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Abstract: In recent years, there has been increasing interest in new materials such as ceramic
matrix composites (CMCs) for power generation and aerospace propulsion applications
through hydrogen combustion. This study employed a deep artificial neural network
(DANN) model to predict the ablation performance of CMCs in the hydrogen torch test
(HTT). The study was conducted in three phases to increase the accuracy of the model’s
predictions. Initially, to predict the thermal behavior of ceramic composites, two linear
machine learning models were used known as Lasso and Ridge regression. In the second
step, four decision tree-based ensemble machine learning models, namely random forest,
gradient boosting regression, extreme gradient boosting regression, and extra tree regres-
sion, were used to improve the prediction accuracy metrics, including root mean square
error (RMSE), mean absolute error (MAE), correlation coefficient (R2 score), and mean
absolute percentage error (MAPE), relative to the previously introduced linear models.
Finally, to forecast the thermal stability of CMCs with time, an optimized DANN model
with two hidden layers having rectified linear unit activation function was developed.
The data collection procedure involved preparing CMCs with continuous Yttria-Stabilized
Zirconia (YSZ) fibers and silicon carbide (SiC) matrix using a polymer infiltration and
pyrolysis (PIP) technique. The samples were exposed to a hydrogen flame at a high heat
flux of 183 W/cm2 for a duration of 10 min. A good agreement between the DANN model’s
predictions and experimental data with an R2 score of 0.9671, RMSE of 16.45, an MAE of
14.07, and an MAPE of 3.92% confirmed the acceptability of the developed neural network
model in this study.

Keywords: ceramic matrix composites; hydrogen torch test; machine learning; deep artificial
neural network; ensemble machine learning; linear machine learning

1. Introduction
Ablation resistance of materials is important because it allows them to preserve struc-

tural integrity and protect underlying components when exposed to severe temperatures
and oxidative conditions [1]. This feature is essential in high-temperature applications such
as aerospace propulsion systems, thermal protection systems (TPSs) for space vehicles,
missile nozzles, and hypersonic flight structures. Under these applications, materials are
subjected to high heat fluxes, rapid temperature fluctuations, and chemically adverse sur-
roundings. Without good ablation resistance, materials could decay, corrode, or collapse
catastrophically, creating risks and endangering mission success [2].
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Ceramic matrix composites (CMCs) are the most suitable material for extreme con-
ditions due to their remarkable thermal stability [3]. High melting temperatures, strong
resistance to oxidation, corrosion, ablation, little creep, and advantageous thermal cycling
behavior are some of the characteristics of CMCs [4]. As a result, CMCs have a significant
amount of ability to satisfy these requirements to qualify them to be used in hydrogen
combustion engines. CMCs and other high-temperature ceramics are being explored for
applications requiring resilience at elevated temperatures. They are traditionally made by
the melt infiltration technique. Nevertheless, the large porosity and brittle structures of
CMCs made with this technique make them unable to endure strong mechanical and ther-
mal demands. Alternatively, continuous fibers are used to reinforce the polymer-derived
ceramic matrix, resulting in ceramic matrix composites with enhanced fracture toughness.

The main distinction of hydrogen flame from that of acetylene is the flame temper-
ature. Hydrogen flame has an adiabatic flame temperature of 2207 ◦C [5]. On the other
hand, the oxy-acetylene torch has an adiabatic flame temperature of 3500 ◦C [6]. While the
oxy-acetylene torch test reaches higher flame temperatures, the hydrogen torch test (HTT) is
more representative of combustion conditions in hydrogen-fueled systems, providing rele-
vant data for applications in hydrogen-based power generation or propulsion. Furthermore,
hydrogen offers more variety and precision in industrial applications and can be more
affordable, particularly when produced from renewable energy sources. Thus, our study
intended to find the applicability of CMC in a hydrogen gas turbine engine by exposing
the material against HTT and observing its effect through machine learning modeling.

In recent years, materials informatics has rapidly expanded into a variety of material
domains, including ceramic matrix composite materials [7]. Machine learning has the
potential to reduce labor and material costs when compared to traditional experimental
procedures [8–10]. Additionally, it can also speed up numerical methods by training on
experimental results [11–13]. Therefore, it is possible to predict mechanical and thermal
characteristics of composite materials by using machine learning (ML) techniques [14].
These algorithms are very good at finding patterns and connections within datasets, which
helps them to respond correctly to novel and unexpected inputs or to generate precise
predictions [15,16]. Machine learning’s capacity to learn from data, generalize to new
circumstances, and provide dependable results without explicit instructions is one of its
core strengths [17,18]. Zhang et al. [19] emphasizes the rising importance of ML and data-
driven techniques in materials science and engineering, notably for expediting material
discovery, design, and optimization. It addresses breakthroughs in inverse design, phase
stability modeling, and thermoelectric material prediction, demonstrating how generative
models and computational tools supplement traditional approaches for exploring novel
materials and optimizing their characteristics for a variety of applications.

