemical [...] Read more.
Aluminum solid-state batteries are emerging as one of the most promising energy storage systems, offering advantages such as low cost and high safety. This study adopts a safe and cost-effective approach by alloying and doping the all-solid-state aluminum-ion battery to enhance its electrochemical performance. This research further explores the electrochemical impacts of these modifications on the performance of solid-state aluminum batteries. In this experiment, aluminum-based anodes were deposited onto nickel foil using the thermal evaporation (TE) method. At the same time, the graphite film (GF) cathode material was enriched with sodium (GFN) through a solution-based process. The system was combined with magnesium silicate solid electrolytes to investigate the all-solid-state aluminum-carbon battery′s structural characteristics and charge–discharge mechanisms. The experimental results demonstrate that the aluminum-coated electrode alloying effects and the graphite film modification significantly improve battery performance. The system achieved a maximum specific capacity of approximately 700 mAh g−1, with a cycle life exceeding 100 cycles. Furthermore, the microstructural characteristics and phase structure of the aluminum evaporation film were confirmed. Analysis of ion transport pathways during the charge–discharge cycles of the all-solid-state aluminum-carbon battery revealed that both aluminum and magnesium ions play critical roles in the electrode processes. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2025)
Show Figures

Figure 1

Back to TopTop