Synthesis and Characterization of YSZ/Si(B)CN Ceramic Matrix Composites in Hydrogen Combustion Environment
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Liquid Polymer Precursor for Si(B)CN
2.3. Preparation of YSZ/Si(B)CN Ceramics Matrix Composites
2.4. Hydrogen Torch Test
2.5. Material Characterization
3. Results and Discussion
3.1. Microstructural Analysis
3.2. Density of YSZ/Si(B)CN
3.3. XRD Analysis of YSZ/Si(B)CN
3.4. NMR Characterization of YSZ/Si(B)CN
3.5. High-Temperature Stability
3.6. Results of Hydrogen Torch Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fankhauser, S.; Smith, S.M.; Allen, M.; Axelsson, K.; Hale, T.; Hepburn, C.; Kendall, J.M.; Khosla, R.; Lezaun, J.; Mitchell-Larson, E.; et al. The meaning of net zero and how to get it right. Nat. Clim. Change 2022, 12, 15–21. [Google Scholar] [CrossRef]
- Acar, C.; Bicer, Y.; Demir, M.E.; Dincer, I. Transition to a new era with light-based hydrogen production for a carbon-free society: An overview. Int. J. Hydrogen Energy 2019, 44, 25347–25364. [Google Scholar] [CrossRef]
- Yu, X.; LeBlanc, S.; Sandhu, N.; Wang, L.; Wang, M.; Zheng, M. Decarbonization potential of future sustainable propulsion—A review of road transportation. Energy Sci. Eng. 2024, 12, 438–455. [Google Scholar] [CrossRef]
- Blanco, D.; Rivera, Y.; Berna-Escriche, C.; Muñoz-Cobo, J.L. Economy decarbonization using green hydrogen and electricity, forecasts and sensitivity analysis for the Canarian Islands in 2040. J. Energy Storage 2024, 80, 110232. [Google Scholar] [CrossRef]
- Verhelst, S.; Wallner, T. Hydrogen-fueled internal combustion engines. Prog. Energy Combust. Sci. 2009, 35, 490–527. [Google Scholar] [CrossRef]
- Fosudo, T.; Kar, T.; Windom, B.; Olsen, D. Low-carbon fuels for spark-ignited engines: A comparative study of compressed natural gas and liquefied petroleum gas on a CFR engine with exhaust gas recirculation. Fuel 2024, 360, 130456. [Google Scholar] [CrossRef]
- Schwarz, S.; Daurer, G.; Gaber, C.; Demuth, M.; Prieler, R.; Hochenauer, C. Experimental investigation of the combustion characteristics in oxy-fuel combustion of hydrogen-enriched natural gas on a semi-industrial scale. Int. J. Hydrogen Energy 2024, 49, 323–337. [Google Scholar] [CrossRef]
- Opeka, M.M.; Talmy, I.G.; Zaykoski, J.A. Oxidation-based materials selection for 2000 °C + hypersonic aerosurfaces: Theoretical considerations and historical experience. J. Mater. Sci. 2004, 39, 5887–5904. [Google Scholar] [CrossRef]
- Sun, J.; Ye, D.; Zou, J.; Chen, X.; Wang, Y.; Yuan, J.; Liang, H.; Qu, H.; Binner, J.; Bai, J. A review on additive manufacturing of ceramic matrix composites. J. Mater. Sci. Technol. 2023, 138, 1–16. [Google Scholar] [CrossRef]
- Alvi, S.A.; Akhtar, F. High temperature tribology of polymer derived ceramic composite coatings. Sci. Rep. 2018, 8, 15105. [Google Scholar] [CrossRef]
- Zhang, Z.; Zeng, F.; Han, J.; Luo, Y.; Xu, C. Synthesis and characterization of a new liquid polymer precursor for Si–B–C–N ceramics. J. Mater. Sci. 2011, 46, 5940–5947. [Google Scholar] [CrossRef]
