Electrochemical (Bio) Sensors Based on Metal–Organic Framework Composites
Abstract
1. Introduction
2. Synthesis Methods
3. MOF/Metal Nanoparticle Composites
3.1. MOF/Gold Nanoparticle Composites
3.2. MOF/Silver Nanoparticle Composites
3.3. MOF/Platinum Nanoparticle Composites
3.4. MOF/Bimetal Nanoparticle Composites
4. MOF/Carbon-Based Material Composites
5. MOF/Conductive Polymer Composites
6. MOF/Multiple Conductive Material Composites
7. The Selection of MOF Composite Combinations
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, S.; Huo, F. Metal–organic framework composites: From fundamentals to applications. Nanoscale 2015, 7, 7482–7501. [Google Scholar] [CrossRef]
- Liu, W.; Yin, X.B. Metal–organic frameworks for electrochemical applications. TrAC Trends Anal. Chem. 2016, 75, 86–96. [Google Scholar] [CrossRef]
- Kumar, P.; Deep, A.; Kim, K.H. Metal organic frameworks for sensing applications. TrAC Trends Anal. Chem. 2015, 73, 39–53. [Google Scholar] [CrossRef]
- Lei, J.P.; Qian, R.C.; Ling, P.H.; Cui, L.; Ju, H.X. Design and sensing applications of metal–organic framework composites. TrAC Trends Anal. Chem. 2014, 58, 71–78. [Google Scholar] [CrossRef]
- Liu, C.S.; Li, J.; Pang, H. Metal-organic framework-based materials as an emerging platform for advanced electrochemical sensing. Coord. Chem. Rev. 2020, 410, 213222. [Google Scholar] [CrossRef]
- Cui, J.D.; Ren, S.Z.; Sun, B.T.; Jia, S.R. Optimization protocols and improved strategies for metal-organic frameworks for immobilizing enzymes: Current development and future challenges. Coord. Chem. Rev. 2018, 370, 22–41. [Google Scholar] [CrossRef]
- Hasan, M.R.; Islam, T.; Hasan, M.M.; Chowdhury, A.-N.; Ahammad, A.J.S.; Reaz, A.H.; Roy, C.K.; Shah, S.S.; Al-Imran; Aziz, M.A. Evaluating the electrochemical detection of nitrite using a platinum nanoparticle coated jute carbon modified glassy carbon electrode and voltametric analysis. J. Phys. Chem. Solids 2022, 165, 110659. [Google Scholar] [CrossRef]
- Timakwe, S.; Silwana, B.; Matoetoe, M.C. Electrochemistry as a complementary technique for revealing the influence of reducing agent concentration on AgNPs. ACS Omega 2022, 7, 4921–4931. [Google Scholar] [CrossRef]
- Thi Thanh, C.; Nguyen Duc Duoc, P.; Van Trinh, P.; Thi Huyen, N.; Van Tu, N.; Tuan Anh, C.; Van Hai, P.; Yoshida, K.; Abe, H.; Van Chuc, N. 3D porous graphene/double-walled carbon nanotubes/gold nanoparticles hybrid film for modifying electrochemical electrode. Mater. Lett. 2023, 330, 133308. [Google Scholar] [CrossRef]
- Mahugo, R.; Mayoral, A.; Sánchez-Sánchez, M.; Diaz, I. Observation of Ag nanoparticles in/on Ag@MIL-100 (Fe) prepared through different procedures. Front. Chem. 2019, 7, 686. [Google Scholar] [CrossRef]
- Wang, Q.J.; Tsumori, N.; Kitta, M.; Xu, Q. Fast dehydrogenation of formic acid over palladium nanoparticles immobilized in nitrogen-doped hierarchically porous carbon. ACS Catal. 2018, 8, 12041–12045. [Google Scholar] [CrossRef]
- White, R.J.; Luque, R.; Budarin, V.L.; Clark, J.H.; Macquarrie, D.J. Supported metal nanoparticles on porous materials. Methods and applications. J. Chem. Soc. Rev. 2009, 38, 481–494. [Google Scholar] [CrossRef]
- Goel, S.; Wu, Z.J.; Zones, S.I.; Iglesia, E. Synthesis and catalytic properties of metal clusters encapsulated within small-pore (SOD, GIS, ANA) zeolites. J. Am. Chem. Soc. 2012, 134, 17688–17695. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.L.; Xu, Q. Immobilization of ultrafine metal nanoparticles to high-surface-area materials and their catalytic applications. Chem. Soc. Rev. 2016, 1, 220–245. [Google Scholar] [CrossRef]
