# Novel Coronavirus Outbreak in Wuhan, China, 2020: Intense Surveillance Is Vital for Preventing Sustained Transmission in New Locations

^{1}

^{2}

## Abstract

**:**

## 1. Introduction

## 2. Methods

#### 2.1. Time from Symptom Onset to Hospitalisation

#### 2.2. Estimating the Probability of Sustained Transmission

#### 2.3. Multiple Imported Cases

## 3. Results

## 4. Discussion

## Supplementary Materials

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Hui, D.S.; Azhar, E.I.; Madani, T.A.; Ntoumi, F.; Kock, R.; Dar, O.; Ippolito, G.; Mchugh, T.D.; Memish, Z.A.; Drosten, C.; et al. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health—The latest 2019 novel coronavirus outbreak in Wuhan, China. Int. J. Infect. Dis.
**2020**, 91, 264–266. [Google Scholar] [CrossRef] [PubMed][Green Version] - World Health Organization. Novel Coronavirus (2019-nCoV); Situation Report 3; 2020. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports (accessed on 25 January 2020).
- Imai, N.; Dorigatti, I.; Cori, A.; Riley, S.; Ferguson, N.M. Report 1: Estimating the Potential Total Number of Novel Coronavirus (2019-nCoV) Cases in Wuhan City, China. 2020. Available online: https://www.imperial.ac.uk/mrc-global-infectious-disease-analysis/news--wuhan-coronavirus/ (accessed on 23 January 2020).
- Chan, J.F.W.; Yuan, S.; Kok, K.H.; To, K.K.W.; Chu, H.; Yang, J.; Xing, F.; Liu, J.; Chik-Yan Yip, C.; Wing-Shan Poon, R.; et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet
**2020**, 6736, 1–10. [Google Scholar] [CrossRef][Green Version] - Nishiura, H.; Jung, S.M.; Linton, N.M.; Kinoshita, R.; Yang, Y.; Hayashi, K.; Kobayashi, T.; Yuan, B.; Akhmetzhanov, A.R. The extent of transmission of novel coronavirus in Wuhan, China, 2020. J. Clin. Med.
**2020**, 9, 330. [Google Scholar] [CrossRef][Green Version] - Wu, P.; Hao, X.; Lau, E.H.Y.; Wong, J.Y.; Leung, K.S.M.; Wu, J.T.; Cowling, B.J.; Leung, G.M. Real-time tentative assessment of the epidemiological characteristics of novel coronavirus infections in Wuhan, China, as at 22 January 2020. Eurosurveillance
**2020**, 25, 2000044. [Google Scholar] [CrossRef] - Imai, N.; Cori, A.; Dorigatti, I.; Baguelin, M.; Donnelly, C.A.; Riley, S.; Ferguson, N.M. Report 3: Transmissibility of 2019-nCoV. 2020. Available online: https://www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-2019-nCoV-transmissibility.pdf (accessed on 26 January 2020).
- Lipsitch, M.; Donnelly, C.A.; Fraser, C.; Blake, I.M.; Cori, A.; Dorigatti, I.; Ferguson, N.M.; Garske, T.; Mills, H.L.; Riley, S.; et al. Potential Biases in estimating absolute and relative case-fatality risks during outbreaks. PLoS Negl. Trop. Dis.
**2015**, 16, e0003846. [Google Scholar] [CrossRef][Green Version] - Ghani, A.C.; Donnelly, C.A.; Cox, D.R.; Griffin, J.T.; Fraser, C.; Lam, T.H.; Ho, L.M.; Chan, W.S.; Anderson, R.M.; Hedley, A.J.; et al. Methods for estimating the case fatality ratio for a novel, emerging infectious disease. Am. J. Epidemiol.
**2005**, 162, 479–486. [Google Scholar] [CrossRef] - BBC. China Coronavirus: UK Tracing up to 2000 Wuhan Visitors. 2020. Available online: https://www.bbc.co.uk/news/uk-51232163 (accessed on 24 January 2020).
- Tatem, A.J.; Rogers, D.J.; Hay, S.I. Global Transport Networks and Infectious Disease Spread. Adv. Parasitol.
