Electrochemical and Redox Strategies for the Synthesis of Catecholamine- and Dihydroxynaphthalene-Based Materials: A Comparative Review
Abstract
1. Introduction
2. Solution Chemistry of Catecholamines and DHN for Material Engineering
2.1. Precipitates and Spherical Nanoparticles
2.2. Anisotropic Nanomaterials
2.3. Porosity Control
3. Solution Oxidation for Film Formation from Catecholamines and DHNs
3.1. Deposition from Solution Under Oxidizing Conditions
3.2. Coordination-Driven Self-Assembly with Polyphenols
3.3. Ammonia-Induced Solid-State Polymerization Deposition
4. Electrochemistry of Catecholamines and DHNs
4.1. Deposition by Cyclic Voltammetry (CV) or Chronoamperometry (CA)

4.2. Electrochemical Tools to Investigate Melanins’ Redox Properties
5. Discussion and Conclusions
- (i)
- Catecholamine-based eumelanins have been much more investigated than DHN-based allomelanins, since research interest on the latter has arisen only within the past decade.
- (ii)
- DHNs, like most of the polyphenols (tannic acid being a noticeable exception [70]), cannot be deposited directly from solution whereas most of the catecholamines (DHI being an exception [61]) allow for film formation on the surface of almost all known materials in the presence of a strong enough oxidant.
- (iii)
- Concerning the synthesis of nanomaterials, DHNs seem to offer a much greater versatility than catecholamines. Except at very low precursor concentrations, the solution oxidation of catecholamines (and of catechols) induces precipitates. To obtain nanomaterials from catecholamines and catechols, templating agents such as proteins or boric acid, must be added at sufficiently high molar ratios. In contrast, the oxidation of 1,8-DHN leads to nanoparticles in a one-step process [44]. In addition, the porosity of the 1,8-DHN nanoparticles can be easily tailored post-synthetically by solvent treatment with methanol. On the other hand, obtaining porous capsules from PDA is much more complex for it requires PDA deposition on a sacrificial template followed by dissolution of the core with an appropriate solvent [45,46].
- (iv)
- Regarding film electrodeposition, which requires a conductive substrate, extensive data exists for catecholamines and catechols. Among DHN isomers, to our knowledge, only 1,8-DHN [88] and 2,6-DHN [95] have been investigated. For 1,8-DHN, it was shown that the intrinsic limitation of catecholamine–catechol-based films, namely fast passivation of the electrode by thin films, can be easily overcome in a potential sweep rate dependent manner. Indeed, at potential sweep rates as low as 20 mV.s−1 films of up to 1.3 µm in thickness can be obtained in a one-pot process after 100 CV cycles on gold working electrodes. Lower potential sweep rates should be investigated in the future with the possibility to get even thicker films but at the cost of longer electrodeposition time.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| L-DOPA | 3,4-dihydroxyphenylalanine |
| DHI | dihydroxyindole |
| DHN | dihydroxynaphthalene |
| PDA | polydopamine |
| NaIO4 | sodium periodate |
| KMnO4 | potassium permanganate |
| TEM | transmission electron microscopy |
| DLS | dynamic light scattering |
| DPPH | 2,2-diphenyl 1-picrylhydrazyl |
| NMR | nuclear magnetic resonance |
| H2O2 | hydrogen peroxide |
| EPR | electron paramagnetic resonance |
| SEM | scanning electron microscope |
| AMNP | allomelanin nanoparticles |
| S-AMNPs | spherical allomelanin nanoparticles |
| H-AMNPs | hollow allomelanin nanoparticles |
| L-AMNPs | lacey allomelanin nanoparticles |
| MeOH | methanol |
| CO2 | carbon dioxide |
| CH4 | methane |
| MOFs | metal–organic frameworks |
