Facile Fabrication of CuO Modified TiO2 Heterostructure for Enhanced Photocathodic Corrosion Protection of 304 Stainless Steel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of TiO2/CuO Heterostructure
2.3. Fabrication of TiO2/CuO Heterostructure Coating on 304SS Alloy
2.4. Characterization
3. Results
3.1. Raman Analysis
3.2. Fourier Transformer Infrared Spectroscopy
3.3. UV–vis-Diffusion Reflectance Spectra
3.4. Scanning Electron Microscopy
3.5. Atomic Force Microscopy
3.6. Open Circuit Potential
3.7. Chronoamperometry
3.8. Potentiodynamic Polarization
3.9. Electrochemical Impedance Spectroscopy
3.10. Mott–Schottky Analysis
3.11. Proposed Photocathodic Protection Mechanism of TiO2/CuO Heterostructure
4. Conclusions
5. Future Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, H.; Wang, X.; Wei, Q.; Hou, B. Photocathodic Protection of 304 Stainless Steel by Bi2S3/TiO2 Nanotube Films under Visible Light. Nanoscale Res. Lett. 2017, 12, 80. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yin, X.Y.; Yan, F.Y. Effect of Halide Concentration on Tribocorrosion Behaviour of 304SS in Artificial Seawater. Corros. Sci. 2015, 99, 272–280. [Google Scholar] [CrossRef]
- Zhang, Y.; Yin, X.Y.; Yan, Y.F.; Wang, J.; Yan, F. Tribocorrosion Behaviors of 304SS: Effect of Solution pH. RSC Adv. 2015, 5, 17676–17682. [Google Scholar] [CrossRef]
- Park, J.H.; Park, J.M. Photo-Generated Cathodic Protection Performance of Electrophoretically Co-Deposited Layers of TiO2 Nanoparticles and Graphene Nanoplatelets on Steel Substrate. Surf. Coat. Technol. 2014, 258, 62–71. [Google Scholar] [CrossRef]
- Wang, X.; Xu, H.; Nan, Y.; Sun, X.; Duan, J.; Huang, Y.; Hou, B. Research Progress of TiO2 Photocathodic Protection to Metals in the Marine Environment. J. Oceanol. Limnol. 2020, 38, 1018–1044. [Google Scholar] [CrossRef]
- Yuan, J.; Tsujikawa, S. Characterization of Sol-Gel-Derived TiO2 Coating on Carbon Steel in Alkaline Solution. Zairyo-to-Kankyo 1995, 44, 534–542. [Google Scholar] [CrossRef]
- Qiu, X.; Gou, G.; Zhang, K.; Zhang, X.; Sun, W.; Qin, S.; Luo, X.; Feng, P.; Pan, J.; Gao, W. Investigation on TiO2 Photocathodic Protection Based on Lattice Distortion and Stress Engineering. Mater. Today Commun. 2023, 35, 105782. [Google Scholar] [CrossRef]
- Yuan, J.; Tsujikawa, S. Characterization of Sol-Gel-Derived TiO2 Coatings and Their Photoeffects on Copper Substrates. J. Electrochem. Soc. 1995, 142, 3444–3450. [Google Scholar] [CrossRef]
- Dubey, R.S.; Krishnamurthy, K.V.; Singh, S. Experimental Studies of TiO₂ Nanoparticles Synthesized by Sol-Gel and Solvothermal Routes for DSSCs Application. Results Phys. 2019, 14, 102390. [Google Scholar] [CrossRef]
- Li, M.; Luo, S.; Wu, P.; Shen, J. Photocathodic Protection Effect of TiO2 Films for Carbon Steel in 3% NaCl Solutions. Electrochim. Acta 2005, 50, 3401–3406. [Google Scholar] [CrossRef]