Yuan et al. [20] used regression machine models based on Ridge and Lasso to forecast
the cross-ply composite laminates’ equivalent axial modulus when they showed matrix
cracking. The impact-buckling reactions of double-strap adhesive-bonded joints (ABJs)
with carbon fiber reinforced polymer (CFRP) straps, sandwich composite adherends, and
room-cured structural epoxy are examined by Mottaghian et al. [21]. The axial impact
behaviors of the joints at energy levels of 5J, 10J, and 20J were observed by experimental
tests. To mimic failure mechanisms, a finite element model was created and verified against
experimental data utilizing continuum and zero-thickness cohesive elements. Furthermore,
13 design characteristics impacting the dynamic reactions of the ABJs were taken into con-
sideration for developing machine learning models deep neural networks. Yuan et al. [22]
developed a data-driven method that makes use of a multi-layer perceptron (MLP) algo-
rithm and pixelated stacking sequence to forecast stiffness loss caused by matrix cracking
in laminated composites. To determine the structure-property relationship of polymer
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nanocomposites, Baek et al. [18] designed two different types of deep neural networks
(DNNs). They showed that DNNs perform better than traditional models when assess-
ing the electromechanical properties of polypropylene matrix composites with dispersed
spherical SiC nanoparticles. Remarkably, a straightforward graph convolution network
outperformed a sophisticated neural network in terms of efficiency and usability, demon-
strating its appropriateness for evaluating nanoparticle aggregation and dispersion while
maintaining accuracy. By reducing the need for experiments, Shi et al. [23] attempted to
improve material design by using a machine learning technique for developing an efficient
prediction model for shielding effectiveness in carbon-based conductive particles/polymer
nanocomposites. The final prediction model, which is based on a Weighted Average En-
semble of five base models, performs better than the individual models (Kernel ridge
regression, support vector machines, random forest regression, extra tree regression, and
gradient boosting trees) and offers important insights into key factors influencing EMI,
helping to direct the development of new materials and lower expenses. Despite the ad-
vantages of being lightweight and strong, CFRPs have a complicated design parameter
space, which makes typical optimization techniques expensive and labor-intensive. A ma-
chine learning-assisted multiscale modeling approach was suggested as a solution to this
problem. It effectively predicts the mechanical properties of CFRPs by fusing inexpensive
ML models with molecular dynamics simulations, demonstrating good agreement with
experimental data, and providing a workable method for CFRP design. Nguyen et al. [24]
designed an artificial neural network (ANN) model with 10,419 data points from cone
calorimetry measurements on 14 sets of laminates based on phenol with different flame
retardants to predict the heat release characteristics of composite materials. Without having
to take into consideration mechanistic interactions, the Bayesian regularized ANN with
Gaussian prior (BRANNGP) outperformed Multiple Linear Regression (MLR) in terms
of predictive accuracy. It was able to accurately estimate the heat release rate-time curve,
peak heat release value, and total heat release. Six machine learning regression techniques,
including decision trees, random forests, support vector machines, gradient boosting,
extreme gradient boosting, and adaptive boosting, were developed by Deb et al. [25] to
predict the ablation performance of ceramic matrix composites in the oxy-acetylene torch
test. Gradient boosting and extreme gradient boosting models outperformed the others,
indicating that machine learning is a useful tool for forecasting the ablation behavior of
ceramic matrix composites.

Ablation performance refers to the ceramic matrix composite’s heat shielding or
thermal insulation performance when exposed to a hydrogen torch. Our study was to
determine heat shielding or thermal insulation effectiveness of CMCs indirectly by measur-
ing back-surface temperatures during exposure. Most of the previous literature utilized
oxy-acetylene torch tests for analyzing the ablation performance of CMCs. To predict the
structural and electro-mechanical characteristics of composite materials, machine learning
prediction models were widely used in the literature [26,27]. Predicting the thermal char-
acteristics of CMCs at very high temperatures, however, is a field of research that needs
further study. Evaluating the durability of high-temperature ceramics in extreme environ-
mental conditions such as HTT requires the prediction of their thermal stability in those
conditions. Therefore, this study investigated applications of YSZ fiber mats to reinforce
SiC and expose them to a hydrogen flame torch test. The purpose was to collect experi-
mental data that would offer valuable insights into the thermal performance and structural
integrity of ceramic matrix composites when exposed to high heat flux through data driven
modeling. Although the back-surface temperature distribution of CMCs was the primary
input variable in our study, the thermal response of YSZ/SiC ceramic matrix composites
under HTT was characterized by highly nonlinear deterioration processes. Rapid changes
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in thermal gradients produce complicated temperature fluctuations that linear regression
or ensemble tree-based models could not effectively describe [28]. Therefore, an optimized
DANN model was developed as a first attempt in the literature to evaluate and predict
the ablation performance of CMCs in HTTs. Three different stages were considered in the
improvement of machine learning models’ prediction accuracy. To forecast the thermal
behavior of ceramic composites in hydrogen exposed torch test, two linear machine learn-
ing models were first used Lasso and Ridge regression. The objective of the second stage
was to improve the prediction accuracy above the linear regression models by utilizing
four decision tree-based ensemble machine learning models including random forest (RF),
gradient boosting regression (GBR), extreme gradient boosting regression (XGBR), and
extra tree regression (ETR). Finally, to forecast the ablation performance of the CMCs,
an improved DANN model with two hidden layers was developed. Then the model’s
accuracy was confirmed by the significant agreement between the DANN model’s thermal
data predictions and the experimental data. This work presented a DANN model-based
innovative framework for the ablation performance prediction model of CMCs under HTT.