| STEM | scanning transmission electron microscope |
| NYCO | nylon-cotton |
| 5-HTP | 5-hydroxytryptophan |
| DMMP | dimethyl methylphosphonate |
| HMDA | hexamethylenediamine |
| AISSP | ammonia-induced solid-state polymerization |
| CV | cyclic voltammetry |
| CA | chronoamperometry |
| SIEBIMM | strain-induced elastomer buckling instability for mechanical measurements |
References
- Zan, G.T.; Wu, Q.S. Biomimetic and bioinspired synthesis of nanomaterials/nanostructures. Adv. Mater. 2016, 28, 2099–2147. [Google Scholar] [CrossRef]
- Rassart, M.; Colomer, J.-F.; Tabarrant, T.; Vigneron, J.P. Diffractive hygrochromic effect in the cuticle of the hercules beetle Dynastes hercules. New J. Phys. 2008, 10, 033014. [Google Scholar] [CrossRef]
- Meredith, P.; Sarna, T. The physical and chemical properties of eumelanins. Pigment Cell Res. 2006, 19, 572–594. [Google Scholar] [CrossRef]
- Napolitano, A.; Panzella, L.; Monfrecola, G.; d’Ischia, M. Pheomelanin-induced oxidative stress: Bright and dark chemistry bridging red hair phenotype and melanoma. Pigment Cell Melanoma Res. 2014, 27, 721–733. [Google Scholar] [CrossRef]
- D’Ischia, M.; Manini, P.; Martins, Z.; Remusat, L.; O’D Alexander, C.M.; Puzzarini, C.; Barone, V.; Saladino, R. Insoluble organic matter in chondrites: Archetypal melanin-like PAH-based multifunctionality at the origin of life? Phys. Life Rev. 2021, 37, 63–93. [Google Scholar] [CrossRef]
- Bizzarri, B.M.; Manini, P.; Lino, V.; d’Ischia, M.; Kapralov, M.; Krasavin, E.; Mráziková, K.; Šponer, J.; Šponer, J.E.; Di Mauro, E.; et al. High-energy proton-beam-induced polymerization/oxygenation of hydroxynaphtalenes on meteorites and nitroge transfer from urea: Modeling insoluble organic matter? Chem. Eur. J. 2020, 26, 14919–14928. [Google Scholar] [CrossRef] [PubMed]
- D’Ischia, M.; Wakamatsu, K.; Napolitano, A.; Briganti, S.; Garcia-Borron, J.-C.; Kovacks, D.; Meredith, P.; Pessella, A.; Picardo, M.; Sarna, T.; et al. Melanins and melanogeneis: Methods, standards, protocols. Pigment Cell Melanoma Res. 2013, 26, 616–633. [Google Scholar] [CrossRef] [PubMed]
- Nicolaus, R.A. Melanins; Hermann: Paris, France, 1969. [Google Scholar]
- Simon, J.D.; Peles, D.L. The red and the black. Acc. Chem. Res. 2010, 43, 1452–1460. [Google Scholar] [CrossRef] [PubMed]
- Eisenman, H.C.; Casadevall, A. Synthesis and assembly of fungal melanin. Appl. Microbiol. Biotechnol. 2012, 93, 931–940. [Google Scholar] [CrossRef]
- Nosanchuk, J.D.; Stark, R.E.; Casadevall, A. Fungal melanins: What do we know about structure? Front. Microbiol. 2015, 6, 1463. [Google Scholar] [CrossRef]
- Quideau, S.; Deffieux, D.; Douat-Casassus, C.; Pouységu, L. Plant Polyphenols: Chemical properties, biological activities and synthesis. Angew. Chem. Int. Ed. 2011, 50, 586–621. [Google Scholar] [CrossRef]
- Yang, J.; Cohen Stuart, M.A.; Kamperman, M. Jack of all trades: Versatile catechol crosslinking mechanisms. Chem. Soc. Rev. 2014, 43, 8271–8298. [Google Scholar] [CrossRef]
- Yang, J.; Saggiomo, V.; Velders, A.H.; Cohen Stuart, M.A.; Kamperman, M. Reaction pathways in catechol/primary amine mixtures: A window on crosslinking chemistry. PLoS ONE 2016, 11, e0166490. [Google Scholar] [CrossRef]
- Saiz-Poseu, J.; Mancebo-Aracil, J.; Nador, F.; Busqué, F.; Ruiz-Molina, D. The chemistry behind catechol-based adhesion. Angew. Chem. Int. Ed. 2019, 58, 696–714. [Google Scholar] [CrossRef]
- Solano, F. Photoprotection versus photodamage: Updating an old but still unsolved controversy about melanin. Polym. Int. 2016, 65, 1276–1287. [Google Scholar] [CrossRef]
- Xie, W.; Dhinojwala, A.; Gianneschi, N.; Shawkey, M.D. Interactions of melanin with electromagnetic radiation: From fundamentals to applications. Chem. Rev. 2024, 124, 7165–7213. [Google Scholar] [CrossRef] [PubMed]