- Yang, Q.H.; Xu, Q.; Jiang, H.L. Metal–organic frameworks meet metal nanoparticles: Synergistic effect for enhanced catalysis. Chem. Soc. Rev. 2017, 46, 4774–4808. [Google Scholar] [CrossRef] [PubMed]
- Kang, X.; Zhu, M. Tailoring the photoluminescence of atomically precise nanoclusters. Chem. Soc. Rev. 2019, 48, 2422–2457. [Google Scholar] [CrossRef]
- Yu, H.Z.; Rao, B.; Jiang, W.; Yang, S.; Zhu, M.Z. The photoluminescent metal nanoclusters with atomic precision. Coord. Chem. Rev. 2019, 378, 595–617. [Google Scholar] [CrossRef]
- Su, S.; Sun, H.F.; Cao, W.F.; Chao, J.; Peng, H.Z.; Zuo, X.L.; Yuwen, L.H.; Fan, C.H.; Wang, L.H. Dual-target electrochemical biosensing based on DNA structural switching on gold nanoparticle-decorated MoS2 nanosheets. ACS Appl. Mater. Interfaces 2016, 8, 6826–6833. [Google Scholar] [CrossRef]
- Wang, N.; Lin, M.; Dai, H.X.; Ma, H.Y. Functionalized gold nanoparticles/reduced graphene oxide nanocomposites for ultrasensitive electrochemical sensing of mercury ions based on thymine–mercury–thymine structure. Biosens. Bioelectron. 2016, 79, 320–326. [Google Scholar] [CrossRef]
- Kim, D.; Resasco, J.; Yu, Y.; Asiri, A.M.; Yang, P. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold–copper bimetallic nanoparticles. Nat. Commun. 2014, 5, 4948. [Google Scholar] [CrossRef]
- Rezaei, B.; Boroujeni, M.K.; Ensafi, A.A. Fabrication of DNA, o-phenylenediamine, and gold nanoparticle bioimprinted polymer electrochemical sensor for the determination of dopamine. Biosens. Bioelectron. 2015, 66, 490–496. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, L.; Chen, H.H.; Hu, X.Y.; Ma, S.Q. Fabrication of highly sensitive and stable hydroxylamine electrochemical sensor based on gold nanoparticles and metal–metalloporphyrin framework modified electrode. ACS Appl. Mater. Interfaces 2016, 8, 18173–18181. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Weerasooriya, R.; Chen, X. The metal-organic framework supported gold nanoparticles as a highly sensitive platform for electrochemical detection of methyl mercury species in the aqueous environment. J. Hazard. Mater. 2022, 431, 128608. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Meng, T.J.; Fan, Y.W.; Chen, C.X.; Guo, Z.W.; Wang, H.; Zhang, Y.F. Electrochemical study of acetaminophen oxidation by gold nanoparticles supported on a leaf-like zeolitic imidazolate framework. J. Colloid Interface Sci. 2018, 524, 1–7. [Google Scholar] [CrossRef]
- Meng, W.; Wen, Y.Y.; Dai, L.; He, Z.X.; Wang, L. A novel electrochemical sensor for glucose detection based on Ag@ZIF-67 nanocomposite. Sens. Actuators B Chem. 2018, 260, 852–860. [Google Scholar] [CrossRef]
- Ham, Y.S.; Choe, S.; Kim, M.J.; Lim, T.; Kim, S.-K.; Kim, J.J. Electrodeposited Ag catalysts for the electrochemical reduction of CO2 to CO. Appl. Catal. B Environ. 2017, 208, 35–43. [Google Scholar] [CrossRef]
- Li, X.C.; He, C.J.; Zheng, J.; Wu, D.N.; Duan, Y.T.; Li, Y.F.; Rao, P.H.; Tang, B.; Rui, Y.C. Flocculent Cu caused by the Jahn–Teller effect improved the performance of Mg-MOF-74 as an anode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 52864–52872. [Google Scholar] [CrossRef]
- He, X.L.; Cai, Y.Y.; Zhang, H.; Liang, C.H. Photocatalytic degradation of organic pollutants with Ag decorated free-standing TiO2 nanotube arrays and interface electrochemical response. J. Mater. Chem. 2011, 21, 475–480. [Google Scholar] [CrossRef]
- Chen, S.Y.; Xie, Y.X.; Guo, X.J.; Sun, D.P. Self-supporting electrochemical sensors for monitoring of cell-released H2O2 based on metal nanoparticle/MOF nanozymes. Microchem. J. 2022, 181, 107715. [Google Scholar] [CrossRef]
