Special Issue "Real Time Clinical and Epidemiological Investigations on Novel Coronavirus - Part I"

A special issue of Journal of Clinical Medicine (ISSN 2077-0383). This special issue belongs to the section "Infectious Diseases".

Deadline for manuscript submissions: closed (31 December 2020).

Special Issue Editor

Prof. Dr. Hiroshi Nishiura

Guest Editor
Kyoto University School of Public Health, Kyoto, Japan
Interests: infectious disease epidemiology; mathematical model; transmission dynamics
Special Issues and Collections in MDPI journals

Special Issue Information

Dear Colleagues,

An epidemic of viral pneumonia, most probably caused by novel coronavirus, has emerged in Wuhan, China, 2020. The causative agent was identified very swiftly during the course of the epidemic, but epidemiological situations have dynamically changed over time: initially, many cases were considered to have been linked to an exposure at a seafood market in Wuhan, but a massive number of cases have started to emerge not only in Wuhan city but across different cities in China and also in other well connected countries.

Many unknown characteristics of this disease remain. What kind of people is mainly affected? How does the clinical spectrum of this disease look like? Are transmissions from human to human taking place in the community and also in households? How long does it take from exposure to illness onset? How transmissible is the disease? When is the infectiousness highest during the course of infection? How severe is the infection, and what kind of people with underlying characteristics are particularly at high risk of death? To respond to the outbreak in a timely manner, it is vital that research responses to the outbreak focusing on abovementioned subjects are published in the public domain in a timely manner. This Special Issue will act as a publication media to attract many clinical and epidemiological studies on this outbreak, ensuring a fast turnaround time for high quality studies.

We particularly welcome articles providing new insights into (i) clinical characteristics of novel coronavirus; (ii) infection and transmission dynamics of the disease; and (iii) evaluation of the impact of interventions including pharmaceutical and non-pharmaceutical approaches.

We welcome both solicited and unsolicited submissions that will contribute to this goal.

Prof. Dr. Hiroshi Nishiura
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Clinical Medicine is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Novel coronavirus
  • Clinical studies
  • Critical care and management
  • Natural history
  • Asymptomatic cases
  • Transmission
  • Severity
  • Risk assessment
  • Enhanced surveillance
  • Interventions

Published Papers (46 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research, Review

Open AccessEditorial
Research Agenda of Climate Change during and after the Coronavirus Disease 2019 (COVID-19) Pandemic
J. Clin. Med. 2021, 10(4), 770; https://doi.org/10.3390/jcm10040770 - 15 Feb 2021
Viewed by 309
Abstract
The global pandemic of coronavirus disease 2019 (COVID-19) rapidly spread worldwide during the first few months of 2020 [...] Full article
Show Figures

Figure 1

Open AccessEditorial
A Comparison of Case Fatality Risk of COVID-19 between Singapore and Japan
J. Clin. Med. 2020, 9(10), 3326; https://doi.org/10.3390/jcm9103326 - 16 Oct 2020
Cited by 1 | Viewed by 748
Abstract
The crude case fatality risk (CFR) for coronavirus disease (COVID-19) in Singapore is remarkably small. We aimed to estimate the unbiased CFR by age for Singapore and Japan and compare these estimates by calculating the standardized mortality ratio (SMR). Age-specific CFRs for COVID-19 [...] Read more.
The crude case fatality risk (CFR) for coronavirus disease (COVID-19) in Singapore is remarkably small. We aimed to estimate the unbiased CFR by age for Singapore and Japan and compare these estimates by calculating the standardized mortality ratio (SMR). Age-specific CFRs for COVID-19 were estimated in real time, adjusting for the delay from illness onset to death. The SMR in Japan was estimated by using the age distribution of the Singapore population. Among cases aged 60–69 years and 70–79 years, the age-specific CFRs in Singapore were estimated as 1.84% (95% confidence interval: 0.46–4.72%) and 5.57% (1.41–13.97%), respectively, and those in Japan as 5.52% (4.55–6.62%) and 15.49% (13.81–17.27%), respectively. The SMR of COVID-19 in Japan, when compared with Singapore as the baseline, was estimated to be 1.46 (1.09–2.96). The overall CFR for Singapore is lower than that for Japan. It is possible that the circulating variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Singapore causes a milder clinical course of COVID-19 infection compared with other strains. If infection with a low-virulence SARS-CoV-2 variant provides protection against infection by high-virulence strains, the existence of such a strain is encouraging news for the many countries struggling to suppress this virus. Full article
Show Figures

Figure 1

Open AccessEditorial
COVID-19 Deaths: Are We Sure It Is Pneumonia? Please, Autopsy, Autopsy, Autopsy!
J. Clin. Med. 2020, 9(5), 1259; https://doi.org/10.3390/jcm9051259 - 26 Apr 2020
Cited by 27 | Viewed by 4077
Abstract
The current outbreak of COVID-19 severe respiratory disease, which started in Wuhan, China, is an ongoing challenge, and a major threat to public health that requires surveillance, prompt diagnosis, and research efforts to understand this emergent pathogen and to develop an effective response. [...] Read more.
The current outbreak of COVID-19 severe respiratory disease, which started in Wuhan, China, is an ongoing challenge, and a major threat to public health that requires surveillance, prompt diagnosis, and research efforts to understand this emergent pathogen and to develop an effective response. Due to the scientific community’s efforts, there is an increasing body of published studies describing the virus’ biology, its transmission and diagnosis, its clinical features, its radiological findings, and the development of candidate therapeutics and vaccines. Despite the decline in postmortem examination rate, autopsy remains the gold standard to determine why and how death happens. Defining the pathophysiology of death is not only limited to forensic considerations; it may also provide useful clinical and epidemiologic insights. Selective approaches to postmortem diagnosis, such as limited postmortem sampling over full autopsy, can also be useful in the control of disease outbreaks and provide valuable knowledge for managing appropriate control measures. In this scenario, we strongly recommend performing full autopsies on patients who died with suspected or confirmed COVID-19 infection, particularly in the presence of several comorbidities. Only by working with a complete set of histological samples obtained through autopsy can one ascertain the exact cause(s) of death, optimize clinical management, and assist clinicians in pointing out a timely and effective treatment to reduce mortality. Death can teach us not only about the disease, it might also help with its prevention and, above all, treatment. Full article
Open AccessEditorial
Backcalculating the Incidence of Infection with COVID-19 on the Diamond Princess
J. Clin. Med. 2020, 9(3), 657; https://doi.org/10.3390/jcm9030657 - 29 Feb 2020
Cited by 24 | Viewed by 10430
Abstract
To understand the time-dependent risk of infection on a cruise ship, the Diamond Princess, I estimated the incidence of infection with novel coronavirus (COVID-19). The epidemic curve of a total of 199 confirmed cases was drawn, classifying individuals into passengers with and without [...] Read more.
To understand the time-dependent risk of infection on a cruise ship, the Diamond Princess, I estimated the incidence of infection with novel coronavirus (COVID-19). The epidemic curve of a total of 199 confirmed cases was drawn, classifying individuals into passengers with and without close contact and crew members. A backcalculation method was employed to estimate the incidence of infection. The peak time of infection was seen for the time period from 2 to 4 February 2020, and the incidence has abruptly declined afterwards. The estimated number of new infections among passengers without close contact was very small from 5 February on which a movement restriction policy was imposed. Without the intervention from 5 February, it was predicted that the cumulative incidence with and without close contact would have been as large as 1373 (95% CI: 570, 2176) and 766 (95% CI: 587, 946) cases, respectively, while these were kept to be 102 and 47 cases, respectively. Based on an analysis of illness onset data on board, the risk of infection among passengers without close contact was considered to be very limited. Movement restriction greatly reduced the number of infections from 5 February onwards. Full article
Show Figures

Figure 1

Open AccessEditorial
Communicating the Risk of Death from Novel Coronavirus Disease (COVID-19)
J. Clin. Med. 2020, 9(2), 580; https://doi.org/10.3390/jcm9020580 - 21 Feb 2020
Cited by 45 | Viewed by 16466
Abstract
To understand the severity of infection for a given disease, it is common epidemiological practice to estimate the case fatality risk, defined as the risk of death among cases. However, there are three technical obstacles that should be addressed to appropriately measure this [...] Read more.
To understand the severity of infection for a given disease, it is common epidemiological practice to estimate the case fatality risk, defined as the risk of death among cases. However, there are three technical obstacles that should be addressed to appropriately measure this risk. First, division of the cumulative number of deaths by that of cases tends to underestimate the actual risk because deaths that will occur have not yet observed, and so the delay in time from illness onset to death must be addressed. Second, the observed dataset of reported cases represents only a proportion of all infected individuals and there can be a substantial number of asymptomatic and mildly infected individuals who are never diagnosed. Third, ascertainment bias and risk of death among all those infected would be smaller when estimated using shorter virus detection windows and less sensitive diagnostic laboratory tests. In the ongoing COVID-19 epidemic, health authorities must cope with the uncertainty in the risk of death from COVID-19, and high-risk individuals should be identified using approaches that can address the abovementioned three problems. Although COVID-19 involves mostly mild infections among the majority of the general population, the risk of death among young adults is higher than that of seasonal influenza, and elderly with underlying comorbidities require additional care. Full article
Open AccessEditorial
Initial Cluster of Novel Coronavirus (2019-nCoV) Infections in Wuhan, China Is Consistent with Substantial Human-to-Human Transmission
J. Clin. Med. 2020, 9(2), 488; https://doi.org/10.3390/jcm9020488 - 11 Feb 2020
Cited by 36 | Viewed by 7340
Abstract
Reanalysis of the epidemic curve from the initial cluster of cases with novel coronavirus (2019-nCoV) in December 2019 indicates substantial human-to-human transmission. It is possible that the common exposure history at a seafood market in Wuhan originated from the human-to-human transmission events within [...] Read more.
Reanalysis of the epidemic curve from the initial cluster of cases with novel coronavirus (2019-nCoV) in December 2019 indicates substantial human-to-human transmission. It is possible that the common exposure history at a seafood market in Wuhan originated from the human-to-human transmission events within the market, and the early, strong emphasis that market exposure indicated animal-to-human transmission was potentially the result of observer bias. To support the hypothesis of zoonotic origin of 2019-nCoV stemming from the Huanan seafood market, the index case should have had exposure history related to the market and the virus should have been identified from animals sold at the market. As these requirements remain unmet, zoonotic spillover at the market must not be overemphasized. Full article
Show Figures