- Meredith, P.; Powell, B.J.; Riesz, J.; Nighswander-Rempel, S.P.; Pederson, M.R.; Moore, E.G. Towards structure-property-function relationships for eumelanin. Soft Matter 2006, 2, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Nofsinger, B.J.; Ye, T.; Simon, J.D. Ultrafast nonradiative relaxation dynamics of eumelanin. J. Phys. Chem. B 2001, 105, 2864–2866. [Google Scholar] [CrossRef]
- Sealy, R.C.; Hyde, J.S.; Felix, C.C.; Menon, I.A.; Prota, G. Eumelanins and pheomelanins: Characterization by electron spin resonance spectroscopy. Science 1982, 217, 545–547. [Google Scholar] [CrossRef]
- Lino, V.; Manini, P. Dihydroxynaphthalene-based allomelanins: A source of inspiration for innovative technological materials. ACS Omega 2022, 7, 15308–15314. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Z.; Yang, P.; Hu, J.; Wang, Z.; Li, Y. Size control synthesis of melanin-like polydopamine nanoparticles by tuning radicals. Polym. Chem. 2019, 10, 4194–4200. [Google Scholar] [CrossRef]
- El Yakhlifi, S.; Ball, V. Polydopamine as a stable and functional nanomaterial. Colloids Surf. B Biointerfaces 2020, 186, 110719. [Google Scholar] [CrossRef] [PubMed]
- Clancy, C.M.R.; Nofsinger, J.B.; Hanks, R.K.; Simon, J.D. A hierarchical self-assembly of eumelanin. J. Phys. Chem. B 2000, 104, 7871–7873. [Google Scholar] [CrossRef]
- Chassepot, A.; Ball, V. Human serum albumin and other proteins as templating agents for the synthesis of nanosized dopamine-eumelanin. J. Colloid Interf. Sci. 2014, 414, 97–102. [Google Scholar] [CrossRef]
- Della Vecchia, N.F.; Cerruti, P.; Gentile, G.; Errico, M.E.; Ambrogi, V.; D’Errico, G.; Longobardi, S.; Napolitano, A.; Paduano, L.; Carfagna, C.; et al. Artificial biomelanin: Highly light absorbing nano-sized eumelanin by biomimetic synthesis in chicken egg white. Biomacromolecules 2014, 15, 3811–3816. [Google Scholar] [CrossRef]
- Strube, O.I.; Büngeler, A.; Brenner, W. Site-specific in situ synthesis of eumelanin nanoparticles by an enzymatic autodeposition-like process. Biomacromolecules 2015, 16, 1608–1613. [Google Scholar] [CrossRef]
- Bergtold, C.; Hauser, D.; Chaumont, A.; El Yakhlifi, S.; Mateescu, M.; Meyer, F.; Metz-Boutigue, M.-H.; Frisch, B.; Schaaf, P.; Ihiawakrim, D.; et al. Mimicking the chemistry of natural eumelanin synthesis: The KE sequence in polypeptides and in proteins allows for a specific control of nanosized functional polydopamine formation. Biomacromolecules 2018, 19, 3693–3704. [Google Scholar] [CrossRef]
- Lampel, A.; McPhee, S.A.; Park, H.A.; Scott, G.G.; Humagain, S.; Hekstra, D.R.; Yoo, B.; Frederix, P.W.J.M.; Li, T.D.; Absalimov, R.R.; et al. Polymeric peptide pigments with sequence-encoded properties. Science 2017, 356, 1064–1068. [Google Scholar] [CrossRef]
- Chatterjee, S.; Prados-Rosales, R.; Itin, B.; Casadevall, A.; Stark, R.E. Solid state NMR reveals the carbon-based molecular architecture of Cryptococcus neoformans fungal eumelanins in the cell wall. J. Biol. Chem. 2015, 290, 13779–13790. [Google Scholar] [CrossRef]
- Schneider, A.; Hemmerlé, J.; Allais, M.; Didierjean, J.; Michel, M.; d’Ischia, M.; Ball, V. Boric acid as an efficient agent for the control of polydopamine self-assembly and surface properties. ACS Appl. Mater. Interfaces 2018, 10, 7574–7580. [Google Scholar] [CrossRef]
- Cecchini, M.M.; Reale, S.; Manini, P.; d’Ischia, M.; De Angelis, F. Modeling fungal melanin buildup: Biomimetic polymerization of 1,8-dihydroxynaphtalene mapped by mass spectrometry. Chem. Eur. J. 2017, 23, 8082–8098. [Google Scholar] [CrossRef]