2. Materials and Methods
2.1. Material Selection

Yttria-Stabilized Zirconia (YSZ) twill-weave fiber mats were obtained from Zircar
Zirconia, Inc. (Florida, NY, USA), along with a YSZ rigidizing agent made of sub-micron
YSZ particles in an aqueous acetate solution. Rigidizing agent was required to improve
the structural robustness of the porous preform due to the intrinsic low tensile strength
of the raw ceramic fiber. Eight layers of YSZ twill-weave fiber mats were immersed in a
YSZ rigidizer solution and then distributed evenly using a serrated roller. The layers were
manually stacked in a [0]8 sequence using a hand layup technique. The laminate was dried
in an autoclave at 149 ◦C for 2 h with a vacuum of −20 inHg. This method produced a
porous preform structure made entirely of YSZ, but with substantially higher mechanical
integrity than the individual fiber mats. Furthermore, Starfire Systems, Inc. (Schenectady,
NY, USA) provided the SMP-10 preceramic polymer, which was used as the ceramic
precursor. The SMP-10, a commercially available polycarbosilazane precursor, served as the
principal matrix-forming component in the composite. The fiber mats were impregnated
with the liquid SMP-10 resin using vacuum-assisted impregnation, which ensured complete
penetration of the porous fiber architecture. Following impregnation, the composites went
through a pyrolysis stage in an inert atmosphere using Nitrogen (N) at 950 ◦C, where
they were kept for 2 h after heating at a rate of 2.6 ◦C/min. After the 2-h hold, they were
cooled to room temperature at a rate of 2.6 ◦C per minute. At the time, the SMP-10 was
pyrolyzed to a silicon carbide (SiC) ceramic matrix. The polymer infiltration and pyrolysis
(PIP) procedure was repeated to improve matrix density and decrease porosity, resulting
in a strong CMC structure. Tables 1 and 2 list all the characteristics of the YSZ materials
and rigidizing agents respectively as disclosed by the manufacturer. Because of the high
concentration of zirconium oxide, which provides excellent resilience in high-temperature,
oxidizing conditions, YSZ components are recognized for their remarkably high melting
points and service temperatures [29]. As a result, these materials are commonly used as
thermal barrier coatings.
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Table 1. Material properties of the YSZ rigidizing agent.

YSZ Rigidizer (ZR-RIG)

Melting Point (◦C) 2590

Specific Gravity 1.87

Solids Content (Weight %) 50

Cured Nominal Chemical Composition (Weight %)

ZrO2 90

Y2O3 10

Trace Inorganics <0.3

Table 2. Material properties of the YSZ twill-woven fiber.

YSZ Woven Fiber (ZYW-15)

Nominal Thickness (mm) 0.381

Bulk Density (g/cc) 1.02

Porosity (%) 87

Melting Point (◦C) 2590

Tensile Strength (g/cm width) 154

Continuous Maximum Use Limit (◦C) 2200

2.2. Experimental Setup

A bench-top torch testing rig was designed and built to expose the CMC samples
to a hydrogen flame of constant heat flux as shown in Figure 1. A circular foil heat flux
gauge (TG 1000-1, Vatell Corporation, Christiansburg, VA, USA) was used to map the heat
flux output of the torch setup at various distances from the torch tip. The CMC samples
were loaded onto the sample holder and held in place by a stainless-steel faceplate with
a circular opening slightly smaller than the diameter of the samples. A spring-loaded
K-type thermocouple (OMEGA Engineering, Norwalk, CT, USA) was positioned on the
center of the back side of the sample to measure back-face temperature, while an infrared
radiation thermometer (IR-HAQNE, CHINO Corporation, Torrance, CA, USA) was used
to record the temperature of the flame-exposed front face of the sample. The sample was
loaded into the holder and pushed the maximum distance from the torch tip on the sliding
track. Additionally, a thick stainless-steel plate was placed in between the torch and sample
to protect the sample from any pre-heating while the torch was ignited, and the flame
allowed it to stabilize. After the flame was stabilized and the data acquisition systems got
ready, the stainless-steel plate was removed, and the sample holder was pushed along the
sliding track before stopping 20 mm from the tip of the torch, where the flame imparted a
heat flux of 183 W/cm2. Then the samples were exposed to the hydrogen flame torch for
10 continuous minutes before the test ended.

