Effect of Cement Kiln Dust on the Mechanical and Durability Performance of Asphalt Composites
Abstract
:1. Introduction
2. Methods and Materials
2.1. Aggregate
2.2. Selected Fillers
2.3. Asphalt Binder
3. Hot Mix Asphalt Experimental Program
Mechanical Tests | Specifications |
---|---|
Marshall stability (MS) | ASTM D6927-AASHTO T 245 [43] |
Marshall flow (MF) | ASTM D6927-AASHTO T 245 [43] |
Indirect tensile strength | ASTM D6931-17 [44] |
Water sensitivity | ASTM D4867-14 [45] |
3.1. Marshall Stability Test
3.2. Marshall Flow Test
3.3. Water Sensitivity Test
3.4. Indirect Tensile Strength Test
4. Results and Discussion
4.1. Marshall Stability
4.2. Marshall Flow
4.3. Indirect Tensile Strength (ITS)
4.4. Water Sensitivity
5. Conclusions
- The Marshall stability test showed a 58.4% increase in stability when using 100% CKD instead of a conventional limestone filler. This indicates improved structural strength and suitability for heavy traffic conditions.
- Replacing up to 50% of the filler with CKD maintained an effective balance between elasticity and stiffness. This ensures adequate elasticity and abrasion resistance. However, exceeding this percentage increases stiffness, which can lead to premature cracking.
- At 25% CKD replacement, cement kiln dust enhanced moisture resistance, reducing water damage. However, higher replacement levels (over 50%) increased the susceptibility to moisture, highlighting the need for anti-erosion agents.
- Indirect tensile strength tests showed increased internal cohesion and resistance to tensile stresses, reducing cracking under repeated loads and reducing maintenance requirements.
- The fine CKD particles effectively filled the air voids, resulting in a denser, more cohesive asphalt mixture with enhanced structural integrity.
- A 50% CKD replacement ratio was determined as the optimal level for achieving maximum mechanical strength, elasticity, and moisture resistance without compromising the workability or long-term durability of the mixture.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kadhim, Y.N.; Abdulrasool, A.T.; Dulaimi, A.; Pinto, H.A.S.; Bernardo, L.F.A. Influence of Walnut Shell Ash and Limestone Filler in Hot Mix Asphalt. J. Compos. Sci. 2025, 9, 22. [Google Scholar] [CrossRef]
- Gkyrtis, K.; Pomoni, M. An overview of the recyclability of alternative materials for building surface courses at pavement structures. Buildings 2024, 14, 1571. [Google Scholar] [CrossRef]
- Akhtar, M.N.; Albatayneh, O.; Akhtar, J.N.; Koting, S. Porous asphalt pavement design by incorporating recycled coarse aggregate for sustainable urban drainage: An experimental study. Results Eng. 2025, 25, 103751. [Google Scholar] [CrossRef]
- Sarı, F.A.; Öztürk, İ.Ş.; Gönen, T.; Emiroğlu, M. Evaluation of waste metallic powder as fine aggregate replacement in Roller compacted concrete: Impact on physical and mechanical properties. Constr. Build. Mater. 2025, 468, 140386. [Google Scholar] [CrossRef]
- Al Nageim, H.; Dulaimi, A.; Ruddock, F.; Seton, L. Development of a new cementitious filler for use in fast-curing cold binder course in pavement application. In Proceedings of the 38th International Conference on Cement Microscopy, Lyon, France, 17–21 April 2016; pp. 167–180. [Google Scholar]
- Al Nageim, H.; Dulaimi, A.; Al-Busaltan, S.; Kadhim, M.A.; Al-Khuzaie, A.; Seton, L.; Croft, J.; Drake, J. The development of an eco-friendly cold mix asphalt using wastewater sludge ash. J. Environ. Manag. 2023, 329, 117015. [Google Scholar] [CrossRef]
- Kadhim, Y.N.; Hussain, W.A.M.; Abdulrasool, A.T. The effect of animal bone ash on the mechanical properties of asphalt concrete. Civ. Eng. J. 2021, 7, 1741–1752. [Google Scholar] [CrossRef]
- Kadhim, Y.N.; Hussain, W.A.M.; Abdulrasool, A.T.; Ibrahim, I.K. The influence of using Barley Husk Ash as a filler on the mechanical properties of asphalt. Proc. AIP Conf. Proc. 2023, 2743, 020020. [Google Scholar]
- Arulrajah, A.; Mohammadinia, A.; D’Amico, A.; Horpibulsuk, S. CKD and fly ash blends as an alternative binder for the stabilization of demolition aggregates. Constr. Build. Mater. 2017, 145, 218–225. [Google Scholar] [CrossRef]
- Al-Khafaji, R.; Dulaimi, A.; Jafer, H.; Mashaan, N.S.; Qaidi, S.; Obaid, Z.S.; Jwaida, Z. Stabilization of Soft Soil by a Sustainable Binder Comprises Ground Granulated Blast Slag (GGBS) and CKD (CKD). Recycling 2023, 8, 10. [Google Scholar] [CrossRef]
- Collins, R.J.; Emery, J. Kiln Dust-Fly Ash Systems for Highway Bases and Subbases; Federal Highway Administration: Washington, DC, USA, 1983.