Figure 1

Open AccessEditor’s ChoiceEditorial
The Rate of Underascertainment of Novel Coronavirus (2019-nCoV) Infection: Estimation Using Japanese Passengers Data on Evacuation Flights
J. Clin. Med. 2020, 9(2), 419; https://doi.org/10.3390/jcm9020419 - 04 Feb 2020
Cited by 92 | Viewed by 18806
Abstract
From 29 to 31 January 2020, a total of 565 Japanese citizens were evacuated from Wuhan, China on three chartered flights. All passengers were screened upon arrival in Japan for symptoms consistent with novel coronavirus (2019-nCoV) infection and tested for presence of the [...] Read more.
From 29 to 31 January 2020, a total of 565 Japanese citizens were evacuated from Wuhan, China on three chartered flights. All passengers were screened upon arrival in Japan for symptoms consistent with novel coronavirus (2019-nCoV) infection and tested for presence of the virus. Assuming that the mean detection window of the virus can be informed by the mean serial interval (estimated at 7.5 days), the ascertainment rate of infection was estimated at 9.2% (95% confidence interval: 5.0, 20.0). This indicates that the incidence of infection in Wuhan can be estimated at 20,767 infected individuals, including those with asymptomatic and mildly symptomatic infections. The infection fatality risk (IFR)—the actual risk of death among all infected individuals—is therefore 0.3% to 0.6%, which may be comparable to Asian influenza pandemic of 1957–1958. Full article
Open AccessEditorial
The Extent of Transmission of Novel Coronavirus in Wuhan, China, 2020
J. Clin. Med. 2020, 9(2), 330; https://doi.org/10.3390/jcm9020330 - 24 Jan 2020
Cited by 113 | Viewed by 27519
Abstract
A cluster of pneumonia cases linked to a novel coronavirus (2019-nCoV) was reported by China in late December 2019. Reported case incidence has now reached the hundreds, but this is likely an underestimate. As of 24 January 2020, with reports of thirteen exportation [...] Read more.
A cluster of pneumonia cases linked to a novel coronavirus (2019-nCoV) was reported by China in late December 2019. Reported case incidence has now reached the hundreds, but this is likely an underestimate. As of 24 January 2020, with reports of thirteen exportation events, we estimate the cumulative incidence in China at 5502 cases (95% confidence interval: 3027, 9057). The most plausible number of infections is in the order of thousands, rather than hundreds, and there is a strong indication that untraced exposures other than the one in the epidemiologically linked seafood market in Wuhan have occurred. Full article

Research

Jump to: Editorial, Review

Open AccessArticle
Optimal Allocation of the Limited COVID-19 Vaccine Supply in South Korea
J. Clin. Med. 2021, 10(4), 591; https://doi.org/10.3390/jcm10040591 - 04 Feb 2021
Viewed by 451
Abstract
Initial supply of the coronavirus disease (COVID-19) vaccine may be limited, necessitating its effective use. Herein, an age-structured model of COVID-19 spread in South Korea is parameterized to understand the epidemiological characteristics of COVID-19. The model determines optimal vaccine allocation for minimizing infections, [...] Read more.
Initial supply of the coronavirus disease (COVID-19) vaccine may be limited, necessitating its effective use. Herein, an age-structured model of COVID-19 spread in South Korea is parameterized to understand the epidemiological characteristics of COVID-19. The model determines optimal vaccine allocation for minimizing infections, deaths, and years of life lost while accounting for population factors, such as country-specific age distribution and contact structure, and various levels of vaccine efficacy. A transmission-blocking vaccine should be prioritized in adults aged 20–49 years and those older than 50 years to minimize the cumulative incidence and mortality, respectively. A strategy to minimize years of life lost involves the vaccination of adults aged 40–69 years, reflecting the relatively high case-fatality rates and years of life lost in this age group. An incidence-minimizing vaccination strategy is highly sensitive to vaccine efficacy, and vaccines with lower efficacy should be administered to teenagers and adults aged 50–59 years. Consideration of age-specific contact rates and vaccine efficacy is critical to optimize vaccine allocation. New recommendations for COVID-19 vaccines under consideration by the Korean Centers for Disease Control and Prevention are mainly based on a mortality-minimizing allocation strategy. Full article
Show Figures

Figure 1

Open AccessArticle
“Go To Travel” Campaign and Travel-Associated Coronavirus Disease 2019 Cases: A Descriptive Analysis, July–August 2020
J. Clin. Med. 2021, 10(3), 398; https://doi.org/10.3390/jcm10030398 - 21 Jan 2021
Viewed by 53087
Abstract
The Japanese government initiated the Go To Travel campaign on 22 July 2020, offering deep discounts on hotel charges and issuing coupons to be used for any consumption at travel destinations in Japan. In the present study, we aimed to describe the possible [...] Read more.
The Japanese government initiated the Go To Travel campaign on 22 July 2020, offering deep discounts on hotel charges and issuing coupons to be used for any consumption at travel destinations in Japan. In the present study, we aimed to describe the possible epidemiological impact of the tourism campaign on increasing travel-associated cases of coronavirus disease 2019 (COVID-19) in the country. We compared the incidence rates of travel-associated and tourism-related cases prior to and during the campaign. The incidence of travel-associated COVID-19 cases during the tourism campaign was approximately three times greater than the control period 22 June to 21 July 2020 and approximately 1.5 times greater than the control period of 15 to 19 July. The incidence owing to tourism was approximately 8 times and 2–3 times greater than the control periods of 22 June to 21 July and 15 to 19 July, respectively. Although the second epidemic wave in Japan had begun to decline by mid-August, enhanced domestic tourism may have contributed to increasing travel-associated COVID-19 cases during 22 to 26 July, the early stage of the Go To Travel campaign. Full article
Show Figures

Figure 1

Open AccessArticle
Is Machine Learning a Better Way to Identify COVID-19 Patients Who Might Benefit from Hydroxychloroquine Treatment?—The IDENTIFY Trial
J. Clin. Med. 2020, 9(12), 3834; https://doi.org/10.3390/jcm9123834 - 26 Nov 2020
Viewed by 620
Abstract
Therapeutic agents for the novel coronavirus disease 2019 (COVID-19) have been proposed, but evidence supporting their use is limited. A machine learning algorithm was developed in order to identify a subpopulation of COVID-19 patients for whom hydroxychloroquine was associated with improved survival; this [...] Read more.
Therapeutic agents for the novel coronavirus disease 2019 (COVID-19) have been proposed, but evidence supporting their use is limited. A machine learning algorithm was developed in order to identify a subpopulation of COVID-19 patients for whom hydroxychloroquine was associated with improved survival; this population might be relevant for study in a clinical trial. A pragmatic trial was conducted at six United States hospitals. We enrolled COVID-19 patients that were admitted between 10 March and 4 June 2020. Treatment was not randomized. The study endpoint was mortality; discharge was a competing event. Hazard ratios were obtained on the entire population, and on the subpopulation indicated by the algorithm as suitable for treatment. A total of 290 patients were enrolled. In the subpopulation that was identified by the algorithm, hydroxychloroquine was associated with a statistically significant (p = 0.011) increase in survival (adjusted hazard ratio 0.29, 95% confidence interval (CI) 0.11–0.75). Adjusted survival among the algorithm indicated patients was 82.6% in the treated arm and 51.2% in the arm not treated. No association between treatment and mortality was observed in the general population. A 31% increase in survival at the end of the study was observed in a population of COVID-19 patients that were identified by a machine learning algorithm as having a better outcome with hydroxychloroquine treatment. Precision medicine approaches may be useful in identifying a subpopulation of COVID-19 patients more likely to be proven to benefit from hydroxychloroquine treatment in a clinical trial. Full article
Show Figures

Figure 1

Open AccessArticle
Persistence of Anti-SARS-CoV-2 Antibodies in Non-Hospitalized COVID-19 Convalescent Health Care Workers
J. Clin. Med. 2020, 9(10), 3188; https://doi.org/10.3390/jcm9103188 - 01 Oct 2020
Cited by 10 | Viewed by 4217
Abstract
Although antibody response to SARS-CoV-2 can be detected early during the infection, several outstanding questions remain to be addressed regarding the magnitude and persistence of antibody titer against different viral proteins and their correlation with the strength of the immune response. An ELISA [...] Read more.
Although antibody response to SARS-CoV-2 can be detected early during the infection, several outstanding questions remain to be addressed regarding the magnitude and persistence of antibody titer against different viral proteins and their correlation with the strength of the immune response. An ELISA assay has been developed by expressing and purifying the recombinant SARS-CoV-2 Spike Receptor Binding Domain (RBD), Soluble Ectodomain (Spike), and full length Nucleocapsid protein (N). Sera from healthcare workers affected by non-severe COVID-19 were longitudinally collected over four weeks, and compared to sera from patients hospitalized in Intensive Care Units (ICU) and SARS-CoV-2-negative subjects for the presence of IgM, IgG and IgA antibodies as well as soluble pro-inflammatory mediators in the sera. Non-hospitalized subjects showed lower antibody titers and blood pro-inflammatory cytokine profiles as compared to patients in Intensive Care Units (ICU), irrespective of the antibodies tested. Noteworthy, in non-severe COVID-19 infections, antibody titers against RBD and Spike, but not against the N protein, as well as pro-inflammatory cytokines decreased within a month after viral clearance. Thus, rapid decline in antibody titers and in pro-inflammatory cytokines may be a common feature of non-severe SARS-CoV-2 infection, suggesting that antibody-mediated protection against re-infection with SARS-CoV-2 is of short duration. These results suggest caution in using serological testing to estimate the prevalence of SARS-CoV-2 infection in the general population. Full article
Show Figures