- Peng, Z.W.; Jiang, Z.W.; Huang, X.; Li, Y.F. A novel electrochemical sensor of tryptophan based on silver nanoparticles/metal–organic framework composite modified glassy carbon electrode. RSC Adv. 2016, 6, 13742–13748. [Google Scholar] [CrossRef]
- Zhao, Y.F.; Chen, J.; Zhong, H.T.; Zhang, C.L.; Zhou, Y.; Mao, W.R.; Yu, C. Functionalized Ag/Fe-MOFs nanocomposite as a novel endogenous redox mediator for determination of α2,6-sialylated glycans in serum. Microchim. Acta 2020, 187, 649. [Google Scholar] [CrossRef]
- Er, E.; Çelikkan, H.; Erka, N. An ultra-sensitive 2D electrochemical sensor based on a PtNPs@graphene/Nafion nanocomposite for determination of α1-AR antagonist silodosin in human plasma. Anal. Methods 2017, 9, 3782–3789. [Google Scholar] [CrossRef]
- Ling, P.H.; Lei, J.P.; Jia, L.; Ju, H.X. Platinum nanoparticles encapsulated metal–organic frameworks for the electrochemical detection of telomerase activity. Chem. Commun. 2016, 52, 1226–1229. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.D.; Yang, L.Z.; Xu, C.L. Pt@UiO-66 heterostructures for highly selective detection of hydrogen peroxide with an extended linear range. Anal. Chem. 2015, 87, 3438–3444. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.L.; Yang, X.L.; Wang, B.R.; Ding, Y.B.; Xu, S.Y.; Liu, J.J.; Peng, Y.; Yu, X.L.; Su, Z.H.; Qin, X.L. One-step electrochemical growth of 2D/3D Zn (II)-MOF hybrid nanocomposites on an electrode and utilization of a PtNPs@2D MOF nanocatalyst for electrochemical immunoassay. ACS Appl. Mater. Interfaces 2021, 13, 46225–46232. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.M.; Jin, H.L.; Suo, Z.G.; Shen, H.L.; Chen, X.H.; Liu, Y.; Zhu, J.M.; Wei, M.; He, B.S.; Zhao, R.Y. Highly conductive MXene-Au NPs and high current AuPd NPs/UiO-66 electrochemical sensor combining multiple signal amplification strategies for tetracycline detection. Chem. Eng. J. 2024, 504, 158980. [Google Scholar] [CrossRef]
- Hira, S.A.; Nallal, M.; Park, K.H. Fabrication of PdAg nanoparticle infused metal-organic framework for electrochemical and solution-chemical reduction and detection of toxic 4-nitrophenol. Sens. Actuators B Chem. 2019, 298, 126861. [Google Scholar] [CrossRef]
- Yang, J.; Yang, L.T.; Ye, H.L.; Zhao, F.Q.; Zeng, B.Z. Highly dispersed AuPd alloy nanoparticles immobilized on UiO-66-NH2 metal-organic framework for the detection of nitrite. Electrochim. Acta 2016, 219, 647–654. [Google Scholar] [CrossRef]
- Xu, W.; Qin, Z.; Hao, Y.; He, Q.; Chen, S.; Zhang, Z.; Peng, D.; Wen, H.; Chen, J.; Qiu, J.; et al. A signal-decreased electrochemical immunosensor for the sensitive detection of LAG-3 protein based on a hollow nanobox-MOFs/AuPt alloy. Biosens. Bioelectron. 2018, 113, 148–156. [Google Scholar] [CrossRef]
- Xie, Y.X.; Shi, X.H.; Chen, L.X.; Lu, J.; Lu, X.G.; Sun, D.P.; Zhang, L.Y. Direct electrodeposition of bimetallic nanostructures on Co-based MOFs for electrochemical sensing of hydrogen peroxide. Front. Chem. 2022, 10, 856003. [Google Scholar] [CrossRef]
- Maduraiveeran, G.; Jin, W. Carbon nanomaterials: Synthesis, properties and applications in electrochemical sensors and energy conversion systems. Mater. Sci. Eng. B 2021, 272, 115341. [Google Scholar] [CrossRef]
- Kannan, P.; Maduraiveeran, G. Carbon nanocomposites-based electrochemical sensors and biosensors for biomedical diagnostics. Curr. Med. Chem. 2024, 31, 3870–3881. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, B.R.; Govindhan, M.; Chen, A. Carbon nanomaterials based electrochemical sensors/biosensors for the sensitive detection of pharmaceutical and biological compounds. Sensors 2015, 15, 22490–22508. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Shen, Y.L.; Zhang, Y.Y.; Zeng, T.; Wan, Q.J.; Lai, G.S.; Yang, N.J. A UiO-66-NH2/carbon nanotube nanocomposite for simultaneous sensing of dopamine and acetaminophen. Anal. Chim. Acta 2021, 1158, 338419. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; You, Z.Y.; Liu, L.L.; Duan, S.W.; Xiao, A.P. Electrochemical determination of synephrine by using nafion/UiO-66/graphene-modified screen-printed carbon electrode. Curr. Res. Food Sci. 2022, 5, 1158–1166. [Google Scholar] [CrossRef]