- Zhang, Y.; Bu, Y.Y.; Yu, J.Q.; Li, P. Highly Efficient Photoelectrochemical Performance of SrTiO3/TiO2 Heterojunction Nanotube Array Thin Film. J. Nanoparticle Res. 2013, 15, 1717. [Google Scholar] [CrossRef]
- Liu, L.; Hu, J.M.; Leng, W.H.; Zhang, J.Q.; Cao, C.N. Novel Bis-Silane/TiO2 Bifunctional Hybrid Films for Metal Corrosion Protection Both under Ultraviolet Irradiation and in the Dark. Scr. Mater. 2007, 57, 549–552. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, J.; Sun, K.; Zhu, Y.; Bu, Y.; Chen, Z. Indium Oxide Thin Film as Potential Photoanodes for Corrosion Protection of Stainless Steel under Visible Light. Mater. Res. Bull. 2014, 53, 251–256. [Google Scholar] [CrossRef]
- Wipataphan, P.; Laohawattanajinda, J.; Na Wichean, T.; Sripianem, W.; Techapiesancharoenkij, R. Photocathodic Protection of Amorphous and Nanorod Zinc Oxide Thin-Film Coatings on Stainless Steel AISI 304 Fabricated by Spray Pyrolysis and Hydrothermal Technique. Mater. Chem. Phys. 2022, 291, 126714. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, G.; Li, W.; Wu, D. Photocathodic Protection of Cobalt-Doped ZnO Nanorod Arrays for 316 Stainless Steel and Q235 Carbon Steel in 3.5 wt.% NaCl Solution. Coatings 2019, 9, 803. [Google Scholar] [CrossRef]
- Wang, X.; Guan, Z.C.; Jin, P.; Tang, Y.Y.; Song, G.L.; Liu, G.K.; Du, R.G. Facile Fabrication of BiVO4-Modified TiO2 Nanotube Film Photoanode and Its Photocathodic Protection Effect on Stainless Steel. Corros. Sci. 2019, 157, 247–255. [Google Scholar] [CrossRef]
- Guan, Z.C.; Wang, H.P.; Wang, X.; Hu, J.; Du, R.G. Fabrication of Heterostructured β-Bi2O3-TiO2 Nanotube Array Composite Film for Photoelectrochemical Cathodic Protection Applications. Corros. Sci. 2018, 136, 60–69. [Google Scholar] [CrossRef]
- Dohcevic-Mitrovic, Z.; Stojadinovic, S.; Lozzi, L.; Askrabic, S.; Rosic, M.; Tomic, N.; Paunovic, N.; Lazovic, S.; Nikolic, M.G.; Santucci, S. WO₃/TiO₂ Composite Coatings: Structural, Optical and Photocatalytic Properties. Mater. Res. Bull. 2016, 83, 217–224. [Google Scholar]
- Li, S.; Fu, J. Improvement in Corrosion Protection Properties of TiO2 Coatings by Chromium Doping. Corros. Sci. 2013, 68, 101–110. [Google Scholar] [CrossRef]
- Zhang, J.; Du, R.G.; Lin, Z.Q.; Zhu, Y.F.; Guo, Y.; Qi, H.Q.; Xu, L.; Lin, C.J. Highly Efficient CdSe/CdS Co-Sensitized TiO2 Nanotube Films for Photocathodic Protection of Stainless Steel. Electrochim. Acta 2012, 83, 59–64. [Google Scholar] [CrossRef]
- Lei, C.X.; Zhou, H.; Wang, C.; Feng, Z.D. Self-Assembly of Ordered Mesoporous TiO2 Thin Films as Photoanodes for Cathodic Protection of Stainless Steel. Electrochim. Acta 2013, 87, 245–249. [Google Scholar] [CrossRef]
- Zhu, Y.F.; Xu, L.; Hu, J.; Zhang, J.; Du, R.G.; Lin, C.J. Fabrication of Heterostructured SrTiO3/TiO2 Nanotube Array Films and Their Use in Photocathodic Protection of Stainless Steel. Electrochim. Acta 2014, 121, 361–368. [Google Scholar] [CrossRef]