Figure 1

Open AccessArticle
Containment, Contact Tracing and Asymptomatic Transmission of Novel Coronavirus Disease (COVID-19): A Modelling Study
J. Clin. Med. 2020, 9(10), 3125; https://doi.org/10.3390/jcm9103125 - 27 Sep 2020
Cited by 2 | Viewed by 1299
Abstract
When a novel infectious disease emerges, enhanced contact tracing and isolation are implemented to prevent a major epidemic, and indeed, they have been successful for the control of severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), which have been greatly [...] Read more.
When a novel infectious disease emerges, enhanced contact tracing and isolation are implemented to prevent a major epidemic, and indeed, they have been successful for the control of severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), which have been greatly reduced without causing a global pandemic. Considering that asymptomatic and pre-symptomatic infections are substantial for the novel coronavirus disease (COVID-19), the feasibility of preventing the major epidemic has been questioned. Using a two-type branching process model, the present study assesses the feasibility of containing COVID-19 by computing the probability of a major epidemic. We show that if there is a substantial number of asymptomatic transmissions, cutting chains of transmission by means of contact tracing and case isolation would be very challenging without additional interventions, and in particular, untraced cases contribute to lowering the feasibility of containment. Even if isolation of symptomatic cases is conducted swiftly after symptom onset, only secondary transmissions after the symptom onset can be prevented. Full article
Show Figures

Figure 1

Open AccessArticle
Hospital Caseload Demand in the Presence of Interventions during the COVID-19 Pandemic: A Modeling Study
J. Clin. Med. 2020, 9(10), 3065; https://doi.org/10.3390/jcm9103065 - 23 Sep 2020
Cited by 1 | Viewed by 710
Abstract
A surge in hospital admissions was observed in Japan in late March 2020, and the incidence of coronavirus disease (COVID-19) temporarily reduced from March to May as a result of the closure of host and hostess clubs, shortening the opening hours of bars [...] Read more.
A surge in hospital admissions was observed in Japan in late March 2020, and the incidence of coronavirus disease (COVID-19) temporarily reduced from March to May as a result of the closure of host and hostess clubs, shortening the opening hours of bars and restaurants, and requesting a voluntary reduction of contact outside the household. To prepare for the second wave, it is vital to anticipate caseload demand, and thus, the number of required hospital beds for admitted cases and plan interventions through scenario analysis. In the present study, we analyzed the first wave data by age group so that the age-specific number of hospital admissions could be projected for the second wave. Because the age-specific patterns of the epidemic were different between urban and other areas, we analyzed datasets from two distinct cities: Osaka, where the cases were dominated by young adults, and Hokkaido, where the older adults accounted for the majority of hospitalized cases. By estimating the exponential growth rates of cases by age group and assuming probable reductions in those rates under interventions, we obtained projected epidemic curves of cases in addition to hospital admissions. We demonstrated that the longer our interventions were delayed, the higher the peak of hospital admissions. Although the approach relies on a simplistic model, the proposed framework can guide local government to secure the essential number of hospital beds for COVID-19 cases and formulate action plans. Full article
Show Figures

Figure 1

Open AccessArticle
A Decision Aide for the Risk Stratification of GU Cancer Patients at Risk of SARS-CoV-2 Infection, COVID-19 Related Hospitalization, Intubation, and Mortality
J. Clin. Med. 2020, 9(9), 2799; https://doi.org/10.3390/jcm9092799 - 30 Aug 2020
Viewed by 703
Abstract
Treatment decisions for both early and advanced genitourinary (GU) malignancies take into account the risk of dying from the malignancy as well as the risk of death due to other causes such as other co-morbidities. COVID-19 is a new additional and immediate risk [...] Read more.
Treatment decisions for both early and advanced genitourinary (GU) malignancies take into account the risk of dying from the malignancy as well as the risk of death due to other causes such as other co-morbidities. COVID-19 is a new additional and immediate risk to a patient’s morbidity and mortality and there is a need for an accurate assessment as to the potential impact on of this syndrome on GU cancer patients. The aim of this work was to develop a risk tool to identify GU cancer patients at risk of diagnosis, hospitalization, intubation, and mortality from COVID-19. A retrospective case showed a series of GU cancer patients screened for COVID-19 across the Mount Sinai Health System (MSHS). Four hundred eighty-four had a GU malignancy and 149 tested positive for SARS-CoV-2. Demographic and clinical variables of >38,000 patients were available in the institutional database and were utilized to develop decision aides to predict a positive SARS-CoV-2 test, as well as COVID-19-related hospitalization, intubation, and death. A risk tool was developed using a combination of machine learning methods and utilized BMI, temperature, heart rate, respiratory rate, blood pressure, and oxygen saturation. The risk tool for predicting a diagnosis of SARS-CoV-2 had an AUC of 0.83, predicting hospitalization for management of COVID-19 had an AUC of 0.95, predicting patients requiring intubation had an AUC of 0.97, and for predicting COVID-19-related death, the risk tool had an AUC of 0.79. The models had an acceptable calibration and provided a superior net benefit over other common strategies across the entire range of threshold probabilities. Full article
Show Figures

Figure 1

Open AccessArticle
Head-to-Head Accuracy Comparison of Three Commercial COVID-19 IgM/IgG Serology Rapid Tests
J. Clin. Med. 2020, 9(8), 2369; https://doi.org/10.3390/jcm9082369 - 24 Jul 2020
Cited by 6 | Viewed by 2041
Abstract
Background: Comparative data of SARS-CoV-2 IgM/IgG serology rapid diagnostic tests (RDTs) is scarce. We thus performed a head-to-head comparison of three RDTs. Methods: In this unmatched case-control study, blood samples from 41 RT-PCR-confirmed COVID-19 cases and 50 negative controls were studied. The diagnostic [...] Read more.
Background: Comparative data of SARS-CoV-2 IgM/IgG serology rapid diagnostic tests (RDTs) is scarce. We thus performed a head-to-head comparison of three RDTs. Methods: In this unmatched case-control study, blood samples from 41 RT-PCR-confirmed COVID-19 cases and 50 negative controls were studied. The diagnostic accuracy of three commercially available COVID-19 RDTs: NTBIO (RDT-A), Orient-Gene (RDT-B), and MEDsan (RDT-C), against both a recombinant spike-expressing immunofluorescence assay (rIFA) and Euroimmun IgG ELISA, was assessed. RDT results concordant with the reference methods, and between whole blood and plasma, were established by the Kendall coefficient. Results: COVID-19 cases’ median time from RT-PCR to serology was 22 days (interquartile range (IQR) 13–31 days). Whole-blood IgG detection with RDT-A, -B, and -C showed 0.93, 0.83, and 0.98 concordance with rIFA. Against rIFA, RDT-A sensitivity (SN) was 92% (95% CI: 78–98) and specificity (SP) 100% (95% CI: 91–100), RDT-B showed 87% SN (95% CI: 72–95) and 98% SP (95% CI: 88–100), and RDT-C 100% SN (95% CI: 88–100) and 98% SP (95% CI: 88–100). Against ELISA, SN and SP were above 90% for all three RDTs. Conclusions: RDT-A and RDT-C displayed IgG detection SN and SP above 90% in whole blood. These RDTs could be considered in the absence of routine diagnostic serology facilities. Full article
Open AccessArticle
Global Comparison of Changes in the Number of Test-Positive Cases and Deaths by Coronavirus Infection (COVID-19) in the World
J. Clin. Med. 2020, 9(6), 1904; https://doi.org/10.3390/jcm9061904 - 18 Jun 2020
Cited by 3 | Viewed by 1435
Abstract
Global differences in changes in the numbers of population-adjusted daily test-positive cases (NPDP) and deaths (NPDD) by COVID-19 were analyzed for 49 countries, including developed and developing countries. The changes as a proportion of national population were compared, adjusting by the beginning of [...] Read more.
Global differences in changes in the numbers of population-adjusted daily test-positive cases (NPDP) and deaths (NPDD) by COVID-19 were analyzed for 49 countries, including developed and developing countries. The changes as a proportion of national population were compared, adjusting by the beginning of test-positive cases increase (BPI) or deaths increase (BDI). Remarkable regional differences of more than 100-fold in NPDP and NPDD were observed. The trajectories of NPDD after BDI increased exponentially within 20 days in most countries. Machine learning analysis suggested that NPDD on 30 days after BDI was the highest in developed Western countries (1180 persons per hundred million), followed by countries in the Middle East (128), Latin America (97), and Asia (7). Furthermore, in Western countries with positive rates of the PCR test of less than 7.0%, the increase in NPDP was slowing-down two weeks after BPI, and subsequent NPDD was only 15% compared with those with higher positive rates, which suggested that the situation of testing might have affected the velocity of COVID-19 spread. The causes behind remarkable differences between regions possibly include genetic factors of inhabitants because distributions of the race and of the observed infection increasing rates were in good agreement globally. Full article
Show Figures

Graphical abstract

Open AccessArticle
Estimating the Risk of COVID-19 Death during the Course of the Outbreak in Korea, February–May 2020
J. Clin. Med. 2020, 9(6), 1641; https://doi.org/10.3390/jcm9061641 - 29 May 2020
Cited by 11 | Viewed by 1021
Abstract
Background: In Korea, a total of 10,840 confirmed cases of COVID-19 including 256 deaths have been recorded as of May 9, 2020. The time-delay adjusted case fatality risk (CFR) of COVID-19 in Korea is yet to be estimated. Methods: We obtained the daily [...] Read more.
Background: In Korea, a total of 10,840 confirmed cases of COVID-19 including 256 deaths have been recorded as of May 9, 2020. The time-delay adjusted case fatality risk (CFR) of COVID-19 in Korea is yet to be estimated. Methods: We obtained the daily series of confirmed cases and deaths in Korea reported prior to May 9, 2020. Using statistical methods, we estimated the time-delay adjusted risk for death from COVID-19 in Daegu, Gyeongsangbuk-do, other regions in Korea, as well as the entire country. Results: Our model-based crude CFR fitted the observed data well throughout the course of the epidemic except for the very early stage in Gyeongsangbuk-do; this was partially due to the reporting delay. Our estimates of the risk of death in Gyeongsangbuk-do reached 25.9% (95% Credible Interval (CrI): 19.6%–33.6%), 20.8% (95% CrI: 18.1%–24.0%) in Daegu, and 1.7% (95% CrI: 1.1%–2.5%) in other regions, whereas the national estimate was 10.2% (95% CrI: 9.0%–11.5%). Conclusions: The latest estimates of CFR of COVID-19 in Korea are considerably high, even with the early implementation of public health interventions including widespread testing, social distancing, and delayed school openings. Geographic differences in the CFR are likely influenced by clusters tied to hospitals and nursing homes. Full article
Show Figures

