Next Article in Journal
Body Weight as a Determining Factor in the Predominance of Adverse Drug Reactions Induced by Fixed-Dose Adalimumab Injections in Female Patients in a Korean Hospital Setting
Next Article in Special Issue
Initial Cluster of Novel Coronavirus (2019-nCoV) Infections in Wuhan, China Is Consistent with Substantial Human-to-Human Transmission
Previous Article in Journal
Left Atrial Volumetric and Deformation Analysis in Adult Patients with Dextro-Transposition of the Great Arteries (Insights from the CSONGRAD Registry and MAGYAR-Path Study)
Previous Article in Special Issue
The Rate of Underascertainment of Novel Coronavirus (2019-nCoV) Infection: Estimation Using Japanese Passengers Data on Evacuation Flights
Open AccessFeature PaperArticle

Estimation of the Transmission Risk of the 2019-nCoV and Its Implication for Public Health Interventions

1
The Interdisciplinary Research Center for Mathematics and Life Sciences, Xi’an Jiaotong University, Xi’an 710049, China
2
Laboratory for Industrial and Applied Mathematics, Department of Mathematics and Statistics, York University, Toronto, ON M3J 1P3, Canada
3
School of Mathematics and Information Science, Shaanxi Normal University, Xi’an 710119, China
4
School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an 710049, China
5
Fields-CQAM Laboratory of Mathematics for Public Health, York University, Toronto, ON M3J 1P3, Canada
*
Author to whom correspondence should be addressed.
J. Clin. Med. 2020, 9(2), 462; https://doi.org/10.3390/jcm9020462
Received: 31 January 2020 / Revised: 6 February 2020 / Accepted: 6 February 2020 / Published: 7 February 2020
Since the emergence of the first cases in Wuhan, China, the novel coronavirus (2019-nCoV) infection has been quickly spreading out to other provinces and neighboring countries. Estimation of the basic reproduction number by means of mathematical modeling can be helpful for determining the potential and severity of an outbreak and providing critical information for identifying the type of disease interventions and intensity. A deterministic compartmental model was devised based on the clinical progression of the disease, epidemiological status of the individuals, and intervention measures. The estimations based on likelihood and model analysis show that the control reproduction number may be as high as 6.47 (95% CI 5.71–7.23). Sensitivity analyses show that interventions, such as intensive contact tracing followed by quarantine and isolation, can effectively reduce the control reproduction number and transmission risk, with the effect of travel restriction adopted by Wuhan on 2019-nCoV infection in Beijing being almost equivalent to increasing quarantine by a 100 thousand baseline value. It is essential to assess how the expensive, resource-intensive measures implemented by the Chinese authorities can contribute to the prevention and control of the 2019-nCoV infection, and how long they should be maintained. Under the most restrictive measures, the outbreak is expected to peak within two weeks (since 23 January 2020) with a significant low peak value. With travel restriction (no imported exposed individuals to Beijing), the number of infected individuals in seven days will decrease by 91.14% in Beijing, compared with the scenario of no travel restriction. View Full-Text
Keywords: coronavirus; infection management and control; travel restriction; mathematical model; SEIR model coronavirus; infection management and control; travel restriction; mathematical model; SEIR model
Show Figures

Figure 1

MDPI and ACS Style

Tang, B.; Wang, X.; Li, Q.; Bragazzi, N.L.; Tang, S.; Xiao, Y.; Wu, J. Estimation of the Transmission Risk of the 2019-nCoV and Its Implication for Public Health Interventions. J. Clin. Med. 2020, 9, 462.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop