The Impact of Sports Drink Exposure on the Surface Roughness of Restorative Materials: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy and Data Extraction
- -
- For PubMed: (“soft drink” OR “sport drink” OR “sports drink” OR “sport beverage” OR “sports beverage” OR “fruit juice” OR “isotonic beverage” OR “energy beverage” OR “isotonic drink” OR “energy drink”) AND (“dental material” OR “restorative material” OR “composite” OR “glass-ionomer” OR “compomer”);
- -
- For Scopus: TITLE-ABS-KEY ((“soft drink” OR “sport drink” OR “sports drink” OR “sport beverage” OR “sports beverage” OR “fruit juice” OR “isotonic beverage” OR “energy beverage” OR “isotonic drink” OR “energy drink”) AND (“dental material” OR “restorative material” OR “composite” OR “glass-ionomer” OR “compomer”));
- -
- For Web of Science: TS = ((“soft drink” OR “sport drink” OR “sports drink” OR “sport beverage” OR “sports beverage” OR “fruit juice” OR “isotonic beverage” OR “energy beverage” OR “isotonic drink” OR “energy drink”) AND (“dental material” OR “restorative material” OR “composite” OR “glass-ionomer” OR “compomer”));
- -
- For Embase: (“soft drink”: ti,ab,kw OR “sport drink”: ti,ab,kw OR “sports drink”: ti,ab,kw OR “sport beverage”: ti,ab,kw OR “sports beverage”: ti,ab,kw OR “fruit juice”: ti,ab,kw OR “isotonic beverage”: ti,ab,kw OR “energy beverage”: ti,ab,kw OR “isotonic drink”: ti,ab,kw OR “energy drink”: ti,ab,kw) AND (“dental material”: ti,ab,kw OR “restorative material”: ti,ab,kw OR “composite”: ti,ab,kw OR “glass-ionomer”: ti,ab,kw OR “compomer”: ti,ab,kw).
2.2. Quality Assessment and Critical Appraisal for the Systematic Review of Included Studies
3. Results
4. Discussion
4.1. Strengths and Limitations
4.2. Clinical Implications and Future Research Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dipalma, G.; Inchingolo, F.; Patano, A.; Guglielmo, M.; Palumbo, I.; Campanelli, M.; Inchingolo, A.D.; Malcangi, G.; Palermo, A.; Tartaglia, F.C.; et al. Dental Erosion and the Role of Saliva: A Systematic Review. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 10651–10660. [Google Scholar] [CrossRef] [PubMed]
- Donovan, T.; Nguyen-Ngoc, C.; Abd Alraheam, I.; Irusa, K. Contemporary Diagnosis and Management of Dental Erosion. J. Esthet. Restor. Dent. 2021, 33, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Inchingolo, A.M.; Malcangi, G.; Ferrante, L.; Del Vecchio, G.; Viapiano, F.; Mancini, A.; Inchingolo, F.; Inchingolo, A.D.; Di Venere, D.; Dipalma, G.; et al. Damage from Carbonated Soft Drinks on Enamel: A Systematic Review. Nutrients 2023, 15, 1785. [Google Scholar] [CrossRef] [PubMed]
- Mehta, L.K.; Hegde, A.; Thomas, A.; Virdi, M.S. Acidogenic Potential of Packaged Fruit Juices and Its Effect on Plaque and Salivary pH. Int. J. Clin. Pediatr. Dent. 2019, 12, 312–317. [Google Scholar] [CrossRef]
- Reddy, A.; Norris, D.F.; Momeni, S.S.; Waldo, B.; Ruby, J.D. The pH of Beverages in the United States. J. Am. Dent. Assoc. 2016, 147, 255–263. [Google Scholar] [CrossRef]
- Nijakowski, K.; Walerczyk-Sas, A.; Surdacka, A. Regular Physical Activity as a Potential Risk Factor for Erosive Lesions in Adolescents. Int. J. Environ. Res. Public Health 2020, 17, 3002. [Google Scholar] [CrossRef]
- Hengtrakool, C.; Kukiattrakoon, B.; Kedjarune-Leggat, U. Effect of Naturally Acidic Agents on Microhardness and Surface Micromorphology of Restorative Materials. Eur. J. Dent. 2011, 5, 89–100. [Google Scholar]
- Kanzow, P.; Wegehaupt, F.J.; Attin, T.; Wiegand, A. Etiology and Pathogenesis of Dental Erosion. Quintessence Int. 2016, 47, 275–278. [Google Scholar] [CrossRef]