Testing was conducted following the ASTM E285 standard [30]. In the HTT, the CMC
sample was moved towards the flame at a regulated pace of 5 cm/s before stopping 20 mm
from the tip of the torch and the constant heat flux (183 W/m2) was produced to the CMC
surface. To precisely quantify the thermal energy given to the CMC material and assure
the consistency throughout the torch experiments, a heat flux gauge was used to profile
the output of the hydrogen torch at set distances from the nozzle, ranging from 10 mm
to 120 mm in 10 mm increments. Before each test session, the heat flux was revalidated
at the 20 mm testing distance. This distance, with a heat flux of 183 W/cm2, was chosen
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to provide sufficient thermal energy to the sample while retaining clear IR thermometer
visibility and preventing flame disturbance.

The highest temperature attained throughout the test was 1412 ◦C, which was reliably
recorded at the CMC surface under steady-state circumstances. After three experimental
runs, it was found that the optimal torch test condition was to position the sample 20 mm
from the hydrogen torch tip, resulting in a measured heat flux of 183 W/cm2. This arrange-
ment was chosen because it produced strong thermal loading while keeping a consistent
flame and providing a clear line of sight for the infrared thermometer. The torch used
45 psi of hydrogen and 23 psi of air to produce a flame temperature of roughly 2000 ◦C in
fuel-rich circumstances.
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This optimal environment produced consistent and dependable data for the devel-
opment of our machine-learning models, which is the major goal of this study. Therefore,
the machine learning models were developed on this single set of optimized experimental
findings to provide the data consistency required for successful machine learning model
training. The samples before and after the HTT are shown in Figure 2.
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2.3. Data Preparation

Machine learning models greatly benefit from preprocessing experimental data, which
includes cleaning and organizing it. This is because better data quality leads to more
efficient extraction of insightful information. Missing values, noise, inconsistencies, and
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redundancy are just a few of the many problems that can trouble raw experimental data
and negatively impact subsequent procedures. To improve the predicted accuracy of the
machine learning models in this study, we removed three missing HTT thermal data. The
“train-test split methodology” was employed in this research to evaluate the performance of
the developed machine learning models [21]. The dataset was split into two subsets: a train-
ing dataset, which contains 70% of the total data (417 sets), was used to train the machine
learning models, and a testing dataset, which contains the remaining 30% (180 sets), was
used to assess the accuracy of the models. This method was used to estimate the model’s
performance using new data that was not used for training. Cross-validation was used
to mitigate potential overfitting problem [22]. With this method, the data were divided
into a predetermined number of folds. The model was then trained on the remaining folds
as a validation set, and its accuracy and generalization performance were assessed [25].
We utilized a five-fold cross-validation approach to evaluate the overall efficacy of the
machine learning models for this research. The training set is split up into equal-sized
groups, at random. Five trials were used in a five-fold cross-validation in this investiga-
tion. The model was trained on four of the five folds for each trial, while the fifth fold
was used for evaluation [23]. The highest scores of these five assessments were used in
developing the final model. In addition, the model hyperparameters were chosen and
determined using a grid search technique. All eight machine learning models received the
same training methodology.

2.4. Deep Artificial Neural Networks

Artificial neural networks (ANNs) are computational models that simulate how neu-
rons interact in the brain, drawing inspiration from biological neural networks. These
networks are made up of linked components called neurons that function similarly to
their biological counterparts in terms of communication with the outside world or other
neurons. An input layer, one or more hidden layers, and an output layer make up the usual
architecture of an ANN [31]. Neurons in hidden layers process the incoming data; these
neurons are completely linked to networks since they are connected to all other neurons in
the preceding and following layers. The model’s predictions are generated by the output
layer. An ANN is called a deep neural network (DNN) if it has more than two hidden lay-
ers [32,33]. One well-known ANN type is the multi-layer perceptron (MLP) neural network.
MLP can handle non-linear regression issues because each neuron’s activation function in
the hidden layers performs non-linear mapping of input data. Increasing the number of
hidden layers and neurons within each layer will increase the model’ s complexity [34,35].