- Leppäniemi, J.; Sippola, P.; Broas, M.; Aromaa, J.; Lipsanen, H.; Koskinen, J. Corrosion Protection of Steel with Multilayer Coatings: Improving the Sealing Properties of Physical Vapor Deposition CrN Coatings with Al2O3/TiO2 Atomic Layer Deposition Nanolaminates. Thin Solid Films 2017, 627, 59–68. [Google Scholar] [CrossRef]
- Guo, H.; Li, L.; Su, C.; Yu, D.; Liu, Z. Effective Photocathodic Protection for 304 Stainless Steel by PbS Quantum Dots Modified TiO2 Nanotubes. Mater. Chem. Phys. 2021, 258, 123914. [Google Scholar] [CrossRef]
- Cai, J.S.; Shen, J.L.; Zhang, X.N.; Ng, Y.H.; Huang, J.H.; Guo, W.X.; Lin, C.J.; Lai, Y.K. Light-Driven Sustainable Hydrogen Production Utilizing TiO2 Nanostructures: A Review. Small Methods 2018, 3, 1800184. [Google Scholar] [CrossRef]
- Yue, L.; Huan, Y.; Liang, W.; Xie, Z.-H.; Zhong, C.-J. Temperature-Controlled and Shape-Dependent ZnO/TiO2 Heterojunction for Photocathodic Protection of Nickel-Coated Magnesium Alloys. Appl. Surf. Sci. 2023, 614, 156109. [Google Scholar]
- Zhang, L.; Wang, X.T.; Liu, F.G. Photo-generated Cathodic Protection of 304SS by ZnSe/TiO2 NTs under Visible Light. Mater. Lett. 2015, 143, 116–119. [Google Scholar] [CrossRef]
- Bjelajac, A.; Petrovic, R.; Socol, G. CdS Quantum Dots Sensitized TiO2 Nanotubes by Matrix Assisted Pulsed Laser Evaporation Method. Ceram. Int. 2016, 42, 9011–9017. [Google Scholar] [CrossRef]
- Tatsuma, T.; Saitoh, S.; Ohko, Y. TiO2-WO3 Photoelectrochemical Anticorrosion System with an Energy Storage Ability. Chem. Mater. 2001, 13, 2838–2842. [Google Scholar] [CrossRef]
- Zhang, D.Y.; Ge, C.W.; Wang, J.Z. Single-Layer Graphene-TiO2 Nanotubes Array Heterojunction for Ultraviolet Photodetector Application. Appl. Surf. Sci. 2016, 387, 1162–1168. [Google Scholar] [CrossRef]
- Motalebian, M.; Momeni, M.M.; Ghayeb, Y.; Atapour, M. Fabrication and Photoelectrochemical Activity of Mn/Cr Co-Doped Titanium Oxide Nanostructures and Their Application in Photocathodic Protection of Stainless Steel. J. Solid State Electrochem. 2023, 27, 357–369. [Google Scholar] [CrossRef]
- Yadav, S.K.; Jeevanandam, P. Synthesis of Ag2S-TiO2 Nanocomposites and Their Catalytic Activity towards Rhodamine B Photodegradation. J. Alloys Compd. 2015, 649, 483–490. [Google Scholar] [CrossRef]
- Xu, S.; Zhang, K.; Du, L.; Gong, D.; Lu, G.; Qiu, P. Zn3In2S6/TiO2 Nanocomposites for Highly Efficient Photocathodic Protection to Carbon Steel. ACS Appl. Nano Mater. 2022, 5, 18297–18306. [Google Scholar] [CrossRef]
- Xue, J.B.; Gao, J.L.; Shen, Q.Q.; Li, Q.; Liu, X.G.; Jia, H.S.; Wu, Y.C. Performance of Photocatalytic Cathodic Protection of 20 Steel by α-Fe2O3/TiO2 System. Surf. Coat. Technol. 2020, 385, 125445. [Google Scholar] [CrossRef]
- Zhou, M.J.; Zhang, N.; Zhang, L.; Yan, J.H. Photocathodic Protection Properties of TiO2-V2O5 Composite Coatings. Mater. Corros. 2012, 64, 996–1000. [Google Scholar] [CrossRef]