- Nijakowski, K.; Zdrojewski, J.; Nowak, M.; Podgórski, F.; Surdacka, A. Regular Physical Activity and Dental Erosion: A Systematic Review. Appl. Sci. 2022, 12, 1099. [Google Scholar] [CrossRef]
- Lussi, A.; Jaeggi, T.; Zero, D. The Role of Diet in the Aetiology of Dental Erosion. Caries Res. 2004, 38, 34–44. [Google Scholar] [CrossRef]
- Kitasako, Y.; Sasaki, Y.; Takagaki, T.; Sadr, A.; Tagami, J. Age-Specific Prevalence of Erosive Tooth Wear by Acidic Diet and Gastroesophageal Reflux in Japan. J. Dent. 2015, 43, 418–423. [Google Scholar] [CrossRef] [PubMed]
- Al-Samadani, K.H. Effect of Energy Drinks on the Surface Texture of Nanofilled Composite Resin. J. Contemp. Dent. Pract. 2013, 14, 830–835. [Google Scholar] [CrossRef] [PubMed]
- Al-Samadani, K.H. Influence of Energy Beverages on the Surface Texture of Glass Lonomer Restorative Materials. J. Contemp. Dent. Pract. 2017, 18, 937–942. [Google Scholar] [CrossRef]
- Da Silva, M.A.B.; Vitti, R.P.; Sinhoreti, M.A.C.; Consani, R.L.X.; da Silva, J.G., Jr.; Tonholo, J. Evaluation of the Surface Roughness and Microleakage of Dental Composites Exposed to Different Beverages. J. Contemp. Dent. Pract. 2015, 16, 800–804. [Google Scholar] [CrossRef]
- Ilday, N.; Bayindir, Y.Z.; Erdem, V. Effect of Three Different Acidic Beverages on Surface Characteristics of Composite Resin Restorative Materials. Mater. Res. Innov. 2010, 14, 385–391. [Google Scholar] [CrossRef]
- Maganur, P.D.C.; Prabhakar, A.R.; Sugandhan, S.; Namineni, S. Evaluation of Microleakage of RMGIC and Flowable Composite Immersed in Soft Drink and Fresh Fruit Juice: An In Vitro Study. Int. J. Clin. Pediatr. Dent. 2010, 3, 153–161. [Google Scholar] [CrossRef]
- Erdemir, U.; Yildiz, E.; Eren, M.M. Effects of Sports Drinks on Color Stability of Nanofilled and Microhybrid Composites After Long-Term Immersion. J. Dent. 2012, 40, e55–e63. [Google Scholar] [CrossRef]
- Alkhadim, Y.K.; Hulbah, M.J.; Nassar, H.M. Color Shift, Color Stability, and Post-Polishing Surface Roughness of Esthetic Resin Composites. Materials 2020, 13, 1376. [Google Scholar] [CrossRef]
- Ge, K.X.; Quock, R.; Chu, C.-H.; Yu, O.Y. The Preventive Effect of Glass Ionomer Restorations on New Caries Formation: A Systematic Review and Meta-Analysis. J. Dent. 2022, 125, 104272. [Google Scholar] [CrossRef]
- Durrant, L.; Mutahar, M.; Daghrery, A.A.; Albar, N.H.; Alwadai, G.S.; Alqahtani, S.A.; Al Dehailan, L.A.; Abogazalah, N.N.; Alamoudi, N.A.; Al Moaleem, M.M. Clinical Performance of Glass Ionomer Cement in Load-Bearing Restorations: A Systematic Review. Med. Sci. Monit. 2024, 30, e943489. [Google Scholar] [CrossRef]
- Dutra, D.; Pereira, G.; Kantorski, K.; Valandro, L.; Zanatta, F. Does Finishing and Polishing of Restorative Materials Affect Bacterial Adhesion and Biofilm Formation? A Systematic Review. Oper. Dent. 2018, 43, E37–E52. [Google Scholar] [CrossRef] [PubMed]
- Paolone, G.; Mandurino, M.; Scotti, N.; Cantatore, G.; Blatz, M.B. Color Stability of Bulk-Fill Compared to Conventional Resin-Based Composites: A Scoping Review. J. Esthet. Restor. Dent. 2023, 35, 657–676. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.; Bossuyt, P.; Boutron, I.; Hoffmann, T.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.; Akl, E.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar]
- Study Quality Assessment Tools | NHLBI, NIH. Available online: https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools (accessed on 22 August 2020).
- Elmarakby, A.M.; Alanazi, A.M.; Alotaibi, N.; Bahrain, I.A.; Alshamali, R.; Ameer, S.M.; Lsloom, S.; Khaled, H. Evaluation of Surface Roughness of Different Esthetic Restorative Materials after Immersion in Different Acidic Media. Open Access Maced. J. Med. Sci. 2022, 10, 471–476. [Google Scholar] [CrossRef]
- Kolarovszki, B.; Sándor, A.; Szabó, P.; Kopniczky, J.; Frank, D.; Nagy, Á.; Turzó, K. Energy Drinks Alter the Surface Morphology and Roughness of Composites, Fissure Sealants and Titanium: An In Vitro Study. Heliyon 2022, 8, e10764. [Google Scholar] [CrossRef]
- Kose, H.D.; Giray, I.; Boyacioglu, H.; Turkun, L.S. Can Energy Drinks Affect the Surface Quality of Bioactive Restorative Materials? BMC Ora. Health 2024, 24, 1011. [Google Scholar] [CrossRef]
- Kumavat, V.; Raghvendra, S.S.; Vyavahare, N.; Khare, U.; Kotadia, P. Effect of Alcoholic and Non-Alcoholic Beverages on Color Stability, Surface Roughness and Fracture Toughness of Resin Composites: An in Vitro Study. IIOAB J. 2016, 7, 48–54. [Google Scholar]
- Santin, D.C.; Naufel, F.S.; Mondelli, R.F.L.; Piccolotto, A.; Schmitt, V.L. Effect of Sports Drinks on the Surface Properties of Composite Resins After Prolonged Exposure-In Vitro Study. Braz. J. Oral Sci. 2019, 18, e191651. [Google Scholar] [CrossRef]
- Tanthanuch, S.; Kukiattrakoon, B.; Thongsroi, T.; Saesaw, P.; Pongpaiboon, N.; Saewong, S. In Vitro Surface and Color Changes of Tooth-Colored Restorative Materials after Sport and Energy Drink Cyclic Immersions. BMC Oral Health 2022, 22, 578. [Google Scholar] [CrossRef]
- Vaidya, N.; Kumar, P.; Pathak, K.; Punia, S.; Choudhary, A.; Patnana, A. Comparative Evaluation of the Influence of Different Sports/Energy Drinks and Alcoholic Beverages on the Surface Roughness of Three Different Flowable Esthetic Restorative Materials: An in Vitro Analysis. J. Int. Soc. Prev. Community Dent. 2020, 10, 585–590. [Google Scholar] [CrossRef]
- Yazkan, B. Surface Degradation Evaluation of Different Self-Adhesive Restorative Materials after Prolonged Energy Drinks Exposure. J. Esthet. Restor. Dent. 2020, 32, 707–714. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, A.; Nijakowski, K.; Nowakowska, M.; Woś, P.; Misiaszek, M.; Surdacka, A. Influence of Selected Restorative Materials on the Environmental pH: In Vitro Comparative Study. Appl. Sci. 2021, 11, 11975. [Google Scholar] [CrossRef]
- Lehmann, A.; Nijakowski, K.; Jankowski, J.; Donnermeyer, D.; Palma, P.J.; Drobac, M.; Martins, J.F.B.; Pertek Hatipoğlu, F.; Tulegenova, I.; Javed, M.Q.; et al. Awareness of Possible Complications Associated with Direct Composite Restorations: A Multinational Survey Among Dentists from 13 Countries with Meta-Analysis. J. Dent. 2024, 145, 105009. [Google Scholar] [CrossRef] [PubMed]
Parameter | Inclusion Criteria | Exclusion Criteria |
---|---|---|
Population | Dental composite or glass ionomer samples | Samples from other dental materials |
Intervention | Exposure on sport drinks | |
Comparison | Not applicable | |
Outcomes | Determined roughness parameters | Determined other technical or esthetical parameters |
Study design | In vitro studies | Other original articles, literature reviews, case reports, letters to the editor, conference reports |