The schematic layout of the DANN model developed for this study is shown in
Figure 3. As this is the first research to use the MLP neural network model to forecast the
ablation performance of ceramic matrix composites in a HTT, several factors are investi-
gated for the model. A whole cycle of MLP training utilizing the whole training dataset
is called an epoch, and the maximum number of epochs is assigned to 100 for this study.
To determine the best configuration for the HTT dataset, methodical computation was
carried out. It was discovered that the optimum arrangement to build the neural network
for our HTT datasets consisted of one to ten hidden layers. Using this method, the investi-
gation began with a simple design with one hidden layer and raised the number of layers
gradually up to ten depending on performance assessment and accuracy gains in every
simulation stage. Similarly, each layer’s neuronal count was iterated from 1 to 100 based on
how each neuron affected the training and validation procedures. The “Keras” and “Ten-
sorFlow” modules in Python 3.0 using the T4 GPU hardware accelerator at Google Colab
were used to implement the optimized neural network model. Keras is a Python-based
high-level neural network Application Programming Interface that offers a simple and
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flexible interface for developing deep learning models. It serves as a wrapper for backend
engines like TensorFlow, enabling quick model creation and experimentation [36]. Google
created TensorFlow, a comprehensive end-to-end framework for machine learning and deep
learning workloads. It efficiently computes large-scale neural networks using dataflow
graphs and supports CPU and GPU execution. Keras was utilized in this study to build and
maintain the deep artificial neural network (DANN) architecture, while TensorFlow served
as the backend engine for executing and improving the model’s training and inference
procedures [37].
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To precisely capture the thermal data from the output neuron, a linear activation func-
tion was implemented in the output layer of the optimized DANN model. The optimized
DANN model had two hidden layers. Each neuron in the hidden layer used the ReLU
(rectified linear unit) activation function. The number of hidden layers ranged from one
to ten, with each layer comprising between one to one hundred neurons. ReLU, sigmoid,
and tanh activation functions were examined, and ReLU had the greatest prediction ability.
Learning rates ranging from [0.001, 0.01, 0.1, 0.2, 0.3, 1.0] were investigated. The experimen-
tal data used input neurons to pass the HTT data information to the neurons in the hidden
layers during forward propagation, accumulating weights, and bias values. Afterwards,
the output layer neuron forecasted the temperature information. After calculating the mean
square error between the predicted and experimental data, the backpropagation method
was utilized to update the weights in the hidden layer neurons. By following the forward
and back propagation method, the optimized DANN model was able to determine the
minimum error between the prediction and the experimental data of the HTT.

2.5. Ensemble Machine Learning Modeling

An ensemble of decision trees known as random forest (RF) regression was trained
using random subset of the bootstrapped data, and following bootstrap aggregations, their
predictions were accumulated [38]. Random forest is an ensemble learning approach that
creates numerous decision trees during training and then combines their predictions to
improve accuracy and prevent overfitting. Each tree is trained on a random portion of
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the data and predictions are calculated by averaging the results of all trees. In this work,
row sampling with replacement was used to gather a subset (bootstrap sampled) of the
whole HTT dataset. Subsequently, a portion of the HTT data was processed through sep-
arate base learner trees. To predict the thermal data in the HTT, grid search (a technique
for hyperparameter optimization that systematically evaluates different parameter com-
binations) and the bootstrap aggregation method from scikit learn were used. Seventy
percent of the training data and the five-fold cross validation technique (dividing data
into five parts to iteratively train on four parts and validate on one) were used to optimize
the model. Lastly, 30% of the data from the torch test was used to compute the model’s
performance. For random forest regression, we examined the number of estimators in the
range [100, 300, 500, 1000], the learning rate from [0.001, 0.01, 0.1, 0.2, 0.3, 1.0], and tree
depths of [5, 10, 20] using bootstrap sampling.

In an ensemble learning technique, gradient boosting regression (GBR) is used to
develop a series of weak learners (decision trees), each of which seeks to capture the
residuals (the differences between predicted and actual values) of the models that came
before it [39]. Initially, the ablation performance data of the ceramic matrix composites
was predicted using a simple model. The basic model’s mistakes or residuals were then
put into the decision tree (DT) model. Eventually, the anticipated errors decreased using
serially connected DT models to produce the final predicted thermal performance data.
The optimal hyperparameters for GBR modeling were found using the grid search tech-
nique. The learning rate (controls how much the model adjusts with each new tree) and
the trees’ maximum depth (the maximum number of levels a decision tree can have) were
two hyperparameters that were adjusted to enhance the HTT ablation performance predic-
tion model. For gradient boosting regression (GBR), the number of estimators was set to
[100, 300, 500, 1000], the learning rates from [0.001, 0.01, 0.1, 0.2, 0.3, 1.0], and the maximum
depths were [5, 10, 20].