- Lu, D.; Zelekew, O.A.; Abay, A.K.; Huang, Q.; Chen, X.; Zheng, Y. Synthesis and Photocatalytic Activities of a TiO2/CuO Composite Catalyst Using Aquatic Plants with Accumulated Copper as a Template. RSC Adv. 2019, 9, 2018–2025. [Google Scholar] [CrossRef]
- Banas-Gac, J.; Radecka, M.; Czapla, A.; Kusior, E.; Zakrzewska, K. Surface and Interface Properties of TiO2/CuOThin Film Bilayers Deposited by RF Reactive Magnetron Sputtering. Appl. Surf. Sci. 2023, 616, 156394. [Google Scholar] [CrossRef]
- Panzeri, G.; Cristina, M.; Jagadeesh, M.S.; Bussetti, G.; Magagnin, L. Modifying Large Area Cu2O/CuO Photocathode with CuS Non-Noble Catalyst for Improved Photocurrent and Stability. Sci. Rep. 2020, 10, 18730. [Google Scholar] [CrossRef]
- Anand, D.; Ravishankar, N.; Sudakar, C. Aluminium-Incorporated p-CuO/n-ZnO Photocathode Coated with Nanocrystal-Engineered TiO2 Protective Layer for Photoelectrochemical Water Splitting and Hydrogen Generation. J. Mater. Chem. A 2018, 6, 11951–11965. [Google Scholar]
- Mehrabi, H.; Eddy, C.G.; Hollis, T.I.; Vance, J.N.; Coridan, R.H. Controlled Exposure of CuO Thin Films through Corrosion-Protecting, ALD-Deposited TiO2 Overlayers. Z. Naturforschung B 2021, 76, 719–726. [Google Scholar] [CrossRef]
- Meng, X.; Zhen, C.; Liu, G.; Cheng, H.M. Stabilizing CuO Photocathode with a Cu3N Protection Shell. Chin. J. Catal. 2022, 43, 755–760. [Google Scholar] [CrossRef]
- Cots, A.; Bonete, P.; Gómez, R. Improving the Stability and Efficiency of CuO Photocathodes for Solar Hydrogen Production through Modification with Iron. ACS Appl. Mater. Interfaces 2018, 10, 26348–26356. [Google Scholar] [CrossRef]
- Patel, M.; Kim, H.S.; Patel, D.B.; Kim, J. CuO Photocathode-Embedded Semitransparent Photoelectrochemical Cell. J. Mater. Res. 2016, 31, 3205–3213. [Google Scholar] [CrossRef]
- SiavashMoakhar, R.; Hosseini-Hosseinabad, S.M.; Masudy-Panah, S.; Seza, A.; Jalali, M.; Fallah-Arani, H.; Dabir, F.; Gholipour, S.; Abdi, Y.; Bagheri-Hariri, M.; et al. Photoelectrochemical Water-Splitting Using CuO-Based Electrodes for Hydrogen Production: A Review. Adv. Mater. 2021, 33, 2007285. [Google Scholar] [CrossRef]
- Toupin, J.; Strubb, H.; Kressman, S.; Artero, V.; Krins, N.; Laberty-Robert, C. CuO Photoelectrodes Synthesised by the Sol-Gel Method for Water Splitting. J. Sol-Gel Sci. Technol. 2019, 89, 255–263. [Google Scholar] [CrossRef]
- Gundogmus, P. Synthesis of g-C3N4/TiO2 Heterojunction Composites with Enhanced Solar Light Photocatalytic Activity. Master’s Thesis, Graduate School of Natural and Applied Sciences, Metallurgical and Materials Engineering, Middle East Technical University, Ankara, Türkiye, 2020. [Google Scholar]
- Chawla, M.K. A Step-by-Step Guide to Selecting the “Right” Solar Simulator for Your Solar Cell Testing Application. Photo Emission Tech.: Moorpark, CA, USA.