Published after 1 January 2005 | Not published in English |
Study | Test Group | Control Group | Test Materials | Test Beverages | Control Beverage | Exposure Duration | Outcome Measure | Evaluation Methods | Main Findings |
---|---|---|---|---|---|---|---|---|---|
Al-Samadani, 2013 [12] | 45 | 15 | Composites (n = 60): Filtek Z350 XT (n = 20), Tetric EvoCeram (n = 20), Filtek Z250 XT (n = 20) | Red Bull (n = 15), Bison (n = 15), Power Horse (n = 15) | Distilled water | 1 month (n = 15), 3 months (n = 15), 6 months (n = 15) | Ra in nm | Surface scanning interferometry (Contour GT-K0 BRUKER—USA) | The three resin tested composite materials in the study revealed significant surface roughness changes after 6 months of immersion in the three types of solutions. |
Al-Samadani, 2017 [13] | 45 | 15 | Glass ionomers (n = 60): Ionofil Plus AC (n = 20), GC EQUIA (n = 20), Ketac Molar (n = 20) | Code Red (n = 15), Red Bull (n = 15), Power Horse (n = 15) | Distilled water | 1 day (n = 15), 1 week (n = 15), 1 month (n = 15) | Ra in nm | Surface scanning interferometry (Contour GT-K0 BRUKER—USA) | The three tested materials in this study revealed significant surface roughness changes post periods of immersion time—1 day, 1 week, and 1 month—in all groups of solutions. |
Elmarakby et al., 2022 [25] | 45 | n/a | Composites (n = 45): Ceram.x sphereTEC one (n = 15), Filtek Z350 XT (n = 15), Tetric N-Ceram Refill (n = 15) | Coke Cola (n = 9), orange juice (n = 9), Pepsi (n = 9), Bison (n = 9), lemon juice (n = 9) | n/a | 5 min immersion in beverage, then immersion in distilled water, repeated for 14 days | Ra in µm | Profilometer (Talysurf CLI 1000, Leicester, England) | Lemon juice had an aggressive effect on the surface roughness of the three types of composites. |
Kolarovszki et al., 2022 [26] | 30 | 30 | Composites (n = 30): Grandio Seal (n = 10), Filtek Z250 (n = 10), Estelite Sigma Quick (n = 10) | Burn (n = 15), Hell (n = 15) | Cleaning protocol: soaked for 15 min in 70% ethanol and placed in distilled water for 10 min | 30 min | Ra in nm | AFM (PSIA XE-100 instrument, PSIA Inc., South Korea) | Energy drinks caused a significant change in the surface roughness and morphology of the various dental materials. |
Kose et al., 2024 [27] | 120 | 40 | Glass ionomers (n = 40): Equia Forte HT (n = 40); Composites (n = 40): Charisma Diamond One (n = 40); Bioactive materials (n = 80): Activa BioActive Restorative (n = 40), Activa Presto (n = 40) | Powerade (n = 40), Burn (n = 40), Monster (n = 40) | Distilled water | 7 days | Ra in µm | Surface profilometer (SurfTest SJ-301, Mitutoyo, Tokyo, Japan) | All the materials were affected by the acidic environment. GI exhibited the highest surface roughness of all the immersed energy drinks. |
Kumavat et al., 2016 [28] | 80 | 12 | Composites (n = 92): Tetric N-Ceram (n = 46), G–aenial (n = 46) | Sparkling wine (n = 20), Jamun juice (n = 20), Red Bull (n = 20), Cola drink (n = 20) | Distilled water | 10 min immersion in beverage, then immersion in distilled water, repeated for 28 days | Ra in µm | Profilometer, Hommel Tester T500 (Hommelwerke GmbH) | Both materials became stained and rougher after they were subjected to the immersion regimen. This can be ascribed to the capability of acidic media to soften resin-based restorative materials. |