To decrease overfitting and enhance efficiency, the extreme gradient boosting re-
gression (XGBR) technique uses a more regularized (which helps prevent overfitting by
penalizing model complexity, making it more efficient and robust) gradient tree-boosting
algorithm than gradient boosting regression. Similarity weight (which measures how
similar the data points in a node are, helping to decide if the node should be split further)
and gains (represent the improvement in prediction accuracy by splitting a node, indicating
how much better the model becomes by adding that split) were determined at the leaf node
to help in the building of the XGBR model and to forecast the residuals from the first tree.
After using the decision trees sequence to estimate the data from the HTT, the residuals
or errors were subsequently decreased. The ablation performance prediction model was
adjusted using the grid search approach from scikit learn by adding a learning rate of 0.001,
0.01, 0.1, 0.2, 0.3, and 1 to overcome the overfitting issue. In extreme gradient boosting
regression (XGBR), we used the learning rate from [0.001, 0.01, 0.1, 0.2, 0.3, 1.0], the number
of trees from [100, 300, 500, 1000], and the depths from [5, 10, 20].

Based on trees such as random forest regression, the extra tree regression (ETR)
method generates a series of top-down unpruned trees. Unlike a bootstrap aggregating
method, extra trees build the trees utilizing all the training data. During the splitting
procedure, n features (a subset of all features) in total are randomly selected as split
candidates at each node. The cutting locations for each selected feature are also selected
randomly [40]. In the current study, the grid search strategy was utilized from scikit
learn to enhance the CMC ablation performance prediction model through the usage of
decision trees at a predetermined depth. For extra tree regression (ETR), we examined
estimator counts of [100, 300, 500, 1000], maximum depths of [5, 10, 20], and learning rates
of [0.001, 0.01, 0.1, 0.2, 0.3, 1.0].
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2.6. Linear Regression Modeling

Ridge regression is a kind of biased estimating regression approach that improves the
conventional least squares method by handling collinear data also known as multicollinear.
It works especially well and consistently when fitting data that are not well-conditioned.
Ridge regression introduces bias to stabilize the estimates and increase dependability, in
contrast to the least squares technique, which maintains an unbiased estimation. This
results in regression coefficients that are more resilient in the face of multicollinearity, but
at the expense of some accuracy and information. The regularization term’s coefficient α
in Ridge regression is the parameter that lessens the effect of ill-conditioned data. In this
study, the model’s sensitivity to outliers was determined by this α parameter; the greater
the α value, the less sensitive the model is to outliers. Through feature selection procedures,
particularly Lasso (Least Absolute Shrinkage and Selection Operator) and cross-validation
(CV), the optimum value of α was determined.

2.7. Error Function Calculations

A range of metrics, including a comparison of the system’s output with real data
was used to assess the performance of an intelligent expert system [8]. For evaluating the
effectiveness of the system, mean square error (MSE) and root mean square error (RMSE)
were measured [41,42]. The MSE was used as a loss function in the machine learning
models that were developed for this investigation. By calculating the average squared
difference between the expected and experimental outcomes, it determined how well the
developed machine model matches the experimental torch test data [43]. It can be expressed
by using the following equation:

MSE =
1
k ∑k

m=1

(
xem − xpm

)2 (1)

where k is the number of data points, xem is the value of experimental data, and xpm is the
value of model predicted data. The RMSE is the root of the mean square error [44]. The
following equation can express it:

RMSE =

√
1
k ∑k

m=1

(
xem − xpm

)2 (2)

where k is the number of data points, xem is the value of experimental data, and xpm is the
value of model predicted data. A statistical metric called the coefficient of determination,
or R2, was used to assess how well a machine learning model fits the experimental data.
It measured the degree of agreement between the actual data points and the predictions
made by the machine learning model. It can be expressed by the following equation:

R2 = 1 − ∑K
m=1

(
xem − xpm

)2

∑K
m=1(xem − x)2 (3)

where x is the average actual temperature data of HTT. To assess how well the machine
learning models are performing, the test datasets mean absolute error (MAE) and mean
absolute percentage error (MAPE) are examined. They are expressed by the following
equations, respectively:

MAE =
1
k ∑k

m=1

∣∣xem − xpm
∣∣ (4)

MAPE =
1
k ∑k

m=1

∣∣xem − xpm
∣∣

|xem|
× 100 (5)
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3. Results and Discussion
3.1. Hydrogen Torch Test Results

The CMC samples performed consistently and favorably when subjected to the HTT.
In all cases, the front temperature of the samples stabilized within 45 s to a temperature of
around 1400 ◦C, while the back temperature was kept considerably lower, staying below
600 ◦C throughout the duration of torch exposure as provided in Figure 4. Furthermore,
the CMC samples retained structural integrity even after 10 min of continuous exposure,
experiencing no delamination, burn-through, or loss of thickness (Figure 5). Rather than
losing mass over the duration of testing, all samples exhibited a mass gain after the torch
test. This implies that the SiC matrix of the CMCs reacted with Oxygen to form protective
deposits of glassy silica, SiO2, on the flame-exposed surface of the composite, further
improving the thermal performance of the material.
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Electron microscopy was used to characterize the CMC samples before and after
hydrogen flame exposure. The high-temperature flame appeared to melt the SiC matrix
and cause it to flow and fill gaps previously observed on the surface of the sample, while
the YSZ fibers remained physically unchanged. Darker colored deposits were observed
on the flame-exposed surfaces of the samples, which were hypothesized to be Silica (SiO2)
plaques formed because of the passive oxidation of the SiC matrix, which is known to
occur at certain temperatures and partial pressures of oxygen [45]. EDS spectral mapping
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provides insight on the elemental distribution on the surface of the flame-damaged sample.
After the HTT, the oxygen concentration increased dramatically from 29.6 to 41.5 wt%,
whereas the silicon content declined somewhat from 27.1 to 21.8 wt%. High-temperature
oxidation leads to the creation of silicon dioxide (SiO2), as evidenced by the significant rise
in oxygen content and retention of silicon.