**2006**, 62, 293–343. [Google Scholar] - Thompson, R.N.; Thompson, C.; Pelerman, O.; Gupta, S.; Obolski, U. Increased frequency of travel in the presence of cross-immunity may act to decrease the chance of a global pandemic. Philos. Trans. R. Soc. B
**2019**, 374, 20180274. [Google Scholar] [CrossRef][Green Version] - Cohen, J.; Normile, D. New SARS-like virus in China triggers alarm. Science
**2020**, 367, 234–235. [Google Scholar] [CrossRef] - Parry, J. SARS virus identified, but the disease is still spreading. Br. Med. J.
**2003**, 326, 897. [Google Scholar] [CrossRef][Green Version] - Kraemer, M.; Pigott, D.; Xu, B.; Hill, S.; Gutierrez, B.; Pybus, O. Epidemiological Data from the nCoV-2019 Outbreak: Early Descriptions from Publicly Available Data. 2020. Available online: http://virological.org/t/epidemiological-data-from-the-ncov-2019-outbreak-early-descriptions-from-publicly-available-data/ (accessed on 23 January 2020).
- Thompson, R.N.; Stockwin, J.E.; Gaalen, R.D.; Van Polonsky, J.A.; Kamvar, Z.N.; Demarsh, P.A.; Dahlqwist, E.; Li, S.; Miguel, E.; Jombart, T.; et al. Improved inference of time-varying reproduction numbers during infectious disease outbreaks. Epidemics
**2019**, 19, 100356. [Google Scholar] [CrossRef] [PubMed] - Lloyd, A.L.; Zhang, J.; Root, A.M. Stochasticity and heterogeneity in host-vector models. J. R. Soc. Interface
**2007**, 4, 851–863. [Google Scholar] [CrossRef] [PubMed][Green Version] - Allen, L.J.S.; Lahodny, G.E. Extinction thresholds in deterministic and stochastic epidemic models. J. Biol. Dyn.
**2012**, 6, 590–611. [Google Scholar] [CrossRef] [PubMed] - Thompson, R.N.; Gilligan, C.A.; Cunniffe, N.J. Detecting presymptomatic infection is necessary to forecast major epidemics in the earliest stages of infectious disease outbreaks. PLoS Comput. Biol.
**2016**, 12, e1004836. [Google Scholar] [CrossRef] [PubMed][Green Version] - Thompson, R.N.; Jalava, K.; Obolski, U. Sustained transmission of Ebola in new locations: More likely than previously thought. Lancet Infect. Dis.
**2019**, 19, 1058–1059. [Google Scholar] [CrossRef][Green Version] - Wallinga, J.; Teunis, P. Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures. Am. J. Epidemiol.
**2004**, 160, 509–516. [Google Scholar] [CrossRef][Green Version] - Feng, D.; Jia, N.; Fang, L.Q.; Richardus, J.H.; Han, X.N.; Cao, W.C.; De Vlas, S.J. Duration of symptom onset to hospital admission and admission to discharge or death in SARS in mainland China: A descriptive study. Trop. Med. Int. Heal.
**2009**, 14, 28–35. [Google Scholar] [CrossRef] - Bogoch, I.I.; Watts, A.; Thomas-Bachli, A.; Huber, C.; Kraemer, M.U.G.; Khan, K. Pneumonia of unknown etiology in Wuhan, China: Potential for international spread via commercial air travel. J. Travel Med.
**2020**, 1, taaa008. [Google Scholar] [CrossRef] - Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet
**2020**, 6736, 1–10. [Google Scholar] [CrossRef][Green Version] - Thompson, R.N. Pandemic potential of 2019-nCoV. Lancet Infect. Dis.
**2020**, 20, 30068. [Google Scholar] [CrossRef][Green Version] - Fraser, C.; Riley, S.; Anderson, R.M.; Ferguson, N.M. Factors that make an infectious disease outbreak controllable. Proc. Natl. Acad. Sci. USA
**2004**, 101, 6146–6151. [Google Scholar] [CrossRef] [PubMed][Green Version] - Kupferschmidt, K. Study Claiming New Coronavirus Can be Transmitted by People without Symptoms Was Flawed. Available online: https://www.sciencemag.org/news/2020/02/paper-non-symptomatic-patient-transmitting-coronavirus-wrong (accessed on 4 February 2020).
- Donnelly, C.A.; Ghani, A.C.; Leung, G.M.; Hedley, A.J.; Fraser, C.; Riley, S.; Abu-Raddad, L.J.; Ho, L.M.; Thach, T.Q.; Chau, P.; et al. Epidemiological determinants of spread of causal agent of severe acute respiratory syndrome in Hong Kong. Lancet
**2003**, 361, 1761–1766. [Google Scholar] [CrossRef][Green Version] - Lloyd-Smith, J.O.; Schreiber, S.J.; Kopp, P.E.; Getz, W.M. Superspreading and the effect of individual variation on disease emergence. Nature
**2005**, 438, 355–359. [Google Scholar] [CrossRef] [PubMed]