Figure 1

Open AccessArticle
Early Phylogenetic Diversification of SARS-CoV-2: Determination of Variants and the Effect on Epidemiology, Immunology, and Diagnostics
J. Clin. Med. 2020, 9(6), 1615; https://doi.org/10.3390/jcm9061615 - 26 May 2020
Cited by 2 | Viewed by 969
Abstract
The phylogenetic clustering of 95 SARS-CoV-2 sequences from the first 3 months of the pandemic reveals insights into the early evolution of the virus and gives first indications of how the variants are globally distributed. Variants might become a challenge in terms of [...] Read more.
The phylogenetic clustering of 95 SARS-CoV-2 sequences from the first 3 months of the pandemic reveals insights into the early evolution of the virus and gives first indications of how the variants are globally distributed. Variants might become a challenge in terms of diagnostics, immunology, and effectiveness of drugs. All available whole genome sequence data from the NCBI database (March 16, 2020) were phylogenetically analyzed, and gene prediction as well as analysis of selected variants were performed. Antigenic regions and the secondary protein structure were predicted for selected variants. While some clusters are presenting the same variant with 100% identical bases, other SARS-CoV-2 lineages show a beginning diversification and phylogenetic clustering due to base substitutions and deletions in the genomes. First molecular epidemiological investigations are possible with the results by adding metadata as travelling history to the presented data. The advantage of variants in source tracing can be a challenge in terms of virulence, immune response, and immunological memory. Variants of viruses often show differences in virulence or antigenicity. This must also be considered in decisions like herd immunity. Diagnostic methods might not work if the variations or deletions are in target regions for the detection of the pathogen. One base substitution was detected in a primer binding site. Full article
Show Figures

Figure 1

Open AccessArticle
The COVID-19 Infection in Italy: A Statistical Study of an Abnormally Severe Disease
J. Clin. Med. 2020, 9(5), 1564; https://doi.org/10.3390/jcm9051564 - 21 May 2020
Cited by 17 | Viewed by 3079
Abstract
We statistically investigate the Coronavirus Disease 19 (COVID-19) pandemic, which became particularly invasive in Italy in March 2020. We show that the high apparent lethality or case fatality ratio (CFR) observed in Italy, as compared with other countries, is likely biased by a [...] Read more.
We statistically investigate the Coronavirus Disease 19 (COVID-19) pandemic, which became particularly invasive in Italy in March 2020. We show that the high apparent lethality or case fatality ratio (CFR) observed in Italy, as compared with other countries, is likely biased by a strong underestimation of the number of infection cases. To give a more realistic estimate of the lethality of COVID-19, we use the actual (March 2020) estimates of the infection fatality ratio (IFR) of the pandemic based on the minimum observed CFR and analyze data obtained from the Diamond Princess cruise ship, a good representation of a “laboratory” case-study from an isolated system in which all the people have been tested. From such analyses, we derive more realistic estimates of the real extent of the infection as well as more accurate indicators of how fast the infection propagates. We then isolate the dominant factors causing the abnormal severity of the disease in Italy. Finally, we use the death count—the only data estimated to be reliable enough—to predict the total number of people infected and the interval of time when the infection in Italy could end. Full article
Show Figures

Figure 1

Open AccessArticle
An Efficient COVID-19 Prediction Model Validated with the Cases of China, Italy and Spain: Total or Partial Lockdowns?
J. Clin. Med. 2020, 9(5), 1547; https://doi.org/10.3390/jcm9051547 - 20 May 2020
Cited by 4 | Viewed by 1637
Abstract
The present work develops an accurate prediction model of the COVID-19 pandemic, capable not only of fitting data with a high regression coefficient but also to predict the overall infections and the infection peak day as well. The model is based on the [...] Read more.
The present work develops an accurate prediction model of the COVID-19 pandemic, capable not only of fitting data with a high regression coefficient but also to predict the overall infections and the infection peak day as well. The model is based on the Verhulst equation, which has been used to fit the data of the COVID-19 spread in China, Italy, and Spain. This model has been used to predict both the infection peak day, and the total infected people in Italy and Spain. With this prediction model, the overall infections, the infection peak, and date can accurately be predicted one week before they occur. According to the study, the infection peak took place on 23 March in Italy, and on 29 March in Spain. Moreover, the influence of the total and partial lockdowns has been studied, without finding any meaningful difference in the disease spread. However, the infected population, and the rate of new infections at the start of the lockdown, seem to play an important role in the infection spread. The developed model is not only an important tool to predict the disease spread, but also gives some significant clues about the main factors that affect to the COVID-19 spread, and quantifies the effects of partial and total lockdowns as well. Full article
Show Figures

Figure 1

Open AccessArticle
Comparison of the Characteristics and Outcomes of Coronavirus Disease 2019 in Different Types of Family Infections in Taiwan
J. Clin. Med. 2020, 9(5), 1527; https://doi.org/10.3390/jcm9051527 - 19 May 2020
Cited by 1 | Viewed by 886
Abstract
Background: There were some family infections of coronavirus disease 2019 (COVID-19) in Taiwan to date. This study aimed to investigate the clinical characteristics and outcomes of different types of family infections with COVID-19 and to share Taiwan’s experience. Material and methods: We collected [...] Read more.
Background: There were some family infections of coronavirus disease 2019 (COVID-19) in Taiwan to date. This study aimed to investigate the clinical characteristics and outcomes of different types of family infections with COVID-19 and to share Taiwan’s experience. Material and methods: We collected cases of family infections of COVID-19 from 21 January 2020 to 16 March 2020. The data were collected from a series of press conference contents by Taiwan’s Central Epidemic Command Center (CECC). Results: During this period, there were six family infections in Taiwan, including two couple infections, one imported family cluster infection, and three domestic family cluster infections. Compared to the former two, the starters (cases 19, 24, and 27) of domestic family cluster infections showed longer symptom-onset to diagnosis (p = 0.02); longer symptom-onset to quarantine or isolation (p = 0.01); higher first-generation reproduction number (p = 0.03); and more critical presentation (endotracheal tube insertion and intensive care unit (ICU) care) (p < 0.01). In addition, compared to the former two, the starters of the latter were older, had no history of travel, and had more underlying diseases and more mortality. There are more contacts of domestic family cluster infections, making epidemiological investigations more difficult and expensive. However, the second-generation reproduction number of the above three families was zero. Conclusion: Domestic family cluster infections of COVID-19 have different characteristics and outcomes from couple infection and imported family cluster infections in this study. Full article
Show Figures

Figure 1

Open AccessArticle
Forecasting COVID-19-Associated Hospitalizations under Different Levels of Social Distancing in Lombardy and Emilia-Romagna, Northern Italy: Results from an Extended SEIR Compartmental Model
J. Clin. Med. 2020, 9(5), 1492; https://doi.org/10.3390/jcm9051492 - 15 May 2020
Cited by 8 | Viewed by 1404
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) was identified in Wuhan, China, in December 2019. As of 17 April 2020, more than 2 million cases of COVID-19 have been reported worldwide. Northern Italy is one of the world’s centers of active coronavirus cases. [...] Read more.
The outbreak of coronavirus disease 2019 (COVID-19) was identified in Wuhan, China, in December 2019. As of 17 April 2020, more than 2 million cases of COVID-19 have been reported worldwide. Northern Italy is one of the world’s centers of active coronavirus cases. In this study, we predicted the spread of COVID-19 and its burden on hospital care under different conditions of social distancing in Lombardy and Emilia-Romagna, the two regions of Italy most affected by the epidemic. To do this, we used a Susceptible-Exposed-Infectious-Recovered (SEIR) deterministic model, which encompasses compartments relevant to public health interventions such as quarantine. A new compartment L was added to the model for isolated infected population, i.e., individuals tested positives that do not need hospital care. We found that in Lombardy restrictive containment measures should be prolonged at least until early July to avoid a resurgence of hospitalizations; on the other hand, in Emilia-Romagna the number of hospitalized cases could be kept under a reasonable amount with a higher contact rate. Our results suggest that territory-specific forecasts under different scenarios are crucial to enhance or take new containment measures during the epidemic. Full article
Show Figures

Figure 1

Open AccessArticle
Estimation of Unreported Novel Coronavirus (SARS-CoV-2) Infections from Reported Deaths: A Susceptible–Exposed–Infectious–Recovered–Dead Model
J. Clin. Med. 2020, 9(5), 1350; https://doi.org/10.3390/jcm9051350 - 05 May 2020
Cited by 12 | Viewed by 1456
Abstract
In the midst of the novel coronavirus (SARS-CoV-2) epidemic, examining reported case data could lead to biased speculations and conclusions. Indeed, estimation of unreported infections is crucial for a better understanding of the current emergency in China and in other countries. In this [...] Read more.
In the midst of the novel coronavirus (SARS-CoV-2) epidemic, examining reported case data could lead to biased speculations and conclusions. Indeed, estimation of unreported infections is crucial for a better understanding of the current emergency in China and in other countries. In this study, we aimed to estimate the unreported number of infections in China prior to the 23 January 2020 restrictions. To do this, we developed a Susceptible–Exposed–Infectious–Recovered–Dead (SEIRD) model that estimated unreported infections from the reported number of deaths. Our approach relied on the fact that observed deaths were less likely to be affected by ascertainment biases than reported infections. Interestingly, we estimated that the basic reproductive number (R0) was 2.43 (95%CI = 2.42–2.44) at the beginning of the epidemic and that 92.9% (95%CI = 92.5%–93.1%) of total cases were not reported. Similarly, the proportion of unreported new infections by day ranged from 52.1% to 100%, with a total of 91.8% (95%CI = 91.6%–92.1%) of infections going unreported. Agreement between our estimates and those from previous studies proves that our approach is reliable for estimating the prevalence and incidence of undocumented SARS-CoV-2 infections. Once it has been tested on Chinese data, our model could be applied to other countries with different surveillance and testing policies. Full article
Show Figures