- Feng, X.G.; Lin, S.R.; Li, M.; Bo, X.J.; Guo, L.P. Comparative study of carbon fiber structure on the electrocatalytic performance of ZIF-67. Anal. Chim. Acta 2017, 984, 96–106. [Google Scholar] [CrossRef]
- Kumar, D.; Sharma, R.C. Advances in conductive polymers. Eur. Polym. J. 1998, 34, 1053–1060. [Google Scholar] [CrossRef]
- Naveen, M.H.; Gurudatt, N.G.; Shim, Y.B. Applications of conducting polymer composites to electrochemical sensors: A review. Appl. Mater. Today 2017, 9, 419–433. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, A.; Han, Y.; Li, T. Sensors based on conductive polymers and their composites: A review. Polym. Int. 2020, 69, 7–17. [Google Scholar] [CrossRef]
- Gupta, A.; Sharma, S.K.; Pachauri, V.; Ingebrandt, S.; Singh, S.; Sharma, A.L.; Deep, A. Sensitive impedimetric detection of troponin I with metal–organic framework composite electrode. RSC Adv. 2021, 11, 2167–2174. [Google Scholar] [CrossRef]
- Rezaei, M.; Ghanavati, M.; Mohammadi, N.; Khani, S.; Nasirimoghadam, S.; Smiley, E.; Basiryanmahabadi, A. A new sensitive layer based on calcined Zn/Ti-MOF/magnetic molecularly imprinted polypyrrole: Application to preconcentration and electrochemical determination of perfluorooctane sulfonic acid by magnetic carbon paste electrode. Talanta 2024, 276, 126229. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Fei, M.H.; Ni, M.J.; Wang, Y.L.; Liu, Z.F.; Xie, Y.X.; Zhao, P.C.; Zhang, Z.Y.; Fei, J.J. Multilayer Ti3C2-CNTs-Au Loaded with Cyclodextrin-MOF for Enhanced Selective Detection of Rutin. Small 2024, 20, 2310217. [Google Scholar] [CrossRef] [PubMed]
- Shu, Y.; Lu, Q.; Yuan, F.; Tao, Q.; Jin, D.Q.; Yao, H.; Xu, Q.; Hu, X.Y. Stretchable electrochemical biosensing platform based on Ni-MOF composite/Au nanoparticle-coated carbon nanotubes for real-time monitoring of dopamine released from living cells. ACS Appl. Mater. Interfaces 2020, 12, 49480–49488. [Google Scholar] [CrossRef] [PubMed]
- Alsafrani, A.E.; Adeosun, W.A.; Alruwais, R.S.; Marwani, H.M.; Asiri, A.M.; Khan, A. Metal–organic frameworks (MOFs) composite of polyaniline-CNT@ aluminum succinate for non-enzymatic nitrite sensor. Environ. Sci. Pollut. Res. 2023, 30, 71322–71339. [Google Scholar] [CrossRef]
- Duan, N.; Chen, X.W.; Lin, X.F.; Ying, D.C.; Wang, Z.P.; Yuan, W.B.; Wu, S.J. Paper-based fluorometric sensing of malachite green using synergistic recognition of aptamer-molecularly imprinted polymers and luminescent metal–organic frameworks. Sens. Actuators B Chem. 2023, 384, 133665. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhao, D.L.; Nai, M.H.; Chen, S.B.; Chung, T.S. Nanovoid-enhanced thin-film composite reverse osmosis membranes using ZIF-67 nanoparticles as a sacrificial template. ACS Appl. Mater. Interfaces 2021, 13, 33024–33033. [Google Scholar] [CrossRef]
- Shang, H.Y.; Xu, H.; Jin, L.J.; Chen, C.Y.; Song, T.X.; Wang, C.; Du, Y.K. Electrochemical-photoelectrochemical dual-mode sensing platform based on advanced Cu9S8/polypyrrole/ZIF-67 heterojunction nanohybrid for the robust and selective detection of hydrogen sulfide. Sens. Actuators B Chem. 2019, 301, 127060. [Google Scholar] [CrossRef]