- Shi, Q.; Ping, G.; Wang, X.; Xu, H.; Li, J.; Cui, J.; Abroshan, H.; Ding, H.; Li, G. TiO2/CuO Heterojunction Composites: An Efficient Photocatalyst for Selective Oxidation of Methanol to Methyl Formate. J. Mater. Chem. A 2019, 7, 2253–2260. [Google Scholar] [CrossRef]
- Nekooie, R.; Shamspur, T.; Mostafavi, A. Novel TiO2/CuO/PANI Nanocomposite: Preparation and Photocatalytic Investigation for Chlorpyrifos Degradation in Water under Visible Light Irradiation. J. Photochem. Photobiol. A Chem. 2021, 407, 113038. [Google Scholar] [CrossRef]
- Zedan, A.F.; Allam, N.K.; AlQaradawi, S.Y. A Study of Low-Temperature CO Oxidation over Mesoporous CuO–TiO2 Nanotube Catalysts. Catalysts 2017, 7, 129. [Google Scholar] [CrossRef]
- Munawar, K.; Mansoor, M.A.; Basirun, W.J.; Misran, M.; Huang, N.M.; Mazhar, M. Single Step Fabrication of CuO–MnO–2TiO2 Composite Thin Films with Improved Photoelectrochemical Response. RSC Adv. 2017, 7, 15885–15893. [Google Scholar] [CrossRef]
- Deng, C.; Li, B.; Dong, L.; Zhang, F.; Fan, M.; Jin, G.; Zhou, X. NO Reduction by CO over CuO Supported on CeO2-Doped TiO2: The Effect of the Amount of a Few CeO2. Phys. Chem. Chem. Phys. 2015, 17, 16092–16109. [Google Scholar] [CrossRef]
- Fang, J.; Xuan, Y. Investigation of Optical Absorption and Photothermal Conversion Characteristics of Binary CuO/ZnO Nanofluids. RSC Adv. 2017, 7, 56023–56033. [Google Scholar] [CrossRef]
- Fagan, R.; McCormack, D.; Hinder, S.; Pillai, S. Photocatalytic Properties of g-C3N4–TiO2 Heterojunctions under UV and Visible Light Conditions. Materials 2016, 9, 286. [Google Scholar] [CrossRef] [PubMed]
- Rajamannan, B.; Mugundan, S.; Viruthagiri, G.; Praveen, P.; Shanmugam, N. Linear and Nonlinear Optical Studies of Bare and Copper Doped TiO2 Nanoparticles via Sol-Gel Technique. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 118, 651–656. [Google Scholar] [CrossRef] [PubMed]
- A’sraia, A.I.M.; Razali, M.H.; Amin, K.A.M.; Osman, U.M. TiO2/CuO Nanocomposite Photocatalyst for Efficient MO Degradation. Dig. J. Nanomater. Biostruct. 2023, 18, 1005–1124. [Google Scholar] [CrossRef]
- Aydın, E.B.; Ateş, S.; Sığırcık, G. CuO–TiO2 Nanostructures Prepared by Chemical and Electrochemical Methods as Photoelectrode for Hydrogen Production. Int. J. Hydrogen Energy 2022, 47, 6519–6534. [Google Scholar] [CrossRef]
- Tang, Y.; Dong, L.; Deng, C.; Huang, M.; Li, B.; Zhang, H. In Situ FT-IR Investigation of CO Oxidation on TiO2/CuO Catalysts. Catal. Commun. 2016, 78, 33–36. [Google Scholar] [CrossRef]
- Radhakrishnan, A.; Tharmaraj, M.; Srinivasan, N. Photocathodic Corrosion Protection Performance of Aluminium Frames in Solar Panels Using TiO2/C3N4 Heterostructure. J. Alloys Compd. 2025, 1028, 180707. [Google Scholar] [CrossRef]
- Zhou, X.; Lu, J.; Jiang, J.; Li, X.; Lu, M.; Yuan, G.; Wang, Z.; Zheng, M.; Seo, H.J. Simple fabrication of N-doped mesoporous TiO2 nanorods with enhanced visible light photocatalytic activity. Nanoscale Res. Lett. 2014, 9, 34. [Google Scholar] [CrossRef]
- ASTM D3359; Standard Test Methods for Measuring Adhesion by Tape Test. ASTM International: West Conshohocken, PA, USA, 2017.