- Xu, H.; Peng, Y.; Wei, Z.; Wang, M.; Lia, A.; Shuaia, S.; Luan, X. Oxidation behavior of 3D SiCf/SiBCN composites at 800–1200 °C. J. Eur. Ceram. Soc. 2021, 41, 148–157. [Google Scholar] [CrossRef]
- Viard, A.; Fonblanc, D.; Lopez-Ferber, D.; Schmidt, M.; Lale, A.; Durif, C.; Balestrat, M.; Rossignol, F.; Weinmann, M.; Riedel, R.; et al. Polymer Derived Si–B–C–N Ceramics: 30 Years of Research. Adv. Eng. Mater. 2018, 20, 1800360. [Google Scholar] [CrossRef]
- Kong, J.; Wang, M.; Zou, J.; An, L. Soluble and Meltable Hyperbranched Polyborosilazanes toward High-Temperature Stable SiBCN Ceramics. ACS Appl. Mater. Interfaces 2015, 7, 6733–6744. [Google Scholar] [CrossRef]
- Lee, S.-H.; Weinmann, M. Cfiber/SiCfiller/Si–B–C–Nmatrix composites with extremely high thermal stability. Acta Mater. 2009, 57, 4374–4381. [Google Scholar] [CrossRef]
- Jia, Y.; Ji, X.; Chen, S.; Gou, Y.; Li, Y.; Hu, H. High-temperature properties and interface evolution of C/SiBCN composites prepared by precursor infiltration and pyrolysis. J. Eur. Ceram. Soc. 2019, 39, 4645–4653. [Google Scholar] [CrossRef]
- Lu, B.; Zhang, Y. Oxidation behavior of SiC–SiBCN ceramics. Ceram. Int. 2015, 41, 1023–1030. [Google Scholar] [CrossRef]
- Datasheet of YSZ Product; Zircar Zirconia, Inc.: Florida, NY, USA; Available online: https://www.zircarzirconia.com/applications (accessed on 1 September 2025).
- Saremia, M.; Afrasiabi, A.; Kobayashi, A. Microstructural analysis of YSZ and YSZ/Al2O3 plasma sprayed thermal barrier coatings after high temperature oxidation. Surf. Coat. Technol. 2008, 202, 3233–3238. [Google Scholar] [CrossRef]
- Keyvani, A.; Saremi, M.; Sohi, M.H. Oxidation resistance of YSZ-alumina composites compared to normal YSZ TBC coatings at 1100 °C. J. Alloys Compd. 2011, 509, 8370–8377. [Google Scholar] [CrossRef]
- Li, D.; Yang, Z.; Jia, D.; Duan, X.; He, P.; Zhou, Y. Ablation behavior of graphene reinforced SiBCN ceramics in an oxyacetylene combustion flame. Corros. Sci. 2015, 100, 85–100. [Google Scholar] [CrossRef]
- Liang, B.; Yang, Z.; Li, Y.; Yuan, J.; Jia, D.; Zhou, Y. Ablation behavior and mechanism of SiCf/Cf/SiBCN ceramic composites with improved thermal shock resistance under oxyacetylene combustion flow. Ceram. Int. 2015, 41, 8868–8877. [Google Scholar] [CrossRef]
- Ding, Q.; Ni, N.; Ni, D.; Ni, Z.; Jiang, Y.; Chen, B.; Chen, X.; Lu, J.; Niu, Y.; Zhou, H.S. Thermal damage and microstructure evolution mechanisms of Cf/SiBCN composites during plasma ablation. Corros. Sci. 2020, 169, 108621. [Google Scholar] [CrossRef]
- Kubota, Y.; Yano, M.; Inoue, R.; Kogo, Y.; Goto, K. Oxidation behavior of ZrB2-SiC-ZrC in oxygen-hydrogen torch environment. J. Eur. Ceram. Soc. 2018, 38, 1095–1102. [Google Scholar] [CrossRef]
- Deb, J.B.; Varela, C.; Faysal, F.; Maiti, C.; Gou, J. Deep Artificial Neural Network Modeling of the Ablation Performance of Ceramic Matrix Composites in the Hydrogen Torch Test. J. Compos. Sci. 2025, 9, 239. [Google Scholar] [CrossRef]
- Chawla, K.K. Ceramic Matrix Composites; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Fua, L.; Wang, B.; Xia, W. New insights into the formation mechanism of zircon in a ZrO2-SiO2 nanocrystalline glass-ceramic: A TEM study. Ceram. Int. 2022, 48, 27097–27105. [Google Scholar] [CrossRef]