Figure 1

Open AccessArticle
Time from Symptom Onset to Hospitalisation of Coronavirus Disease 2019 (COVID-19) Cases: Implications for the Proportion of Transmissions from Infectors with Few Symptoms
J. Clin. Med. 2020, 9(5), 1297; https://doi.org/10.3390/jcm9051297 - 01 May 2020
Cited by 2 | Viewed by 1900
Abstract
Interventions targeting symptomatic hosts and their contacts were successful in bringing the 2003 SARS pandemic under control. In contrast, the COVID-19 pandemic has been harder to contain, partly because of its wide spectrum of symptoms in infectious hosts. Current evidence suggests that individuals [...] Read more.
Interventions targeting symptomatic hosts and their contacts were successful in bringing the 2003 SARS pandemic under control. In contrast, the COVID-19 pandemic has been harder to contain, partly because of its wide spectrum of symptoms in infectious hosts. Current evidence suggests that individuals can transmit the novel coronavirus while displaying few symptoms. Here, we show that the proportion of infections arising from hosts with few symptoms at the start of an outbreak can, in combination with the basic reproduction number, indicate whether or not interventions targeting symptomatic hosts are likely to be effective. However, as an outbreak continues, the proportion of infections arising from hosts with few symptoms changes in response to control measures. A high proportion of infections from hosts with few symptoms after the initial stages of an outbreak is only problematic if the rate of new infections remains high. Otherwise, it can simply indicate that symptomatic transmissions are being prevented successfully. This should be considered when interpreting estimates of the extent of transmission from hosts with few COVID-19 symptoms. Full article
Show Figures

Figure 1

Open AccessArticle
Master Regulator Analysis of the SARS-CoV-2/Human Interactome
J. Clin. Med. 2020, 9(4), 982; https://doi.org/10.3390/jcm9040982 - 01 Apr 2020
Cited by 54 | Viewed by 7944
Abstract
The recent epidemic outbreak of a novel human coronavirus called SARS-CoV-2 causing the respiratory tract disease COVID-19 has reached worldwide resonance and a global effort is being undertaken to characterize the molecular features and evolutionary origins of this virus. In this paper, we [...] Read more.
The recent epidemic outbreak of a novel human coronavirus called SARS-CoV-2 causing the respiratory tract disease COVID-19 has reached worldwide resonance and a global effort is being undertaken to characterize the molecular features and evolutionary origins of this virus. In this paper, we set out to shed light on the SARS-CoV-2/host receptor recognition, a crucial factor for successful virus infection. Based on the current knowledge of the interactome between SARS-CoV-2 and host cell proteins, we performed Master Regulator Analysis to detect which parts of the human interactome are most affected by the infection. We detected, amongst others, affected apoptotic and mitochondrial mechanisms, and a downregulation of the ACE2 protein receptor, notions that can be used to develop specific therapies against this new virus. Full article
Show Figures

Figure 1

Open AccessArticle
People with Suspected COVID-19 Symptoms Were More Likely Depressed and Had Lower Health-Related Quality of Life: The Potential Benefit of Health Literacy
J. Clin. Med. 2020, 9(4), 965; https://doi.org/10.3390/jcm9040965 - 31 Mar 2020
Cited by 87 | Viewed by 11143
Abstract
The coronavirus disease 2019 (COVID-19) epidemic affects people’s health and health-related quality of life (HRQoL), especially in those who have suspected COVID-19 symptoms (S-COVID-19-S). We examined the effect of modifications of health literacy (HL) on depression and HRQoL. A cross-sectional study was conducted [...] Read more.
The coronavirus disease 2019 (COVID-19) epidemic affects people’s health and health-related quality of life (HRQoL), especially in those who have suspected COVID-19 symptoms (S-COVID-19-S). We examined the effect of modifications of health literacy (HL) on depression and HRQoL. A cross-sectional study was conducted from 14 February to 2 March 2020. 3947 participants were recruited from outpatient departments of nine hospitals and health centers across Vietnam. The interviews were conducted using printed questionnaires including participants’ characteristics, clinical parameters, health behaviors, HL, depression, and HRQoL. People with S-COVID-19-S had a higher depression likelihood (OR, 2.88; p < 0.001), lower HRQoL-score (B, −7.92; p < 0.001). In comparison to people without S-COVID-19-S and low HL, those with S-COVID-19-S and low HL had 9.70 times higher depression likelihood (p < 0.001), 20.62 lower HRQoL-score (p < 0.001), for the people without S-COVID-19-S, 1 score increment of HL resulted in 5% lower depression likelihood (p < 0.001) and 0.45 higher HRQoL-score (p < 0.001), while for those people with S-COVID-19-S, 1 score increment of HL resulted in a 4% lower depression likelihood (p = 0.004) and 0.43 higher HRQoL-score (p < 0.001). People with S-COVID-19-S had a higher depression likelihood and lower HRQoL than those without. HL shows a protective effect on depression and HRQoL during the epidemic. Full article
Open AccessArticle
A Simulation on Potential Secondary Spread of Novel Coronavirus in an Exported Country Using a Stochastic Epidemic SEIR Model
J. Clin. Med. 2020, 9(4), 944; https://doi.org/10.3390/jcm9040944 - 30 Mar 2020
Cited by 15 | Viewed by 9711
Abstract
Ongoing outbreak of pneumonia caused by novel coronavirus (2019-nCoV) began in December 2019 in Wuhan, China, and the number of new patients continues to increase. Even though it began to spread to many other parts of the world, such as other Asian countries, [...] Read more.
Ongoing outbreak of pneumonia caused by novel coronavirus (2019-nCoV) began in December 2019 in Wuhan, China, and the number of new patients continues to increase. Even though it began to spread to many other parts of the world, such as other Asian countries, the Americas, Europe, and the Middle East, the impact of secondary outbreaks caused by exported cases outside China remains unclear. We conducted simulations to estimate the impact of potential secondary outbreaks in a community outside China. Simulations using stochastic SEIR model were conducted, assuming one patient was imported to a community. Among 45 possible scenarios we prepared, the worst scenario resulted in the total number of persons recovered or removed to be 997 (95% CrI 990–1000) at day 100 and a maximum number of symptomatic infectious patients per day of 335 (95% CrI 232–478). Calculated mean basic reproductive number (R0) was 6.5 (Interquartile range, IQR 5.6–7.2). However, better case scenarios with different parameters led to no secondary cases. Altering parameters, especially time to hospital visit. could change the impact of a secondary outbreak. With these multiple scenarios with different parameters, healthcare professionals might be able to better prepare for this viral infection. Full article
Show Figures

Figure 1

Open AccessArticle
Prediction of the Epidemic Peak of Coronavirus Disease in Japan, 2020
J. Clin. Med. 2020, 9(3), 789; https://doi.org/10.3390/jcm9030789 - 13 Mar 2020
Cited by 64 | Viewed by 23164
Abstract
The first case of coronavirus disease 2019 (COVID-19) in Japan was reported on 15 January 2020 and the number of reported cases has increased day by day. The purpose of this study is to give a prediction of the epidemic peak for COVID-19 [...] Read more.
The first case of coronavirus disease 2019 (COVID-19) in Japan was reported on 15 January 2020 and the number of reported cases has increased day by day. The purpose of this study is to give a prediction of the epidemic peak for COVID-19 in Japan by using the real-time data from 15 January to 29 February 2020. Taking into account the uncertainty due to the incomplete identification of infective population, we apply the well-known SEIR compartmental model for the prediction. By using a least-square-based method with Poisson noise, we estimate that the basic reproduction number for the epidemic in Japan is R 0 = 2.6 ( 95 % CI, 2.4 2.8 ) and the epidemic peak could possibly reach the early-middle summer. In addition, we obtain the following epidemiological insights: (1) the essential epidemic size is less likely to be affected by the rate of identification of the actual infective population; (2) the intervention has a positive effect on the delay of the epidemic peak; (3) intervention over a relatively long period is needed to effectively reduce the final epidemic size. Full article
Show Figures

Figure 1

Open AccessArticle
Optimization Method for Forecasting Confirmed Cases of COVID-19 in China
J. Clin. Med. 2020, 9(3), 674; https://doi.org/10.3390/jcm9030674 - 02 Mar 2020
Cited by 82 | Viewed by 7968
Abstract
In December 2019, a novel coronavirus, called COVID-19, was discovered in Wuhan, China, and has spread to different cities in China as well as to 24 other countries. The number of confirmed cases is increasing daily and reached 34,598 on 8 February 2020. [...] Read more.
In December 2019, a novel coronavirus, called COVID-19, was discovered in Wuhan, China, and has spread to different cities in China as well as to 24 other countries. The number of confirmed cases is increasing daily and reached 34,598 on 8 February 2020. In the current study, we present a new forecasting model to estimate and forecast the number of confirmed cases of COVID-19 in the upcoming ten days based on the previously confirmed cases recorded in China. The proposed model is an improved adaptive neuro-fuzzy inference system (ANFIS) using an enhanced flower pollination algorithm (FPA) by using the salp swarm algorithm (SSA). In general, SSA is employed to improve FPA to avoid its drawbacks (i.e., getting trapped at the local optima). The main idea of the proposed model, called FPASSA-ANFIS, is to improve the performance of ANFIS by determining the parameters of ANFIS using FPASSA. The FPASSA-ANFIS model is evaluated using the World Health Organization (WHO) official data of the outbreak of the COVID-19 to forecast the confirmed cases of the upcoming ten days. More so, the FPASSA-ANFIS model is compared to several existing models, and it showed better performance in terms of Mean Absolute Percentage Error (MAPE), Root Mean Squared Relative Error (RMSRE), Root Mean Squared Relative Error (RMSRE), coefficient of determination ( R 2 ), and computing time. Furthermore, we tested the proposed model using two different datasets of weekly influenza confirmed cases in two countries, namely the USA and China. The outcomes also showed good performances. Full article
Show Figures