- Siddique, R. Cement Kiln Dust. In Waste Materials and By-Products in Concrete; Springer: Berlin/Heidelberg, Germany, 2008; pp. 351–380. [Google Scholar]
- Modarres, A.; Ramyar, H.; Ayar, P. Effect of CKD on the low-temperature durability and fatigue life of hot mix asphalt. Cold Reg. Sci. Technol. 2015, 110, 59–66. [Google Scholar] [CrossRef]
- Lanzerstorfer, C.; Feichtinger, K. CKD: Characterization of dust collected in various fields of electrostatic precipitators. Environ. Eng. Sci. 2016, 33, 200–206. [Google Scholar] [CrossRef]
- Al-Hdabi, A.; Al-Jumaili, M.; Abdulzahra, H. Incorporating of CKD in binder course cold asphalt emulsion mixtures. Pollack Period. 2021, 16, 25–31. [Google Scholar] [CrossRef]
- Adaska, W.S.; Taubert, D.H. Beneficial uses of CKD. In Proceedings of the 2008 IEEE Cement Industry Technical Conference Record, Miami, FL, USA, 18–22 May 2008; pp. 210–228. [Google Scholar]
- Kramer, G.W.; Haynes, B.W. Anion Characterization of Florida Phosphate Rock Mining Materials and US CKD by Ion Chromatography; US Department of the Interior, Bureau of Mines: Washington, DC, USA, 1982.
- Ahmed, H.Y.; Othman, A.M.; Mahmoud, A.A. Effect of using waste cement dust as a mineral filler on the mechanical properties of hot mix asphalt. Ass. Univ. Bull. Environ. Res. 2006, 9, 51–60. [Google Scholar]
- Kraszewski, L.; Emery, J. Use of CKD as a filler in asphalt mixes. In Proceedings of the ORF/CANMET Symposium on Mineral Fillers, Toronto, ON, Canada, 20–21 October 1981; pp. 274–283. [Google Scholar]
- Siddique, R. Utilization of CKD (CKD) in cement mortar and concrete—An overview. Resour. Conserv. Recycl. 2006, 48, 315–338. [Google Scholar] [CrossRef]
- Dulaimi, A.; Al-Busaltan, S.; Kadhim, M.A.; Al-Khafaji, R.; Sadique, M.; Al Nageim, H.; Ibrahem, R.K.; Awrejcewicz, J.; Pawłowski, W.; Mahdi, J.M. A sustainable cold mix asphalt mixture comprising paper sludge ash and CKD. Sustainability 2022, 14, 10253. [Google Scholar] [CrossRef]
- Chaunsali, P.; Peethamparan, S. Influence of the composition of CKD on its interaction with fly ash and slag. Cem. Concr. Res. 2013, 54, 106–113. [Google Scholar] [CrossRef]
- Shoaib, M.; Balaha, M.; Abdel-Rahman, A. Influence of CKD substitution on the mechanical properties of concrete. Cem. Concr. Res. 2000, 30, 371–377. [Google Scholar] [CrossRef]
- Apaza, F.R.A.; Guimarães, A.C.R.; Vivoni, A.M.; Schroder, R. Evaluation of the performance of iron ore waste as potential recycled aggregate for micro-surfacing type cold asphalt mixtures. Constr. Build. Mater. 2021, 266, 121020. [Google Scholar] [CrossRef]
- Abdel-Wahed, T.; Dulaimi, A.; Shanbara, H.K.; Al Nageim, H. The impact of CKD and cement on cold mix asphalt characteristics at different climate. Sustainability 2022, 14, 4173. [Google Scholar] [CrossRef]
- Al-Busaltan, S.; Al Nageim, H.; Atherton, W.; Sharples, G. Mechanical Properties of an Upgrading Cold-Mix Asphalt Using Waste Materials. J. Mater. Civ. Eng. 2012, 24, 1484–1491. [Google Scholar] [CrossRef]
- SCRB State Commission of Roads and Bridges. General Specification for Roads and Bridges; Republic of Iraq, Ministry of Housing and Construction, Department of Planning and Studies: Baghdad, Iraq, 2003.