- Nagarajan, S.; Rajendran, N. Surface Characterisation and Electrochemical Behaviour of Porous Titanium Dioxide Coated 316L Stainless Steel for Orthopaedic Applications. Appl. Surf. Sci. 2009, 255, 3927–3932. [Google Scholar] [CrossRef]
- Fazel, Z.; Elmkhah, H.; Fattah-alhosseini, A.; Babaei, K.; Meghdari, M. Comparing Electrochemical Behavior of Applied CrN/TiN Nanoscale Multilayer and TiN Single-Layer Coatings Deposited by CAE-PVD Method. J. Asian Ceram. Soc. 2020, 8, 510–518. [Google Scholar] [CrossRef]
- Croll, S.G. Surface Roughness Profile and Its Effect on Coating Adhesion and Corrosion Protection: A Review. Prog. Org. Coat. 2020, 148, 105847. [Google Scholar] [CrossRef]
- Ahamed, S.T.; Ghosh, A.; Show, B.; Mondal, A. Fabrication of n-TiO2/p-CuO Thin-Film Heterojunction for Efficient Photocatalytic Degradation of Toxic Organic Dyes and Reduction of Metal Ions in Solution. J. Mater. Sci. Mater. Electron. 2020, 31, 16616–16633. [Google Scholar] [CrossRef]
- Karthega, M.; Raman, V.; Rajendran, N. Influence of Potential on the Electrochemical Behaviour of β Titanium Alloys in Hank’s Solution. Acta Biomater. 2007, 3, 1019–1023. [Google Scholar] [CrossRef] [PubMed]
- Motahari, M.; Nourbakhsh, A.; Bakhsheshi-Rad, H.R.; Lotfian, N.; Masoud, M.; Nourbakhsh, A.H.; Dehkordi, R.D.; Mackenzie, K.J.D. Photocathodic Protection of 316L Stainless Steel by Surface Coating of Photocatalytic Mesoporous TiO2-WO3 Nanocomposite. J. Mater. Eng. Perform. 2023, 32, 10614–10625. [Google Scholar] [CrossRef]
- Sun, W.; Wei, N.; Cui, H.; Lin, Y.; Wang, X.; Tian, J.; Wen, J. 3D ZnIn2S4 Nanosheet/TiO2 Nanowire Arrays and Their Efficient Photocathodic Protection for 304 Stainless Steel. Appl. Surf. Sci. 2018, 434, 1030–1039. [Google Scholar] [CrossRef]
- Chen, T.; Li, B.; Zhang, X.; Ke, X.; Xiao, R. Core–Shell Spheroid Structure TiO2/CdS Composites with Enhanced Photocathodic Corrosion Protection Performance. Materials 2023, 16, 3927. [Google Scholar] [CrossRef]
- Jianjun, Z.; Zia Ur, R.; Youbin, Z.; Chun, Z.; Mengkui, T.; Daoai, W. Nanoflower-Like SnO2–TiO2 Nanotubes Composite Photoelectrode for Efficient Photocathodic Protection of 304 Stainless Steel. Appl. Surf. Sci. 2018, 457, 516–521. [Google Scholar]
- Liu, Y.; Zhu, Z.; Cheng, Y. An In-Depth Study of Photocathodic Protection of SS304 Steel by Electrodeposited Layers of ZnO Nanoparticles. Surf. Coat. Technol. 2020, 399, 126158. [Google Scholar] [CrossRef]
- Lin, Z.Q.; Lai, Y.K.; Hu, R.G. A Highly Efficient ZnS/CdS@TiO2 Photoelectrode for Photo-generated Cathodic Protection of Metals. Electrochim. Acta 2010, 55, 8717–8723. [Google Scholar] [CrossRef]