In ceramic matrix composites, both front and back temperatures are significant. While
the front face temperature reveals surface stability and initial resistance to heat, the back
face temperature provides insights into internal heat penetration and potential degradation.
The performance of both faces under heat exposure is essential to evaluate composite
integrity in high-temperature applications. Thus, the focus of this study is to develop
machine learning prediction models to predict the back temperature of ceramic matrix
composites in HTTs.

3.2. Deep Artificial Neural Network Modeling Results

To efficiently train machine learning models and evaluate their accuracy, this study
used a split of 70% training data and 30% testing data. The choice to employ this split
was based on the results found from the cross-validation techniques, even though other
percentages (80/20, 60/40) for the training and testing data were investigated as well.
Furthermore, a five-fold cross-validation technique was used to confirm the stability of the
selected split. This technique involves splitting the data into five groups and repeatedly
utilizing each subset as training and testing data. This method provided reliability in the
chosen training and testing data percentage for validating the model’s performance across
various data subsets. We began with a simple neural network design and worked gradually
up to more complex configurations. To determine their effect on model performance, this
research included varying the number of hidden layers and the number of neurons in
each layer.

The deep neural network model’s findings showed that for neurons in the hidden
layers, the rectified linear unit (ReLU) activation function performed better than the sigmoid
and Tanh functions. With a learning rate α = 0.0001 and ReLU activation function, the
best multi-layer perceptron (MLP) configuration had an R2 score of 0.9671, an RMSE of
16.45, an MAE of 14.07, and a MAPE of 3.92%. The configuration with two hidden layers,
having 12 neurons in the first layer and 32 neurons in the second layer yielding the highest
R-squared and the lowest MAPE, indicating that it was the optimized deep neural network
model. The first hidden layer, which included 12 neurons, achieved a perfect equilibrium
between preventing overfitting and capturing the intricacy of the input data. If there are too
many neurons in the model, it may become overfitted and perform badly on untried data,
whereas there are too few neurons in the model, which might result in underfitting, where
the model misses significant patterns. More complex and higher-order representations of
the input data could be learned by the model, which included 32 neurons in the second
hidden layer. A comprehensive and methodical hyperparameter tuning approach was
used to the selection of 12 neurons in the first hidden layer and 32 neurons in the second
hidden layer [41]. The configuration with the highest R-squared and lowest MAPE values
offered the best balance between predictive performance and model complexity. This was
found through additional testing of the deep neural network model using 10 hidden layers
and up to 100 neurons in each hidden layer. However, as the deep neural network model
becomes more complicated, the average time cost increased.

Numerous optimization techniques are available using neural networks. But choosing
the best optimizer for a particular application is essential. Stochastic Gradient Descent
(SGD), Momentum, Adagrad, RMSprop, and Adam were the five optimizers that we
examined in this study. Throughout the HTT, the DANN model showed differing levels
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of accuracy at various points in time. There were some differences between actual and
predicted temperatures in the early phases since the model has some difficulty with quick
temperature swings. Nevertheless, over time, the model’s predictions demonstrated a great
capacity to accurately represent the thermal behavior of ceramic matrix composites during
extended exposure, as seen by how well they match real temperatures in both the mid- and
late stages (Figure 6). Using measures including MAE, RMSE, R2, and MAPE, we assessed
the DANN model’s predictive performance with each optimizer. Figures 7–9 show the
outcomes of this comparison. The Adam optimizer enabled the RMSE and MAE to attain
their respective minimum value of 16.45 and 14.07, suggesting that the Adam optimizer-
based DANN model exhibited the best predictive performance regarding accuracy than the
other optimizers. Furthermore, the R2 value reached a maximum of 0.9671, indicating a high
degree of agreement between the actual and predicted values. Notably, the DANN model
with the Adam optimizer also attained an MAPE of 3.92%, demonstrating its usefulness
in terms of computing efficiency. When forecasting the ablation performance of ceramic
matrix composites in HTTs, the Adam optimizer resulted greater nonlinear correlation and
a lower difference between actual and predicted values.
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3.3. Performance Comparison with Linear and Ensemble Machine Learning Models

To address the systematic comparison of model classes (linear, ensemble, deep), we
first assessed performance using linear regression approaches (Lasso and Ridge). These
established a baseline understanding of the linear relationships between temperature
characteristics and ablation outcomes. Next, we moved on to ensemble tree-based models
(random forest, gradient boosting, and so on), which captured non-linear correlations more
accurately but still restricted in their ability to acquire deeper functional representations
from limited thermal data. Finally, we used a deep artificial neural network (DANN) that
surpassed all previous models in terms of error metrics and coefficient of correlation. This
rigorous comparison not only supports the increased complexity necessary to appropriately
describe ablation response, but it also assured that our model selection was based on
empirical performance trends rather than intuition.