- Tan, J.; Hussain, S.; Ge, C.X.; Wang, M.S.; Shah, S.; Liu, G.W.; Qiao, G.J. ZIF-67 MOF-derived unique double-shelled Co3O4/NiCo2O4 nanocages for superior Gas-sensing performances. Sens. Actuators B Chem. 2020, 303, 127251. [Google Scholar] [CrossRef]
- Salman, F.; Zengin, A.; Çelik Kazici, H. Synthesis and characterization of Fe3O4-supported metal–organic framework MIL-101 (Fe) for a highly selective and sensitive hydrogen peroxide electrochemical sensor. Ionics 2020, 26, 5221–5232. [Google Scholar] [CrossRef]
- Zhang, T.; Wei, J.Z.; Sun, X.J.; Zhao, X.J.; Tang, H.L.; Yan, H.; Zhang, F.M. Rapid synthesis of UiO-66 by means of electrochemical cathode method with electrochemical detection of 2,4,6-TCP. Inorg. Chem. Commun. 2020, 111, 107671. [Google Scholar] [CrossRef]
- Zheng, R.N.; He, B.S.; Xie, L.L.; Yan, H.Y.; Jiang, L.Y.; Ren, W.J.; Suo, Z.G.; Xu, Y.W.; Wei, M.; Jin, H.L. Molecular Recognition-Triggered Aptazyme Sensor Using a Co-MOF@ MCA Hybrid Nanostructure as Signal Labels for Adenosine Triphosphate Detection in Food Samples. Anal. Chem. 2022, 94, 12866–12874. [Google Scholar] [CrossRef]
Synthesis Method | Advantages | Disadvantages |
---|---|---|
Hydrothermal/ solvothermal synthesis | Wide applicability; easy to perform; leads to high crystallinity and good crystal form; high yields; conditions can easily be controlled | Long reaction time; high solvent usage; prone to creating by-products; costly and environmentally unfriendly |
Electrodeposition | Mild conditions; rapid synthesis; precise morphology control; less solvent is needed; leads to high porosity | Low yields; unsuitable for large-scale production; demanding in terms of expertise; issues regarding electrodes |
Microwave-assisted synthesis | Fast reactions; high purity; allows small crystal size; good economic returns | Requires special equipment; high equipment cost |
Ultrasonic-assisted synthesis | Quick crystallization; high yields; easy to perform; good selectivity | Low yield; impure products |
Mechanochemical synthesis | High yields; solvent-free; eco-friendly | Poor crystal structure; high impurity content |
Composite Type | Advantages | Disadvantages |
---|---|---|
MOF/metal nanoparticle composites | High conductivity, abundant active sites, adjustable properties | Low long-term stability, high cost, complex preparation |
MOF/carbon-based material composites | High specific surface area and porosity, good conductivity, versatile applications | Weak interface, impurities, optimization difficulties |
MOF/conductive polymer composites | Good flexibility, strong synergy, tunable properties | Relatively low electrical conductivity, degradation, complex synthesis |
MOF/multiple conductive materials composites | Excellent performance, high adjustability, strong synergy | Highly difficult preparation, high cost, complex evaluation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, P.; Cui, Z.; Wang, M.; Yang, J.; Hu, M.; Cheng, Q.; Wang, S. Electrochemical (Bio) Sensors Based on Metal–Organic Framework Composites. Electrochem 2025, 6, 28. https://doi.org/10.3390/electrochem6030028
Li P, Cui Z, Wang M, Yang J, Hu M, Cheng Q, Wang S. Electrochemical (Bio) Sensors Based on Metal–Organic Framework Composites. Electrochem. 2025; 6(3):28. https://doi.org/10.3390/electrochem6030028
Chicago/Turabian StyleLi, Ping, Ziyu Cui, Mengshuang Wang, Junxian Yang, Mingli Hu, Qiqing Cheng, and Shi Wang. 2025. "Electrochemical (Bio) Sensors Based on Metal–Organic Framework Composites" Electrochem 6, no. 3: 28. https://doi.org/10.3390/electrochem6030028
APA StyleLi, P., Cui, Z., Wang, M., Yang, J., Hu, M., Cheng, Q., & Wang, S. (2025). Electrochemical (Bio) Sensors Based on Metal–Organic Framework Composites. Electrochem, 6(3), 28. https://doi.org/10.3390/electrochem6030028