- Dillon, R.P.; Mecartney, M.L. Dynamic formation of zircon during high temperature deformation of zirconia-silica composites with alumina additions. J. Mater. Sci. 2007, 42, 3537–3543. [Google Scholar] [CrossRef]
Properties and Characteristics | ZYW-30A |
Nominal thickness (mm) | 0.635 |
Bulk density (g/cc) | 0.94 |
Porosity | 83% |
Melting point (°C) | 2590 |
Continuous maximum use limit (°C) | 2200 |
Specific heat at 93 °C (J/kgK) | 544 |
Specific heat at 2370 °C (J/kgK) | 754 |
Element | Si(B)CN | YSZ | YSZ/Si(B)CN | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Weight % | Weight % Error | Atom % | Atom % Error | Weight % | Weight % Error | Atom % | Atom % Error | Weight % | Weight % Error | Atom % | Atom % Error | |
Si K | 26.7 | ±0.2 | 14.9 | ±0.1 | 6.2 | ±0.2 | 8.9 | ±0.3 | ||||
B K | 13.4 | ±0.7 | 19.4 | ±1.0 | 2.0 | ±0.1 | 7.5 | ±0.4 | ||||
C K | 16.7 | ±0.5 | 21.7 | ±0.7 | 1.2 | ±0.1 | 5.1 | ±0.5 | 4.5 | ±0.1 | 14.8 | ±0.5 |
N K | 11.4 | ±0.6 | 12.7 | ±0.6 | 1.5 | ±0.3 | 4.3 | ±0.9 | ||||
O K | 31.9 | ±0.3 | 31.3 | ±0.3 | 16.0 | ±0.2 | 49.7 | ±0.6 | 13.1 | ±0.2 | 32.7 | ±0.5 |
Y L | 8.2 | ±0.6 | 4.6 | ±0.4 | ||||||||
Zr L | 74.6 | ±1.1 | 40.7 | ±0.6 | 72.7 | ±1.1 | 31.9 | ±0.5 | ||||
Total | 100 | 100 | 100 | 100 | 100 | 100 |
Sample | Si(B)CN | YSZ | YSZ/Si(B)CN |
---|---|---|---|
Density (g/cm3) | 1.55 ± 0.20 | 3.42 ± 0.19 | 3.15 ± 0.09 |
Element | Weight % | Weight % Error | Atom % | Atom % Error |
---|---|---|---|---|
B K | 2.3 | ±0.1 | 7.0 | ±0.4 |
C K | 6.2 | ±0.2 | 16.7 | ±0.5 |
N K | 1.0 | ±0.4 | 2.3 | ±0.8 |
O K | 22 | ±0.2 | 44.6 | ±0.5 |
Si K | 6.4 | ±0.2 | 7.4 | ±0.3 |
Zr L | 62.2 | ±1.0 | 22.1 | ±0.4 |
Total | 100 | 100 |
Element | Weight % | Weight % Error | Atom % | Atom % Error |
---|---|---|---|---|
B K | 4.0 | ±0.2 | 9.1 | ±0.5 |
C K | 9.1 | ±0.2 | 18.9 | ±0.4 |
N K | 1.1 | ±0.4 | 1.9 | ±0.7 |
O K | 26.2 | ±0.3 | 40.7 | ±0.4 |
Si K | 21.5 | ±0.3 | 19.0 | ±0.2 |
Zr L | 38.2 | ±1.0 | 10.4 | ±0.3 |
Total | 100 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Maiti, C.; Faysal, F.; Deb, J.B.; Gou, J. Synthesis and Characterization of YSZ/Si(B)CN Ceramic Matrix Composites in Hydrogen Combustion Environment. J. Compos. Sci. 2025, 9, 537. https://doi.org/10.3390/jcs9100537
Wang Y, Maiti C, Faysal F, Deb JB, Gou J. Synthesis and Characterization of YSZ/Si(B)CN Ceramic Matrix Composites in Hydrogen Combustion Environment. Journal of Composites Science. 2025; 9(10):537. https://doi.org/10.3390/jcs9100537
Chicago/Turabian StyleWang, Yiting, Chiranjit Maiti, Fahim Faysal, Jayanta Bhusan Deb, and Jihua Gou. 2025. "Synthesis and Characterization of YSZ/Si(B)CN Ceramic Matrix Composites in Hydrogen Combustion Environment" Journal of Composites Science 9, no. 10: 537. https://doi.org/10.3390/jcs9100537
APA StyleWang, Y., Maiti, C., Faysal, F., Deb, J. B., & Gou, J. (2025). Synthesis and Characterization of YSZ/Si(B)CN Ceramic Matrix Composites in Hydrogen Combustion Environment. Journal of Composites Science, 9(10), 537. https://doi.org/10.3390/jcs9100537