One-Step Hydrothermal Synthesis and Characterization of Highly Dispersed Sb-Doped SnO2 Nanoparticles for Supercapacitor Applications
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yoo, B.; Kim, K.; Lee, S.H.; Kim, W.M.; Park, N.-G. ITO/ATO/TiO2 triple-layered transparent conducting substrates for dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 2008, 92, 873–877. [Google Scholar] [CrossRef]
- Sneha, C.; Baiju, V.K.; Varghese, S. Antimony doped Tin oxide MOS sensors for Hydrogen Detection at Low Concentrations. Sens. Actuators A Phys. 2023, 362, 114665. [Google Scholar] [CrossRef]
- Englund, S.; Kubart, T.; Keller, J.; Moro, M.V.; Primetzhofer, D.; Suvanam, S.S.; Scragg, J.S.; Platzer-Björkman, C. Antimony-Doped Tin Oxide as Transparent Back Contact in Cu2ZnSnS4 Thin-Film Solar Cells. Phys. Status Solidi. 2019, 216, 601–607. [Google Scholar] [CrossRef]
- Zhang, J.; Gao, L. Synthesis and characterization of antimony-doped tin oxide (ATO) nanoparticles by a new hydrothermal method. Mater. Chem. Phys. 2004, 87, 10–13. [Google Scholar] [CrossRef]
- Lee, K.T.; Liu, D.M.; Liang, Y.; Matsushita, N.; Ikoma, T.; Lu, S.Y. Porous fluorine-doped tin oxide as a promising substrate for electrochemical biosensors—Demonstration in hydrogen peroxide sensing. J. Mater. Chem. B 2014, 2, 7779–7784. [Google Scholar] [CrossRef] [PubMed]
- Vidhya, S.N.; Balasundaram, O.N.; Chandramohan, M. Structural and optical investigations of gallium doped tin oxide thin films prepared by spray pyrolysis. J. Saudi Chem. Soc. 2016, 20, 703–710. [Google Scholar] [CrossRef]
- Yu, Z.; Perera, I.R.; Daeneke, T.; Makuta, S.; Tachibana, Y.; Jasieniak, J.; Mishra, A.; Bäuerle, P.; Spiccia, L.; Bach, U. Indium tin oxide as a semiconductor material in efficient p-type dye-sensitized solar cells. NPG Asia Mater. 2016, 8, 305. [Google Scholar] [CrossRef]
- Altaf, U.; Ansari, M.Z.; Rubab, S. Influence of aluminium doping on structural and optical properties of tin oxide nanoparticles. Mater. Chem. Phys. 2023, 297, 127304. [Google Scholar] [CrossRef]
- An, G.H.; Lee, D.Y.; Lee, Y.J.; Ahn, H.J. Ultrafast Lithium Storage Using Antimony-Doped Tin Oxide Nanoparticles Sandwiched between Carbon Nanofibers and a Carbon Skin. ACS Appl. Mater. Interfaces 2016, 8, 30264–30270. [Google Scholar] [CrossRef]
- Zhang, J.; Gao, L. Synthesis of antimony-doped tin oxide (ATO) nanoparticles by the nitrate–citrate combustion method. Mater. Res. Bull. 2004, 39, 2249–2255. [Google Scholar] [CrossRef]
- Li, Y.; Wang, J.; Feng, B.; Duan, K.; Weng, J. Synthesis and characterization of antimony-doped tin oxide (ATO) nanoparticles with high conductivity using a facile ammonia-diffusion co-precipitation method. J. Alloys Compd. 2015, 634, 37–42. [Google Scholar] [CrossRef]
- Benrabah, B.; Bouaza, A.; Hamzaoui, S.; Dehbi, A. Sol-gel preparation and characterization of antimony doped tin oxide (ATO) powders and thin films. Eur. Phys. J. Appl. Phys. 2009, 48, 30301. [Google Scholar] [CrossRef]