Figure 1

Open AccessFeature PaperArticle
Epidemiological Identification of A Novel Pathogen in Real Time: Analysis of the Atypical Pneumonia Outbreak in Wuhan, China, 2019–2020
J. Clin. Med. 2020, 9(3), 637; https://doi.org/10.3390/jcm9030637 - 27 Feb 2020
Cited by 6 | Viewed by 2780
Abstract
Virological tests have now shown conclusively that a novel coronavirus is causing the 2019–2020 atypical pneumonia outbreak in Wuhan, China. We demonstrate that non-virological descriptive characteristics could have determined that the outbreak is caused by a novel pathogen in advance of virological testing. [...] Read more.
Virological tests have now shown conclusively that a novel coronavirus is causing the 2019–2020 atypical pneumonia outbreak in Wuhan, China. We demonstrate that non-virological descriptive characteristics could have determined that the outbreak is caused by a novel pathogen in advance of virological testing. Characteristics of the ongoing outbreak were collected in real time from two medical social media sites. These were compared against characteristics of eleven pathogens that have previously caused cases of atypical pneumonia. The probability that the current outbreak is due to “Disease X” (i.e., previously unknown etiology) as opposed to one of the known pathogens was inferred, and this estimate was updated as the outbreak continued. The probability (expressed as a percentage) that Disease X is driving the outbreak was assessed as over 29% on 31 December 2019, one week before virus identification. After some specific pathogens were ruled out by laboratory tests on 5 January 2020, the inferred probability of Disease X was over 49%. We showed quantitatively that the emerging outbreak of atypical pneumonia cases is consistent with causation by a novel pathogen. The proposed approach, which uses only routinely observed non-virological data, can aid ongoing risk assessments in advance of virological test results becoming available. Full article
Show Figures

Figure 1

Open AccessArticle
Assessing the Impact of Reduced Travel on Exportation Dynamics of Novel Coronavirus Infection (COVID-19)
J. Clin. Med. 2020, 9(2), 601; https://doi.org/10.3390/jcm9020601 - 24 Feb 2020
Cited by 56 | Viewed by 9479
Abstract
The impact of the drastic reduction in travel volume within mainland China in January and February 2020 was quantified with respect to reports of novel coronavirus (COVID-19) infections outside China. Data on confirmed cases diagnosed outside China were analyzed using statistical models to [...] Read more.
The impact of the drastic reduction in travel volume within mainland China in January and February 2020 was quantified with respect to reports of novel coronavirus (COVID-19) infections outside China. Data on confirmed cases diagnosed outside China were analyzed using statistical models to estimate the impact of travel reduction on three epidemiological outcome measures: (i) the number of exported cases, (ii) the probability of a major epidemic, and (iii) the time delay to a major epidemic. From 28 January to 7 February 2020, we estimated that 226 exported cases (95% confidence interval: 86,449) were prevented, corresponding to a 70.4% reduction in incidence compared to the counterfactual scenario. The reduced probability of a major epidemic ranged from 7% to 20% in Japan, which resulted in a median time delay to a major epidemic of two days. Depending on the scenario, the estimated delay may be less than one day. As the delay is small, the decision to control travel volume through restrictions on freedom of movement should be balanced between the resulting estimated epidemiological impact and predicted economic fallout. Full article
Show Figures

Figure 1

Open AccessArticle
Short-term Forecasts of the COVID-19 Epidemic in Guangdong and Zhejiang, China: February 13–23, 2020
J. Clin. Med. 2020, 9(2), 596; https://doi.org/10.3390/jcm9020596 - 22 Feb 2020
Cited by 51 | Viewed by 6653
Abstract
The ongoing COVID-19 epidemic continues to spread within and outside of China, despite several social distancing measures implemented by the Chinese government. Limited epidemiological data are available, and recent changes in case definition and reporting further complicate our understanding of the impact of [...] Read more.
The ongoing COVID-19 epidemic continues to spread within and outside of China, despite several social distancing measures implemented by the Chinese government. Limited epidemiological data are available, and recent changes in case definition and reporting further complicate our understanding of the impact of the epidemic, particularly in the epidemic’s epicenter. Here we use previously validated phenomenological models to generate short-term forecasts of cumulative reported cases in Guangdong and Zhejiang, China. Using daily reported cumulative case data up until 13 February 2020 from the National Health Commission of China, we report 5- and 10-day ahead forecasts of cumulative case reports. Specifically, we generate forecasts using a generalized logistic growth model, the Richards growth model, and a sub-epidemic wave model, which have each been previously used to forecast outbreaks due to different infectious diseases. Forecasts from each of the models suggest the outbreaks may be nearing extinction in both Guangdong and Zhejiang; however, the sub-epidemic model predictions also include the potential for further sustained transmission, particularly in Zhejiang. Our 10-day forecasts across the three models predict an additional 65–81 cases (upper bounds: 169–507) in Guangdong and an additional 44–354 (upper bounds: 141–875) cases in Zhejiang by February 23, 2020. In the best-case scenario, current data suggest that transmission in both provinces is slowing down. Full article
Show Figures

Figure 1

Open AccessArticle
Risk Assessment of Novel Coronavirus COVID-19 Outbreaks Outside China
J. Clin. Med. 2020, 9(2), 571; https://doi.org/10.3390/jcm9020571 - 19 Feb 2020
Cited by 76 | Viewed by 33033
Abstract
We developed a computational tool to assess the risks of novel coronavirus outbreaks outside of China. We estimate the dependence of the risk of a major outbreak in a country from imported cases on key parameters such as: (i) the evolution of the [...] Read more.
We developed a computational tool to assess the risks of novel coronavirus outbreaks outside of China. We estimate the dependence of the risk of a major outbreak in a country from imported cases on key parameters such as: (i) the evolution of the cumulative number of cases in mainland China outside the closed areas; (ii) the connectivity of the destination country with China, including baseline travel frequencies, the effect of travel restrictions, and the efficacy of entry screening at destination; and (iii) the efficacy of control measures in the destination country (expressed by the local reproduction number R loc ). We found that in countries with low connectivity to China but with relatively high R loc , the most beneficial control measure to reduce the risk of outbreaks is a further reduction in their importation number either by entry screening or travel restrictions. Countries with high connectivity but low R loc benefit the most from policies that further reduce R loc . Countries in the middle should consider a combination of such policies. Risk assessments were illustrated for selected groups of countries from America, Asia, and Europe. We investigated how their risks depend on those parameters, and how the risk is increasing in time as the number of cases in China is growing. Full article
Show Figures

Figure 1

Open AccessEditor’s ChoiceArticle
Incubation Period and Other Epidemiological Characteristics of 2019 Novel Coronavirus Infections with Right Truncation: A Statistical Analysis of Publicly Available Case Data
J. Clin. Med. 2020, 9(2), 538; https://doi.org/10.3390/jcm9020538 - 17 Feb 2020
Cited by 344 | Viewed by 37550
Abstract
The geographic spread of 2019 novel coronavirus (COVID-19) infections from the epicenter of Wuhan, China, has provided an opportunity to study the natural history of the recently emerged virus. Using publicly available event-date data from the ongoing epidemic, the present study investigated the [...] Read more.
The geographic spread of 2019 novel coronavirus (COVID-19) infections from the epicenter of Wuhan, China, has provided an opportunity to study the natural history of the recently emerged virus. Using publicly available event-date data from the ongoing epidemic, the present study investigated the incubation period and other time intervals that govern the epidemiological dynamics of COVID-19 infections. Our results show that the incubation period falls within the range of 2–14 days with 95% confidence and has a mean of around 5 days when approximated using the best-fit lognormal distribution. The mean time from illness onset to hospital admission (for treatment and/or isolation) was estimated at 3–4 days without truncation and at 5–9 days when right truncated. Based on the 95th percentile estimate of the incubation period, we recommend that the length of quarantine should be at least 14 days. The median time delay of 13 days from illness onset to death (17 days with right truncation) should be considered when estimating the COVID-19 case fatality risk. Full article
Show Figures

Figure 1

Open AccessFeature PaperArticle
Real-Time Estimation of the Risk of Death from Novel Coronavirus (COVID-19) Infection: Inference Using Exported Cases
J. Clin. Med. 2020, 9(2), 523; https://doi.org/10.3390/jcm9020523 - 14 Feb 2020
Cited by 113 | Viewed by 28458
Abstract
The exported cases of 2019 novel coronavirus (COVID-19) infection that were confirmed outside China provide an opportunity to estimate the cumulative incidence and confirmed case fatality risk (cCFR) in mainland China. Knowledge of the cCFR is critical to characterize the severity and understand [...] Read more.
The exported cases of 2019 novel coronavirus (COVID-19) infection that were confirmed outside China provide an opportunity to estimate the cumulative incidence and confirmed case fatality risk (cCFR) in mainland China. Knowledge of the cCFR is critical to characterize the severity and understand the pandemic potential of COVID-19 in the early stage of the epidemic. Using the exponential growth rate of the incidence, the present study statistically estimated the cCFR and the basic reproduction number—the average number of secondary cases generated by a single primary case in a naïve population. We modeled epidemic growth either from a single index case with illness onset on 8 December 2019 (Scenario 1), or using the growth rate fitted along with the other parameters (Scenario 2) based on data from 20 exported cases reported by 24 January 2020. The cumulative incidence in China by 24 January was estimated at 6924 cases (95% confidence interval [CI]: 4885, 9211) and 19,289 cases (95% CI: 10,901, 30,158), respectively. The latest estimated values of the cCFR were 5.3% (95% CI: 3.5%, 7.5%) for Scenario 1 and 8.4% (95% CI: 5.3%, 12.3%) for Scenario 2. The basic reproduction number was estimated to be 2.1 (95% CI: 2.0, 2.2) and 3.2 (95% CI: 2.7, 3.7) for Scenarios 1 and 2, respectively. Based on these results, we argued that the current COVID-19 epidemic has a substantial potential for causing a pandemic. The proposed approach provides insights in early risk assessment using publicly available data. Full article
Show Figures