- Lei, C.X.; Liu, Y.; Zhou, H.; Feng, Z.; Du, R. Photo-generated Cathodic Protection of Stainless Steel by Liquid-Phase-Deposited Sodium Polyacrylate/TiO2 Hybrid Films. Corros. Sci. 2013, 68, 214–222. [Google Scholar] [CrossRef]
- Ge, S.S.; Zhang, Q.X.; Wang, X.T.; Li, H.; Zhang, L.; Wei, Q.Y. Photocathodic Protection of 304 Stainless Steel by MnS/TiO2 Nanotube Films under Simulated Solar Light. Surf. Coat. Technol. 2015, 283, 172–176. [Google Scholar] [CrossRef]
- Tang, H.; Song, Z.; Wang, J.; Qian, B. Photocathodic Protection Performance of a Nonmetal Ternary Heterojunction for 304 Stainless Steel. Inorg. Chem. Commun. 2023, 157, 111426. [Google Scholar] [CrossRef]
- Nan, Y.; Wang, X.; Ning, X.; Lei, J.; Guo, S.; Huang, Y.; Duan, J. Fabrication of Ni3S2/TiO2 Photoanode Material for 304 Stainless Steel Photocathodic Protection under Visible Light. Surf. Coat. Technol. 2019, 377, 124935. [Google Scholar] [CrossRef]
- Jinghai, L.; Tiekai, Z.; Zhichao, W.; Graham, D.; Wei, C. Simple Pyrolysis of Urea into Graphitic Carbon Nitride with Recyclable Adsorption and Photocatalytic Activity. J. Mater. Chem. A 2011, 21, 14398. [Google Scholar]
- Momeni, M.; Motalebian, M. Chromium-Doped Titanium Oxide Nanotubes Grown via One-Step Anodization for Efficient Photocathodic Protection of Stainless Steel. Surf. Coat. Technol. 2021, 420, 127304. [Google Scholar] [CrossRef]
- Techapiesancharoenkij, R.; Sripianem, W.; Tongpul, K.; Peamjharean, C.; Wichean, T.N.; Meesak, T.; Eiamchai, P. Investigation of the Photocathodic Protection of a Transparent ZnO Coating on an AISI Type 304 Stainless Steel in a 3% NaCl Solution. Surf. Coat. Technol. 2017, 320, 97–102. [Google Scholar] [CrossRef]
- Guotao, P.; Zhao-Bin, D.; Nianqing, F.; Guoge, Z.; Wenhan, Z.; Yi, Z.; Ming, X.; Yan, L. Electron Transfer Accelerated Polymer–TiO2 Coatings for Enhanced Photocatalytic Activity in Photocathodic Protection. Appl. Surf. Sci. 2022, 599, 153984. [Google Scholar]
- Hosseini-Hosseini, S.M.; Moakhar, R.S.; Soleimani, F.; Sadrnezhaad, S.K.; Masudy-Panah, S.; Katal, R.; Seza, A.; Ghane, N.; Ramakrishna, S. One-Pot Microwave Synthesis of Hierarchical C-Doped CuO Dandelions/g-C3N4 Nanocomposite with Enhanced Photostability for Photoelectrochemical Water Splitting. Appl. Surf. Sci. 2020, 530, 147271. [Google Scholar] [CrossRef]
- Haowei, L.; Lei, Z. Novel g-C3N4/TiO2 Nanorods with Enhanced Photocatalytic Activity for Water Treatment and H2 Production. J. Mater. Sci. Mater. 2019, 19, 18191–18199. [Google Scholar]
- Nithiya, N.; Victor Jaya, N. Effect of Nd on Structural, Optical, and Magnetic Behavior of TiO2 Nanoparticles. Appl. Phys. A 2021, 127, 69. [Google Scholar] [CrossRef]