- ASTM C127-15; Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate. ASTM International: West Conshohocken, PA, USA, 2015.
- ASTM C128-15; Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate. ASTM International: West Conshohocken, PA, USA, 2015.
- ASTM C131-14; Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machin. ASTM International: West Conshohocken, PA, USA, 2014.
- ASTM C114-15; Standard Test Methods for Chemical Analysis of Hydraulic Cement. ASTM International: West Conshohocken, PA, USA, 2015.
- ASTM C142-17; Standard Test Method for Clay Lumps and Friable Particles in Aggregates. ASTM International: West Conshohocken, PA, USA, 2017.
- ASTM D5-13; Standard Test Method for Penetration of Bituminous Materials. ASTM International: West Conshohocken, PA, USA, 2013.
- ASTM D113-17; Standard Test Method for Ductility of Bituminous Materials. ASTM International: West Conshohocken, PA, USA, 2017.
- ASTM D92-20; Standard Test Method for Flash and Fire Points by Cleveland Open Cup Tester. ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM D36-21; Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus). ASTM International: West Conshohocken, PA, USA, 2021.
- ASTM D70-20; Standard Test Method for Density of Semi-Solid Bituminous Materials (Pycnometer Method). ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM D4057-22; Standard Practice for Manual Sampling of Petroleum and Petroleum Products. ASTM International: West Conshohocken, PA, USA, 2022.
- ASTM D2007-18; Standard Test Method for Flakiness Index of Coarse Aggregate. ASTM International: West Conshohocken, PA, USA, 2018.
- Ebels, L.-J. Characterisation of Material Properties and Behaviour of Cold Bituminous Mixtures for Road Pavements; Stellenbosch University: Stellenbosch, South Africa, 2008. [Google Scholar]
- Dulaimi, A.; Shanbara, H.K.; Jafer, H.; Sadique, M. An evaluation of the performance of hot mix asphalt containing calcium carbide residue as a filler. Constr. Build. Mater. 2020, 261, 119918. [Google Scholar] [CrossRef]
- Shishehboran, M.; Ziari, H.; Korayem, A.H.; Hajiloo, M. Environmental and mechanical impacts of waste incinerated acidic sludge ash as filler in hot mix asphalt. Case Stud. Constr. Mater. 2021, 14, e00504. [Google Scholar] [CrossRef]
- AASHTO T245-15; Standard Method of Test for Determining the Resistance to Plastic Flow of Asphalt Mixtures Using Marshall Apparatus. AASHTO Provisional Standards: Washington, DC, USA, 2015.
- ASTM D6931-17; Standard Test Method for Indirect Tensile (IDT) Strength of Bituminous Mixtures. ASTM International: West Conshohocken, PA, USA, 2018.
- ASTM D4867-14; Standard Test Method for Effect of Moisture on Asphalt Concrete Mixtures. ASTM International: West Conshohocken, PA, USA, 2014.