- Amutha, E.; Rajaduraipandian, S.; Sivakavinesan, M.; Annadurai, G. Hydrothermal synthesis and characterization of the antimony–tin oxide nanomaterial and its application as a high-performance asymmetric supercapacitor, photocatalyst, and antibacterial agent. Nanoscale Adv. 2023, 5, 255–267. [Google Scholar] [CrossRef] [PubMed]
- Anh, T.X.; Tung, D.T.; Nhan, D.Q.; Hoang, T.V.; Trung, D.Q.; Thu, L.D.; Hoang, P.H.; Cuong, N.D. Study of ATO nanoparticles by the solvothermal method for thermal insulated coated glass: A green energy application. Green Process. Synth. 2016, 5, 105869. [Google Scholar] [CrossRef]
- Dissanayake, K.; Kularatna-Abeywardana, D.J. A review of supercapacitors: Materials, technology, challenges, and renewable energy applications. Energy Storage 2024, 96, 112563. [Google Scholar] [CrossRef]
- Osora, H.; Kolkoma, D.; Anduwan, G.; Waimbo, M.; Velusamy, S. Hydrothermally Grown SnO2 and SnO2/rGO Nanocomposite and Its Physio-Electrochemical Studies for Pseudocapacitor Electrode Applications. J. Clust. Sci. 2024, 35, 891–901. [Google Scholar] [CrossRef]
- Babar, U.D.; Borage, D.B.; Wagh, G.S.; Jadhav, V.S.; Chavan, P.P.; Chougale, A.D.; Rathod, K.C.; Patil, R.B.; Pawar, U.T.; Kamble, P.D.; et al. Chemically Synthesized Sb-Doped SnO2 Nanoparticles for Supercapacitor Application. J. Nanoelectron. Optoelectron. 2024, 19, 364–369. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, Y.; Xu, J. Fabrication of antimony doped tin oxide nanopowders as an advanced electrode material for supercapacitors. Micro Nano Lett. 2019, 14, 254–258. [Google Scholar] [CrossRef]
- Zhang, Z.; Ma, C.; He, L.; Huang, M.; Yu, L.; Zhang, Y. Facile synthesis of ATO/MnO2 core–shell architectures for electrochemical capacitive energy storage. Ceram. Int. 2014, 40, 10309–10315. [Google Scholar] [CrossRef]
- Kleinjan, W.E.; Brokken-Zijp, W.E.; Van De Belt, R.; Chen, Z.; De With, G. Antimony-doped tin oxide nanoparticles for conductive polymer nanocomposites. J. Mater. Res. 2008, 23, 869–880. [Google Scholar] [CrossRef]
- Li, J.; Chen, C.; Li, J.; Li, S.; Dong, C. Synthesis of Tin-Glycerate and It Conversion into SnO2 Spheres for Highly Sensitive Low-Ppm-Level Acetone Detection. J. Mater. Sci. Mater. Electron. 2020, 31, 16539–16547. [Google Scholar] [CrossRef]
- Gagné, O.C.; Hawthorne, F.C. Bond-length distributions for ions bonded to oxygen: Metalloids and post-transition metals. Acta Crystallogr. Sect. B 2018, 74, 63–78. [Google Scholar] [CrossRef]
- Duong, T.; Do, N.; Pham, T.; Nguyen, C. A facile nonaqueous solution approach to controlling the size of ZnO crystallites and predominant {0001} facets. J. Alloys Compd. 2016, 686, 854–858. [Google Scholar] [CrossRef]
- Van Pham, T.; Hirano, T.; Tanabe, E.; Septiani, E.L.; Cao, K.L.A.; Ogi, T. Tailored Nanoscale Structure of Flame-Made Antimony Doped Tin Oxides and Their Near-Infrared Shielding Properties. Nanoscale 2025, 26, 74–81. [Google Scholar]
- Jayachandiran, J.; Yesuraj, J.; Arivanandhan, M.; Muthuraaman, B.; Jayavel, R.; Nedumaran, D. Bifunctional investigation of ultra-small SnO2 nanoparticle decorated rGO for ozone sensing and supercapacitor applications. RSC Adv. 2021, 11, 856–866. [Google Scholar] [CrossRef]