- Hassan, F.; Bonnet, P.; Dangwang Dikdim, J.M.; Gatcha Bandjoun, N.; Caperaa, C.; Dalhatou, S.; Kane, A.; Zeghioud, H. Synthesis and Investigation of TiO2/g-C3N4 Performance for Photocatalytic Degradation of Bromophenol Blue and Eriochrome Black T: Experimental Design Optimisation and Reactive Oxygen Species Contribution. Water 2022, 15, 3331. [Google Scholar] [CrossRef]
- Xu, S.; Zhang, K.; Zhang, H.; Tan, J.; Gong, D.; Lu, G.; Qiu, P. Fabrication of Z-Scheme TiO2/Au/CdS Nanostructured Coating with Enhanced Photocathodic Protection Performance for Carbon Steel. ACS Appl. Nano Mater. 2023, 6, 2385–2393. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Y.; Zhang, X. Design of a One-Dimensional Zn3In2S6/NiFe2O4 Composite Material and Its Photocathodic Protection Mechanism Against Corrosion. Buildings 2025, 15, 958. [Google Scholar] [CrossRef]
GRADE | Elements Composition % | ||||||||
---|---|---|---|---|---|---|---|---|---|
C | Mn | Si | P | S | Cr | Ni | N | Fe | |
304SS | 0.08 | 2.0 | 0.75 | 0.045 | 0.030 | 18 | 8 | 0.10 | 70.995 |
SAMPLE | Rs (Ω cm2) | Q1 × 10−6 (μ Fcm−2) | n1 | R1 (Ω cm2) | Q2 × 10−6 (μ Fcm−2) | n2 | R2 (Ω cm2) | χ2 × 10−3 | Error Bar |
---|---|---|---|---|---|---|---|---|---|
BARE | 4.05 | 90.3 | 0.89 | 126 | - | - | 28 | 0.0048 | ±1.94 |
CuO Dark | 4.12 | 88.5 | 0.86 | 147 | 0.04 | 0.83 | 43 | 0.0061 | ±2.62 |
CuO Light | 3.98 | 95.2 | 0.87 | 71 | 2.87 | 0.84 | 36 | 0.0053 | ±2.32 |
TiO2 Dark | 4.27 | 82.4 | 0.85 | 156 | 0.13 | 0.87 | 63 | 0.0047 | ±2.16 |
TiO2 Light | 3.45 | 93.6 | 0.88 | 35 | 5.21 | 0.89 | 54 | 0.0043 | ±1.95 |
TiO2CuO Dark | 4.53 | 68.7 | 0.83 | 201 | 1.21 | 0.82 | 91 | 0.0036 | ±2.11 |
TiO2/CuO Light | 3.09 | 76.3 | 0.84 | 27 | 9.91 | 0.84 | 27 | 0.0029 | ±1.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radhakrishnan, A.; Tharmaraj, M.; Ramani, A.; Srinivasan, N. Facile Fabrication of CuO Modified TiO2 Heterostructure for Enhanced Photocathodic Corrosion Protection of 304 Stainless Steel. Electrochem 2025, 6, 21. https://doi.org/10.3390/electrochem6020021
Radhakrishnan A, Tharmaraj M, Ramani A, Srinivasan N. Facile Fabrication of CuO Modified TiO2 Heterostructure for Enhanced Photocathodic Corrosion Protection of 304 Stainless Steel. Electrochem. 2025; 6(2):21. https://doi.org/10.3390/electrochem6020021
Chicago/Turabian StyleRadhakrishnan, Abinaya, Manoja Tharmaraj, Anuradha Ramani, and Nagarajan Srinivasan. 2025. "Facile Fabrication of CuO Modified TiO2 Heterostructure for Enhanced Photocathodic Corrosion Protection of 304 Stainless Steel" Electrochem 6, no. 2: 21. https://doi.org/10.3390/electrochem6020021
APA StyleRadhakrishnan, A., Tharmaraj, M., Ramani, A., & Srinivasan, N. (2025). Facile Fabrication of CuO Modified TiO2 Heterostructure for Enhanced Photocathodic Corrosion Protection of 304 Stainless Steel. Electrochem, 6(2), 21. https://doi.org/10.3390/electrochem6020021