- Pasandín, A.R.; Pérez, I.; Ramírez, A.; Cano, M.M. Moisture damage resistance of hot-mix asphalt made with paper industry wastes as filler. J. Clean. Prod. 2016, 112, 853–862. [Google Scholar] [CrossRef]
- Mohammed, A.; Aliyu, I.; Sulaiman, T.; Yunusa, I. Mechanical Properties of Asphalt Concrete with Crumb Rubber as Partial Replacement for Coarse Aggregate. Niger. J. Eng. 2021, 28, 75–79. [Google Scholar]
- Sengoz, B.; Agar, E. Effect of asphalt film thickness on the moisture sensitivity characteristics of hot-mix asphalt. Build. Environ. 2007, 42, 3621–3628. [Google Scholar] [CrossRef]
- Masri, K.; Awang, H.; Jaya, R.P.; Ali, M.; Ramli, N.; Arshad, A. Moisture susceptibility of porous asphalt mixture with Nano silica modified asphalt binder. IOP Conf. Ser. Earth Environ. Sci. 2019, 244, 012028. [Google Scholar] [CrossRef]
- Zaniewski, J.; Viswanathan, A.G. Investigation of Moisture Sensitivity of Hot Mix Asphalt Concrete. Ph.D. Thesis, Asphalt Technology Program, Morgantown, WV, USA, 2006. [Google Scholar]
- Solaimanian, M.; Harvey, J.; Tahmoressi, M.; Tandon, V. Test methods to predict moisture sensitivity of hot-mix asphalt pavements. In Proceedings of the Transportation Research Board National Seminar, San Diego, CA, USA, 4–6 February 2003; pp. 77–110. [Google Scholar]
- Almaali, Y.A. Enhancing the Indirect Tensile Strength of Thin Hot Mix Asphalt Overlay by Utilizing Waste Materials. Libr. Prog.-Libr. Sci. Inf. Technol. Comput. 2024, 44, 239. [Google Scholar]
- Preciado, J.; Arguelles, G.M.; Dugarte, M.; Bonicelli, A.; Cantero, J.; Vega, D.; Barros, Y. Improving mechanical properties of hot mix asphalt using fibres and polymers in developing countries. IOP Conf. Ser. Mater. Sci. Eng. 2017, 245, 022013. [Google Scholar] [CrossRef]
- Islam, M.R.; Hossain, M.I.; Tarefder, R.A. A study of asphalt aging using Indirect Tensile Strength test. Constr. Build. Mater. 2015, 95, 218–223. [Google Scholar] [CrossRef]
- Navarro, F.M.; Gámez, M.C.R. Influence of crumb rubber on the indirect tensile strength and stiffness modulus of hot bituminous mixes. J. Mater. Civ. Eng. 2012, 24, 715–724. [Google Scholar] [CrossRef]
- The State Corporation for Roads and Bridges. Standard Specifications for Roads and Bridges, Section R/9, Hot-Mix Asphaltic Concrete Pavement; The State Corporation for Roads and Bridges, Ministry of Housing and Construction: Baghdad, Iraq, 2003.