Figure 1

Open AccessFeature PaperArticle
Novel Coronavirus Outbreak in Wuhan, China, 2020: Intense Surveillance Is Vital for Preventing Sustained Transmission in New Locations
J. Clin. Med. 2020, 9(2), 498; https://doi.org/10.3390/jcm9020498 - 11 Feb 2020
Cited by 59 | Viewed by 8541
Abstract
The outbreak of pneumonia originating in Wuhan, China, has generated 24,500 confirmed cases, including 492 deaths, as of 5 February 2020. The virus (2019-nCoV) has spread elsewhere in China and to 24 countries, including South Korea, Thailand, Japan and USA. Fortunately, there has [...] Read more.
The outbreak of pneumonia originating in Wuhan, China, has generated 24,500 confirmed cases, including 492 deaths, as of 5 February 2020. The virus (2019-nCoV) has spread elsewhere in China and to 24 countries, including South Korea, Thailand, Japan and USA. Fortunately, there has only been limited human-to-human transmission outside of China. Here, we assess the risk of sustained transmission whenever the coronavirus arrives in other countries. Data describing the times from symptom onset to hospitalisation for 47 patients infected early in the current outbreak are used to generate an estimate for the probability that an imported case is followed by sustained human-to-human transmission. Under the assumptions that the imported case is representative of the patients in China, and that the 2019-nCoV is similarly transmissible to the SARS coronavirus, the probability that an imported case is followed by sustained human-to-human transmission is 0.41 (credible interval [0.27, 0.55]). However, if the mean time from symptom onset to hospitalisation can be halved by intense surveillance, then the probability that an imported case leads to sustained transmission is only 0.012 (credible interval [0, 0.099]). This emphasises the importance of current surveillance efforts in countries around the world, to ensure that the ongoing outbreak will not become a global pandemic. Full article
Show Figures

Figure 1

Open AccessFeature PaperArticle
Estimation of the Transmission Risk of the 2019-nCoV and Its Implication for Public Health Interventions
J. Clin. Med. 2020, 9(2), 462; https://doi.org/10.3390/jcm9020462 - 07 Feb 2020
Cited by 301 | Viewed by 16580
Abstract
Since the emergence of the first cases in Wuhan, China, the novel coronavirus (2019-nCoV) infection has been quickly spreading out to other provinces and neighboring countries. Estimation of the basic reproduction number by means of mathematical modeling can be helpful for determining the [...] Read more.
Since the emergence of the first cases in Wuhan, China, the novel coronavirus (2019-nCoV) infection has been quickly spreading out to other provinces and neighboring countries. Estimation of the basic reproduction number by means of mathematical modeling can be helpful for determining the potential and severity of an outbreak and providing critical information for identifying the type of disease interventions and intensity. A deterministic compartmental model was devised based on the clinical progression of the disease, epidemiological status of the individuals, and intervention measures. The estimations based on likelihood and model analysis show that the control reproduction number may be as high as 6.47 (95% CI 5.71–7.23). Sensitivity analyses show that interventions, such as intensive contact tracing followed by quarantine and isolation, can effectively reduce the control reproduction number and transmission risk, with the effect of travel restriction adopted by Wuhan on 2019-nCoV infection in Beijing being almost equivalent to increasing quarantine by a 100 thousand baseline value. It is essential to assess how the expensive, resource-intensive measures implemented by the Chinese authorities can contribute to the prevention and control of the 2019-nCoV infection, and how long they should be maintained. Under the most restrictive measures, the outbreak is expected to peak within two weeks (since 23 January 2020) with a significant low peak value. With travel restriction (no imported exposed individuals to Beijing), the number of infected individuals in seven days will decrease by 91.14% in Beijing, compared with the scenario of no travel restriction. Full article
Show Figures

Figure 1

Open AccessFeature PaperArticle
Estimating the Unreported Number of Novel Coronavirus (2019-nCoV) Cases in China in the First Half of January 2020: A Data-Driven Modelling Analysis of the Early Outbreak
J. Clin. Med. 2020, 9(2), 388; https://doi.org/10.3390/jcm9020388 - 01 Feb 2020
Cited by 128 | Viewed by 19041
Abstract
Background: In December 2019, an outbreak of respiratory illness caused by a novel coronavirus (2019-nCoV) emerged in Wuhan, China and has swiftly spread to other parts of China and a number of foreign countries. The 2019-nCoV cases might have been under-reported roughly from [...] Read more.
Background: In December 2019, an outbreak of respiratory illness caused by a novel coronavirus (2019-nCoV) emerged in Wuhan, China and has swiftly spread to other parts of China and a number of foreign countries. The 2019-nCoV cases might have been under-reported roughly from 1 to 15 January 2020, and thus we estimated the number of unreported cases and the basic reproduction number, R0, of 2019-nCoV. Methods: We modelled the epidemic curve of 2019-nCoV cases, in mainland China from 1 December 2019 to 24 January 2020 through the exponential growth. The number of unreported cases was determined by the maximum likelihood estimation. We used the serial intervals (SI) of infection caused by two other well-known coronaviruses (CoV), Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS) CoVs, as approximations of the unknown SI for 2019-nCoV to estimate R0. Results: We confirmed that the initial growth phase followed an exponential growth pattern. The under-reporting was likely to have resulted in 469 (95% CI: 403–540) unreported cases from 1 to 15 January 2020. The reporting rate after 17 January 2020 was likely to have increased 21-fold (95% CI: 18–25) in comparison to the situation from 1 to 17 January 2020 on average. We estimated the R0 of 2019-nCoV at 2.56 (95% CI: 2.49–2.63). Conclusion: The under-reporting was likely to have occurred during the first half of January 2020 and should be considered in future investigation. Full article
Show Figures

Figure 1

Review

Jump to: Editorial, Research

Open AccessEditor’s ChoiceReview
Frailty and COVID-19: A Systematic Scoping Review
J. Clin. Med. 2020, 9(7), 2106; https://doi.org/10.3390/jcm9072106 - 04 Jul 2020
Cited by 16 | Viewed by 2374
Abstract
Older people have paid a huge toll in terms of mortality during the coronavirus disease-19 (COVID-19) pandemic. Frailty may have contributed to the vulnerability of older people to more severe clinical presentation. We aimed at reviewing available evidence about frailty and COVID-19. We [...] Read more.
Older people have paid a huge toll in terms of mortality during the coronavirus disease-19 (COVID-19) pandemic. Frailty may have contributed to the vulnerability of older people to more severe clinical presentation. We aimed at reviewing available evidence about frailty and COVID-19. We searched PUBMED, Web of Science, and EMBASE from 1 December 2019 to 29 May 2020. Study selection and data extraction were performed by three independent reviewers. Qualitative synthesis was conducted and quantitative data extracted when available. Forty papers were included: 13 editorials, 15 recommendations/guidelines, 3 reviews, 1 clinical trial, 6 observational studies, 2 case reports. Editorials and reviews underlined the potential clinical relevance of assessing frailty among older patients with COVID-19. However, frailty was only investigated in regards to its association with overall mortality, hospital contagion, intensive care unit admission rates, and disease phenotypes in the few observational studies retrieved. Specific interventions in relation to frailty or its impact on COVID-19 treatments have not been evaluated yet. Even with such limited evidence, clinical recommendations on the use of frailty tools have been proposed to support decision making about escalation plan. Ongoing initiatives are expected to improve knowledge of COVID-19 interaction with frailty and to promote patient-centered approaches. Full article
Show Figures

Figure 1

Open AccessEditor’s ChoiceReview
No Autopsies on COVID-19 Deaths: A Missed Opportunity and the Lockdown of Science
J. Clin. Med. 2020, 9(5), 1472; https://doi.org/10.3390/jcm9051472 - 14 May 2020
Cited by 25 | Viewed by 4365
Abstract
Background: The current outbreak of COVID-19 infection, which started in Wuhan, Hubei province, China, in December 2019, is an ongoing challenge and a significant threat to public health requiring surveillance, prompt diagnosis, and research efforts to understand a new, emergent, and unknown pathogen [...] Read more.
Background: The current outbreak of COVID-19 infection, which started in Wuhan, Hubei province, China, in December 2019, is an ongoing challenge and a significant threat to public health requiring surveillance, prompt diagnosis, and research efforts to understand a new, emergent, and unknown pathogen and to develop effective therapies. Despite the increasing number of published studies on COVID-19, in all the examined studies the lack of a well-defined pathophysiology of death among patients who died following COVID-19 infection is evident. Autopsy should be considered mandatory to define the exact cause of death, thus providing useful clinical and epidemiologic information as well as pathophysiological insights to further provide therapeutic tools. Methods: A literature review was performed on PubMed database, using the key terms: “COVID-19”, “nCov 19”, and “Sars Cov 2”. 9709 articles were retrieved; by excluding all duplicated articles, additional criteria were then applied: articles or abstracts in English and articles containing one of the following words: “death”, “died”, “comorbidity”, “cause of death”, “biopsy”, “autopsy”, or “pathological”. Results: A total of 50 articles met the inclusion criteria. However, only 7 of these studies reported autopsy-based data. Discussion: The analysis of the main data from the selected studies concerns the complete analysis of 12,954 patients, of whom 2269 died (with a mortality rate of 17.52%). Laboratory confirmation of COVID-19 infection was obtained in all cases and comorbidities were fully reported in 46 studies. The most common comorbidities were: cardiovascular diseases (hypertension and coronary artery disease), metabolic disorders (diabetes, overweight, or obesity), respiratory disorders (chronic obstructive pulmonary disease), and cancer. The most common reported complications were: acute respiratory distress syndrome (ARDS), acute kidney injury, cardiac injury, liver insufficiency, and septic shock. Only 7 papers reported histological investigations. Nevertheless, only two complete autopsies are described and the cause of death was listed as COVID-19 in only one of them. The lack of postmortem investigation did not allow a definition of the exact cause of death to determine the pathways of this infection. Based on the few histopathological findings reported in the analyzed studies, it seems to be a clear alteration of the coagulation system: frequently prothrombotic activity with consequent thromboembolism was described in COVID-19 patients. As a scientific community, we are called on to face this global threat, and to defeat it with all the available tools necessary. Despite the improvement and reinforcement of any method of study in every field of medicine and science, encouraging the autopsy practice as a tool of investigation could also therefore, help physicians to define an effective treatment to reduce mortality. Full article
Show Figures