Santin et al., 2019 [29] | 40 | 20 | Composites (n = 60): Filtek Z350 (n = 30), Empress Direct (n = 30) | Maltodextrin (n = 20), whey protein (n = 20) | Distilled water | Distilled water—1 week; Maltodextrin—renewed 2× daily for 22.5 days; whey protein—renewed 2× daily for 7.5 days + 15 days in distilled water | Ra in µm | Surfcorder SE1700 surface roughness measuring instrument (Kosaka Corp, Tokyo, Japan) | The results showed that the composite resins exposed to whey protein were mostly affected, potentially for being protein-based. |
Tanthanuch et al., 2022 [30] | 96 | 48; + 3 samples for surface micromorphology examination | Composites (n = 98): Filtek One Bulk Fill Posterior Restorative (n = 49), Premise (n = 49); Glass ionomers (n = 49): Ketac Universal (n = 49) | Sponsor Sport drink (n = 48), M-150 energy drink (n = 48) | Distilled water | 7 days, 14 days | Ra in µm | Profilometer (model SE2300, Surfcorder, Kosaka Laboratory, Tokyo, Japan) | The glass ionomer restorative material had a greater increase in surface roughness than that of nanohybrid and bulk-fill resin composite, respectively. |
Vaidya et al., 2020 [31] | 180 | 30 | Giomer (n = 70), compomer (n = 70), composite (n = 70) | Gatorade (n = 30), Red Bull (n = 30), Sting (n = 30), beer (n = 30), vodka (n = 30), whiskey (n = 30) | Distilled water | 5 min immersion in beverage, then immersion in artificial saliva, repeated for 30 days | Ra in µm | Profilometry (Surftest SJ-210, MITUTOYO) | Composites showed minimum surface roughness followed by Giomer, whereas compomers showed the maximum surface roughness. |
Yazkan, 2020 [32] | 117 | 39 | Alkasite (n = 52): Cention N (n = 52); Glass ionomer (n = 52): Equia Forte (n = 52); Glass carbomer (n = 52): GCP Fill (n = 52) | Red Bull (n = 39), Burn (n = 39), Coca-cola (n = 39) | Distilled water | Immersed three times daily for 5 min, aged for 1 day, 1 week, and 1 month | Ra in µm | 3D non-contact optical profilometer (PS50 Nanovea, 6 Morgan Ste 156, Irvine, California) | All three self-adhesive materials were similarly affected by the same beverage. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Podgórski, F.; Musyt, W.; Nijakowski, K. The Impact of Sports Drink Exposure on the Surface Roughness of Restorative Materials: A Systematic Review. J. Compos. Sci. 2025, 9, 234. https://doi.org/10.3390/jcs9050234
Podgórski F, Musyt W, Nijakowski K. The Impact of Sports Drink Exposure on the Surface Roughness of Restorative Materials: A Systematic Review. Journal of Composites Science. 2025; 9(5):234. https://doi.org/10.3390/jcs9050234
Chicago/Turabian StylePodgórski, Filip, Wiktoria Musyt, and Kacper Nijakowski. 2025. "The Impact of Sports Drink Exposure on the Surface Roughness of Restorative Materials: A Systematic Review" Journal of Composites Science 9, no. 5: 234. https://doi.org/10.3390/jcs9050234
APA StylePodgórski, F., Musyt, W., & Nijakowski, K. (2025). The Impact of Sports Drink Exposure on the Surface Roughness of Restorative Materials: A Systematic Review. Journal of Composites Science, 9(5), 234. https://doi.org/10.3390/jcs9050234