- Choudhary, J.; Kumar, B.; Gupta, A. Utilization of solid waste materials as alternative fillers in asphalt mixes: A review. Constr. Build. Mater. 2020, 234, 117271. [Google Scholar] [CrossRef]
- Choudhary, J.; Kumar, B.; Gupta, A. Effect of filler on the bitumen-aggregate adhesion in asphalt mix. Int. J. Pavement Eng. 2018, 21, 1482–1490. [Google Scholar] [CrossRef]
- Xu, P.; Chen, Z.; Cai, J.; Pei, J.; Gao, J.; Zhang, J.; Zhang, J. The effect of retreated coal wastes as filler on the performance of asphalt mastics and mixtures. Constr. Build. Mater. 2019, 203, 9–17. [Google Scholar] [CrossRef]
Property | Result | Limits | Standard |
---|---|---|---|
Bulk density of coarse aggregate (g/cm3) | 2.733 | - | ASTM.C127 [28] |
Bulk specific gravity of fine aggregate (g/cm3) | 2.642 | - | ASTM.C128 [29] |
Water absorption capacity of coarse aggregate (%) | 0.449 | - | ASTM.C127 [28] |
Aggregate impact value (%) | 12.88 | - | ASTM.C131 [30] |
Abrasion resistance value (LOS.%) | 16.671 | - | ASTM.C131 [30] |
Sulfur content (%) | 0.396 0.101 | Coarse ≤ 0.1% Fine ≤ 0.5% | ASTM.C114 [31] |
Clay content (%) | 0.102 0.572 | Coarse ≤ 1% Fine ≤ 1% | ASTM.C142 [32] |
Chemical Composition | CaO | MgO | SiO2 | Al2O3 | SO3 | Fe2O3 | TiO2 | K2O | Na2O |
---|---|---|---|---|---|---|---|---|---|
CKD | 64.036 | 1.141 | 20.572 | 0.862 | 2.273 | 4.062 | 0.431 | 0.913 | 1.411 |
CMF | 32.513 | 2.862 | 22.253 | 3.351 | 0.016 | 1.821 | 0.001 | 0.652 | 0.182 |
Test | Average Values | Limits | Standard |
---|---|---|---|
Permeation (25 °C) | 4.6 mm | (4–5) mm | ASTM D5 [33] |
Ductility (5 cm/min) | 38 cm | >25 cm | ASTM D113 [34] |
Flash-P | 238 °C | ≥232 °C | ASTM D92 [35] |
Softening-P | 65.5 °C | (30–157) °C | ASTM D36 [36] |
Specific gravity | 1.038 | - | ASTM D70 [37] |
Sulfur content | 0.09% | ≤0.5% | ASTM D4057 [38] |
Mineral content | 0.417 | ≤1% | ASTM D2007 [39] |
Mixes | A | B | C | D | E | |
---|---|---|---|---|---|---|
Sieve, mm | 19 | 100 | 100 | 100 | 100 | 100 |
12.5 | 95 | 95 | 95 | 95 | 95 | |
9.5 | 83 | 83 | 83 | 83 | 83 | |
4.75 | 59 | 59 | 59 | 59 | 59 | |
2.36 | 43 | 43 | 43 | 43 | 43 | |
0.300 | 13 | 13 | 13 | 13 | 13 | |
Filler, 7% | CMF | 100 | 75 | 50 | 25 | 0 |
CKD | 0 | 25 | 50 | 75 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dulaimi, A.; Kadhim, Y.N.; Issa, H.A.; Hashim, R.A.; Kashesh, G.J.; Andrade, J.M.d.A.; Bernardo, L.F.A. Effect of Cement Kiln Dust on the Mechanical and Durability Performance of Asphalt Composites. J. Compos. Sci. 2025, 9, 312. https://doi.org/10.3390/jcs9060312
Dulaimi A, Kadhim YN, Issa HA, Hashim RA, Kashesh GJ, Andrade JMdA, Bernardo LFA. Effect of Cement Kiln Dust on the Mechanical and Durability Performance of Asphalt Composites. Journal of Composites Science. 2025; 9(6):312. https://doi.org/10.3390/jcs9060312
Chicago/Turabian StyleDulaimi, Anmar, Yasir N. Kadhim, Hussein Ahmed Issa, Raghad Ahmed Hashim, Ghazi Jalal Kashesh, Jorge Miguel de Almeida Andrade, and Luís Filipe Almeida Bernardo. 2025. "Effect of Cement Kiln Dust on the Mechanical and Durability Performance of Asphalt Composites" Journal of Composites Science 9, no. 6: 312. https://doi.org/10.3390/jcs9060312
APA StyleDulaimi, A., Kadhim, Y. N., Issa, H. A., Hashim, R. A., Kashesh, G. J., Andrade, J. M. d. A., & Bernardo, L. F. A. (2025). Effect of Cement Kiln Dust on the Mechanical and Durability Performance of Asphalt Composites. Journal of Composites Science, 9(6), 312. https://doi.org/10.3390/jcs9060312