**Figure 1.**The probability of a self-sustaining outbreak driven by human-to-human transmission arising following the importation of one infected individual. (

**A**) Data describing the number of days between symptom onset and hospitalisation for 47 patients in the ongoing outbreak [15]. (

**B**) The estimated distribution of times between symptom onset and hospitalisation, obtained by fitting to the data shown in panel A. Blue lines show a range of equally possible distributions (see Methods; 50 distributions are shown here, selected at random from the n = 100,000 distributions considered), and the red line shows the average of the n = 100,000 distributions. (

**C**) The probability of sustained transmission for each possible distribution of times from symptom onset to hospitalisation (Equation (1); blue histogram) and the probability of sustained transmission obtained by integrating over the possible distributions (Equation (2); red line). (

**D**) The probability that a single imported case leads to sustained transmission in a new location, for different surveillance levels. The red line shows the mean estimates (obtained using Equation (2) but extended to account for intensified surveillance), and the blue dotted lines show the 5th and 95th percentile estimates (obtained when Equation (1) is applied, but extended to account for intensified surveillance).

**Figure 2.**The probability of a self-sustaining outbreak driven by human-to-human transmission arising from multiple independent cases imported to a new location, under different surveillance levels. (

**A**) No intensification of surveillance ($\rho =0$). (

**B**) Medium level of surveillance intensification ($\rho =0.25$ ). (

**C**) High level of surveillance intensification ($\rho =0.5$ ). The grey bars and red dots show the mean estimates (obtained using Equation (4)), and the error bars indicate the 5th and 95th percentile estimates obtained when Equation (3) is applied.

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Thompson, R.N. Novel Coronavirus Outbreak in Wuhan, China, 2020: Intense Surveillance Is Vital for Preventing Sustained Transmission in New Locations. *J. Clin. Med.* **2020**, *9*, 498.
https://doi.org/10.3390/jcm9020498

**AMA Style**

Thompson RN. Novel Coronavirus Outbreak in Wuhan, China, 2020: Intense Surveillance Is Vital for Preventing Sustained Transmission in New Locations. *Journal of Clinical Medicine*. 2020; 9(2):498.
https://doi.org/10.3390/jcm9020498

**Chicago/Turabian Style**

Thompson, Robin N. 2020. "Novel Coronavirus Outbreak in Wuhan, China, 2020: Intense Surveillance Is Vital for Preventing Sustained Transmission in New Locations" *Journal of Clinical Medicine* 9, no. 2: 498.
https://doi.org/10.3390/jcm9020498