- Arote, S.A. Electrochemical Energy Storage Mechanisms and Performance Assessments: An Overview. In Electrochemical Energy Storage Devices and Supercapacitors; IOP Publishing: Bristol, UK, 2021; Volume 26, pp. 74–81. [Google Scholar]
- Duong, T.-T.; Tuan, T.Q.; Dung, D.V.A.; Van Quy, N.; Vu, D.-L.; Nam, M.H.; Chien, N.D.; Yoon, S.-G.; Le, A.-T. Application of Polyaniline Nanowires Electrodeposited on the FTO Glass Substrate as a Counter Electrode for Low-Cost Dye-Sensitized Solar Cells. Curr. Appl. Phys. 2014, 14, 1607–1611. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, Z.; Liang, Y.; Yang, Y.; An, N.; Li, Z.; Wu, H. Growth of 3D SnO2 nanosheets on carbon cloth as a binder-free electrode for supercapacitors. J. Mater. Chem. A 2015, 3, 15057–15067. [Google Scholar] [CrossRef]
- Saravanakumar, B.; Ravi, G.; Ganesh, V.; Ameen, F.; Al-Sabri, A.; Yuvakkumar, R. Surfactant assisted zinc doped tin oxide nanoparticles for supercapacitor applications. J. Sol-Gel Sci. Technol. 2018, 86, 521–535. [Google Scholar] [CrossRef]
- Sivakumar, S.; Manikandan, E.; Mahalakshmi, B.; Ahmad mala, N.; Nelson prabu, L. Synthesis and characterization of optical, magnetic and electrochemical behavior of manganese–zinc co-doped tin oxide nanoparticles. Vacuum 2020, 173, 109116. [Google Scholar] [CrossRef]
- Asaithambi, S.; Sakthivel, P.; Karuppaiah, M.; Sankar, G.U.; Balamurugan, K.; Yuvakkumar, R.; Thambidurai, M.; Ravi, G. Investigation of electrochemical properties of various transition metals doped SnO2 spherical nanostructures for supercapacitor applications. J. Energy Storage 2020, 31, 101530. [Google Scholar] [CrossRef]
- Ren, L.; Xu, B.; Wang, G.; Yin, X.; Liu, Y.; Yang, W.; Chen, Y. Fabrication of an Antimony Doped Tin Oxide–Graphene Nanocomposite for Highly Effective Capacitive Deionization of Saline Water. RSC Adv. 2020, 10, 39130–39136. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoang, V.-H.; Nguyen, D.-L.; Tu, N.; Tran, V.-D.; Lam, V.-N.; Duong, T.-T. One-Step Hydrothermal Synthesis and Characterization of Highly Dispersed Sb-Doped SnO2 Nanoparticles for Supercapacitor Applications. Electrochem 2025, 6, 22. https://doi.org/10.3390/electrochem6020022
Hoang V-H, Nguyen D-L, Tu N, Tran V-D, Lam V-N, Duong T-T. One-Step Hydrothermal Synthesis and Characterization of Highly Dispersed Sb-Doped SnO2 Nanoparticles for Supercapacitor Applications. Electrochem. 2025; 6(2):22. https://doi.org/10.3390/electrochem6020022
Chicago/Turabian StyleHoang, Viet-Hung, Duc-Long Nguyen, Nguyen Tu, Van-Dang Tran, Van-Nang Lam, and Thanh-Tung Duong. 2025. "One-Step Hydrothermal Synthesis and Characterization of Highly Dispersed Sb-Doped SnO2 Nanoparticles for Supercapacitor Applications" Electrochem 6, no. 2: 22. https://doi.org/10.3390/electrochem6020022
APA StyleHoang, V.-H., Nguyen, D.-L., Tu, N., Tran, V.-D., Lam, V.-N., & Duong, T.-T. (2025). One-Step Hydrothermal Synthesis and Characterization of Highly Dispersed Sb-Doped SnO2 Nanoparticles for Supercapacitor Applications. Electrochem, 6(2), 22. https://doi.org/10.3390/electrochem6020022