Figure 1

Open AccessReview
The COVID-19 Pandemic: A Comprehensive Review of Taxonomy, Genetics, Epidemiology, Diagnosis, Treatment, and Control
J. Clin. Med. 2020, 9(4), 1225; https://doi.org/10.3390/jcm9041225 - 24 Apr 2020
Cited by 91 | Viewed by 12331
Abstract
A pneumonia outbreak with unknown etiology was reported in Wuhan, Hubei province, China, in December 2019, associated with the Huanan Seafood Wholesale Market. The causative agent of the outbreak was identified by the WHO as the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), producing [...] Read more.
A pneumonia outbreak with unknown etiology was reported in Wuhan, Hubei province, China, in December 2019, associated with the Huanan Seafood Wholesale Market. The causative agent of the outbreak was identified by the WHO as the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), producing the disease named coronavirus disease-2019 (COVID-19). The virus is closely related (96.3%) to bat coronavirus RaTG13, based on phylogenetic analysis. Human-to-human transmission has been confirmed even from asymptomatic carriers. The virus has spread to at least 200 countries, and more than 1,700,000 confirmed cases and 111,600 deaths have been recorded, with massive global increases in the number of cases daily. Therefore, the WHO has declared COVID-19 a pandemic. The disease is characterized by fever, dry cough, and chest pain with pneumonia in severe cases. In the beginning, the world public health authorities tried to eradicate the disease in China through quarantine but are now transitioning to prevention strategies worldwide to delay its spread. To date, there are no available vaccines or specific therapeutic drugs to treat the virus. There are many knowledge gaps about the newly emerged SARS-CoV-2, leading to misinformation. Therefore, in this review, we provide recent information about the COVID-19 pandemic. This review also provides insights for the control of pathogenic infections in humans such as SARS-CoV-2 infection and future spillovers. Full article
Show Figures

Figure 1

Open AccessReview
A Systematic Review of COVID-19 Epidemiology Based on Current Evidence
J. Clin. Med. 2020, 9(4), 967; https://doi.org/10.3390/jcm9040967 - 31 Mar 2020
Cited by 121 | Viewed by 21799
Abstract
As the novel coronavirus (SARS-CoV-2) continues to spread rapidly across the globe, we aimed to identify and summarize the existing evidence on epidemiological characteristics of SARS-CoV-2 and the effectiveness of control measures to inform policymakers and leaders in formulating management guidelines, and to [...] Read more.
As the novel coronavirus (SARS-CoV-2) continues to spread rapidly across the globe, we aimed to identify and summarize the existing evidence on epidemiological characteristics of SARS-CoV-2 and the effectiveness of control measures to inform policymakers and leaders in formulating management guidelines, and to provide directions for future research. We conducted a systematic review of the published literature and preprints on the coronavirus disease (COVID-19) outbreak following predefined eligibility criteria. Of 317 research articles generated from our initial search on PubMed and preprint archives on 21 February 2020, 41 met our inclusion criteria and were included in the review. Current evidence suggests that it takes about 3-7 days for the epidemic to double in size. Of 21 estimates for the basic reproduction number ranging from 1.9 to 6.5, 13 were between 2.0 and 3.0. The incubation period was estimated to be 4-6 days, whereas the serial interval was estimated to be 4-8 days. Though the true case fatality risk is yet unknown, current model-based estimates ranged from 0.3% to 1.4% for outside China. There is an urgent need for rigorous research focusing on the mitigation efforts to minimize the impact on society. Full article
Show Figures

Figure 1

Open AccessReview
Novel Coronavirus Infection (COVID-19) in Humans: A Scoping Review and Meta-Analysis
J. Clin. Med. 2020, 9(4), 941; https://doi.org/10.3390/jcm9040941 - 30 Mar 2020
Cited by 143 | Viewed by 20046
Abstract
A growing body of literature on the 2019 novel coronavirus (SARS-CoV-2) is becoming available, but a synthesis of available data has not been conducted. We performed a scoping review of currently available clinical, epidemiological, laboratory, and chest imaging data related to the SARS-CoV-2 [...] Read more.
A growing body of literature on the 2019 novel coronavirus (SARS-CoV-2) is becoming available, but a synthesis of available data has not been conducted. We performed a scoping review of currently available clinical, epidemiological, laboratory, and chest imaging data related to the SARS-CoV-2 infection. We searched MEDLINE, Cochrane CENTRAL, EMBASE, Scopus and LILACS from 01 January 2019 to 24 February 2020. Study selection, data extraction and risk of bias assessment were performed by two independent reviewers. Qualitative synthesis and meta-analysis were conducted using the clinical and laboratory data, and random-effects models were applied to estimate pooled results. A total of 61 studies were included (59,254 patients). The most common disease-related symptoms were fever (82%, 95% confidence interval (CI) 56%–99%; n = 4410), cough (61%, 95% CI 39%–81%; n = 3985), muscle aches and/or fatigue (36%, 95% CI 18%–55%; n = 3778), dyspnea (26%, 95% CI 12%–41%; n = 3700), headache in 12% (95% CI 4%–23%, n = 3598 patients), sore throat in 10% (95% CI 5%–17%, n = 1387) and gastrointestinal symptoms in 9% (95% CI 3%–17%, n = 1744). Laboratory findings were described in a lower number of patients and revealed lymphopenia (0.93 × 109/L, 95% CI 0.83–1.03 × 109/L, n = 464) and abnormal C-reactive protein (33.72 mg/dL, 95% CI 21.54–45.91 mg/dL; n = 1637). Radiological findings varied, but mostly described ground-glass opacities and consolidation. Data on treatment options were limited. All-cause mortality was 0.3% (95% CI 0.0%–1.0%; n = 53,631). Epidemiological studies showed that mortality was higher in males and elderly patients. The majority of reported clinical symptoms and laboratory findings related to SARS-CoV-2 infection are non-specific. Clinical suspicion, accompanied by a relevant epidemiological history, should be followed by early imaging and virological assay. Full article
Show Figures

Figure 1

Open AccessReview
Potential Rapid Diagnostics, Vaccine and Therapeutics for 2019 Novel Coronavirus (2019-nCoV): A Systematic Review
J. Clin. Med. 2020, 9(3), 623; https://doi.org/10.3390/jcm9030623 - 26 Feb 2020
Cited by 172 | Viewed by 31765
Abstract
Rapid diagnostics, vaccines and therapeutics are important interventions for the management of the 2019 novel coronavirus (2019-nCoV) outbreak. It is timely to systematically review the potential of these interventions, including those for Middle East respiratory syndrome-Coronavirus (MERS-CoV) and severe acute respiratory syndrome (SARS)-CoV, [...] Read more.
Rapid diagnostics, vaccines and therapeutics are important interventions for the management of the 2019 novel coronavirus (2019-nCoV) outbreak. It is timely to systematically review the potential of these interventions, including those for Middle East respiratory syndrome-Coronavirus (MERS-CoV) and severe acute respiratory syndrome (SARS)-CoV, to guide policymakers globally on their prioritization of resources for research and development. A systematic search was carried out in three major electronic databases (PubMed, Embase and Cochrane Library) to identify published studies in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Supplementary strategies through Google Search and personal communications were used. A total of 27 studies fulfilled the criteria for review. Several laboratory protocols for confirmation of suspected 2019-nCoV cases using real-time reverse transcription polymerase chain reaction (RT-PCR) have been published. A commercial RT-PCR kit developed by the Beijing Genomic Institute is currently widely used in China and likely in Asia. However, serological assays as well as point-of-care testing kits have not been developed but are likely in the near future. Several vaccine candidates are in the pipeline. The likely earliest Phase 1 vaccine trial is a synthetic DNA-based candidate. A number of novel compounds as well as therapeutics licensed for other conditions appear to have in vitro efficacy against the 2019-nCoV. Some are being tested in clinical trials against MERS-CoV and SARS-CoV, while others have been listed for clinical trials against 2019-nCoV. However, there are currently no effective specific antivirals or drug combinations supported by high-level evidence. Full article
Show Figures

Figure 1

Open AccessEditor’s ChoiceReview
Characteristics of and Public Health Responses to the Coronavirus Disease 2019 Outbreak in China
J. Clin. Med. 2020, 9(2), 575; https://doi.org/10.3390/jcm9020575 - 20 Feb 2020
Cited by 183 | Viewed by 13737
Abstract
In December 2019, cases of unidentified pneumonia with a history of exposure in the Huanan Seafood Market were reported in Wuhan, Hubei Province. A novel coronavirus, SARS-CoV-2, was identified to be accountable for this disease. Human-to-human transmission is confirmed, and this disease (named [...] Read more.
In December 2019, cases of unidentified pneumonia with a history of exposure in the Huanan Seafood Market were reported in Wuhan, Hubei Province. A novel coronavirus, SARS-CoV-2, was identified to be accountable for this disease. Human-to-human transmission is confirmed, and this disease (named COVID-19 by World Health Organization (WHO)) spread rapidly around the country and the world. As of 18 February 2020, the number of confirmed cases had reached 75,199 with 2009 fatalities. The COVID-19 resulted in a much lower case-fatality rate (about 2.67%) among the confirmed cases, compared with Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS). Among the symptom composition of the 45 fatality cases collected from the released official reports, the top four are fever, cough, short of breath, and chest tightness/pain. The major comorbidities of the fatality cases include hypertension, diabetes, coronary heart disease, cerebral infarction, and chronic bronchitis. The source of the virus and the pathogenesis of this disease are still unconfirmed. No specific therapeutic drug has been found. The Chinese Government has initiated a level-1 public health response to prevent the spread of the disease. Meanwhile, it is also crucial to speed up the development of vaccines and drugs for treatment, which will enable us to defeat COVID-19 as soon as possible. Full article
Show Figures

Figure 1

Back to TopTop