Following the completion of the five-fold cross-validation in every machine learning
process, the HTT dataset was randomly split into a 70% training set and a 30% testing
set. The assessment outcomes of the seven machine learning models developed for this
study on the testing set are shown in Table 3. The performance of the basic linear Lasso,
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Ridge Regressor, model was quite low as shown in Figures 10 and 11 respectively, showing
the need for more sophisticated machine learning models for this study. Lasso and Ridge
regression models have difficulty predicting the time-temperature data from the HTT
because of their linear nature. These models are not well adapted to capture the intricate,
non-linear patterns seen in the HTT data because they presume a linear connection between
the input characteristics and the target variable. These linear models do not capture the
complex interactions and non-linearities involved in the ablation performance of ceramic
matrix composites, which results in poor predicting performance. Neural networks and
ensemble techniques are examples of advanced models that are better suited to handle
non-linear data.

Table 3. Performance accuracy results of different machine learning models.

Model RMSE MAE R2 MAPE

DANN 16.45 14.07 0.97 3.92
GBR 25.44 16.91 0.92 6.97

LASSO 69.28 34.10 0.42 25.94
RF 41.15 31.88 0.79 12.84

RIDGE 69.28 34.10 0.42 25.94
XGBR 26.45 17.64 0.91 6.98
ETR 44.93 18.45 0.75 17.00
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Four decision tree ensemble machine learning models were developed: random forest
regression (RFR), extreme gradient boosting regression (XGBR), extra tree regression (ETR),
and gradient boosting regression as provided the results in Figures 12–15 respectively.
The RMSE, MAE, R2 score, and MAPE of the test data for each model, as indicated in
Figures 16–18, supported our study finding that the DANN model performed better than
the ensemble and linear models. When compared to the DANN model, ensemble machine
learning models like XGBR, GBR, RFR, and ETR performed badly because they had trou-
ble capturing the complex, non-linear correlations observed in the HTT data. Although
merging several weak learners might enhance prediction performance than linear machine
learning modeling, ensemble techniques frequently had trouble handling extremely com-
plex and high-dimensional data. The deep hierarchical structure that ensemble models
lack in comparison to DANNs makes it difficult for them to automatically identify and
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extract small characteristics from the data, which leads to less precise predictions about the
ablation performance of ceramic matrix composites.

Due to the improved capacity to capture complicated non-linear correlations in data
through several layers of neurons, DANN perform better than ensemble machine learning
models such as XGBR, GBR, RFR, and ETR. DANNs are better able to generalize from
high-dimensional and large-scale datasets because of their hierarchical structure, which
enables them to automatically learn and extract significant characteristics. When compared
to ensemble approaches, DANNs provide more accurate and reliable prediction perfor-
mance because of their superior regularization techniques and adaptive optimizers, which
increase training efficiency and reduce overfitting. We can conclude from the HTT that the
ceramic matrix composites’ ablation performance was most accurately predicted by the
DANN model.
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4. Conclusions
The application of machine learning approaches was introduced for the first time in

the literature to predict the ablation behavior of ceramic matrix composites through HTT.
The results showed that training a DANN model with 70% of the HTT data produced
better performance accuracy. In addition to overcoming the shortcomings of standard
ensemble decision tree-based machine learning methods (RF, GBR, XGBR, and ETR), the
DANNs performed better in forecasting the thermal behavior of ceramic composites under
hydrogen torch conditions than typical linear machine learning (Lasso and Ridge) systems.
Nonetheless, the limitation of the DANN model developed in this study was its inability
to clarify the basic physical laws guiding the ablation behavior of ceramic composites. By
using machine learning approaches with a physics background, this constraint could be
lessened. Additionally, our dataset was collected using a controlled hydrogen torch test set-
tings with a fixed gas flow rate, constant heat flux, and constant exposure period. However,
the present model might serve as a foundation for gradually improving prediction capabil-
ities for neural network-based models using future datasets that encompass a variety of
experimental conditions and long-duration ablation testing. But this study highlighted the
important significance of neural network modeling in predicting the operational lifetime of
ceramic matrix composites in demanding applications like hydrogen-based combustion
chambers of gas turbine engines. The DANN model also established an efficient method
for predicting thermal characteristics of ceramic matrix composites using HTT data.
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