- Zhou, X.; McCallum, N.C.; Hu, Z.; Cao, W.; Gnanasekaran, K.; Feng, Y.; Stoddard, J.F.; Wang, Z.; Giannechi, N.C. Artificial allomelanin nanoparticles. ACS Nano 2019, 13, 10980–10990. [Google Scholar] [CrossRef]
- Mavridi-Printezi, A.; Mollica, F.; Lucernati, R.; Montalti, M.; Amorati, R. Insight into the antioxidant activity of 1,8-dihydroxynaphtalene allomelanin nanoparticles. Antioxidants 2023, 12, 1511. [Google Scholar] [CrossRef]
- Manini, P.; Lino, V.; Franchi, P.; Gentile, G.; Sibillano, T.; Giannini, C.; Picardi, E.; Napolitano, A.; Valgimigli, L.; Chiappe, C.; et al. A robust fungal allomelanin mimic: An antioxidant and potent π electron donnor with free radical properties that can be tuned by ionic liquids. ChemPlusChem 2019, 84, 1331–1337. [Google Scholar] [CrossRef] [PubMed]
- Manini, P.; Margari, P.; Pomelli, C.; Franchi, P.; Gentile, G.; Napolitano, A.; Valgimigli, L.; Chiappe, C.; Ball, V.; d’Ischia, M. Nanoscale disassembly and free radical reorganization of polydopamine in ionic liquids. J. Phys. Chem. B 2016, 120, 11942–11950. [Google Scholar] [CrossRef] [PubMed]
- Manini, P.; Lucci, V.; Lino, V.; Sartini, S.; Rossella, F.; Falco, G.; Chiappe, C.; d’Ischia, M. Synthetic mycomelanin thin films as emergent bio-inspired interfaces controlling the fate of embryonic stem cells. J. Mater. Chem. B 2020, 8, 4412–4418. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Gong, X.; Cao, W.; Forman, C.J.; Otawiec, J.; D’Alba, L.; Sun, H.; Thomson, M.P.; Hu, Z.; Kapoor, U.; et al. Anisotropic synthetic allomelanin materials via solid-state polymerization of self assembled 1,8-dihydroxynaphthalene dimers. Angew. Chem. Int. Ed. 2021, 60, 17464–17471. [Google Scholar] [CrossRef]
- Manini, P.; Lino, V.; D’Errico, G.; Reale, S.; Napolitano, A.; De Angelis, F.; d’Ischia, M. “Blackness” is an index of redox complexicity in melanin polymers. Polym. Chem. 2020, 11, 5005–5010. [Google Scholar] [CrossRef]
- Pezzella, A.; Napolitano, A.; d’Ischia, M.; Prota, G.; Seraglia, R.; Traldi, P. Identification of partially degraded oligomers of 5,6-dihydroxyindole-2-carboxylic acid in Sepia melanin by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom. 1997, 11, 368–372. [Google Scholar] [CrossRef]
- Petropoulos, V.; Mordini, D.; Montorsi, F.; Akturk, M.; Menichetti, A.; Olivati, A.; Petrozza, A.; Morandi, V.; Maiuri, M.; Giannechi, N.C.; et al. Photochemical pathways and light-enhanced radical scavenging activity of 1,8-dihydroxynaphtalene allomelanin. J. Am. Chem. Soc. 2025, 147, 10031–10043. [Google Scholar] [CrossRef]
- Yu, X.; Fan, H.L.; Wang, L.; Jin, Z.X. Formation of Polydopamine Nanofibers with the Aid of Folic Acid. Angew. Chem. Int. Ed. 2014, 53, 12600–12604. [Google Scholar] [CrossRef]
- Fan, H.; Yu, X.; Liu, Y.; Shi, Z.; Liu, H.; Nie, Z.; Wu, D.; Jin, Z. Folic acid-polydopamine nanofibers show enhanced ordered-stacking via π-π interactions. Soft Matter 2015, 11, 4621–4629. [Google Scholar] [CrossRef]
- McCallum, N.C.; Son, F.A.; Clemons, T.D.; Weigand, S.J.; Gnanasekaran, K.; Battistella, C.; Barnes, B.E.; Abeyratne-Perera, H.; Siwicka, Z.E.; Forman, C.J.; et al. Allomelanin: A Biopolymer of Intrinsic Microporosity. J. Am. Chem. Soc. 2021, 143, 4005–4016. [Google Scholar] [CrossRef]
- Postma, A.; Yan, Y.; Wang, Y.; Zelikin, A.N.; Tjipto, E.; Caruso, F. Self-polymerization as a verstile and robust technique to prepare polymer capsules. Chem. Mater. 2009, 21, 3042–3044. [Google Scholar] [CrossRef]
- Yu, B.; Wang, D.A.; Ye, Q.; Zhou, F.; Liu, W. Robust polydopamine nano/microcapsules and their loading and release behavior. Chem. Commun. 2009, 44, 6789–6791. [Google Scholar] [CrossRef]
- Lee, H.; Dellatore, S.M.; Miller, W.M.; Messersmith, P.B. Mussel inspired surface chemistry for multifunctional coatings. Science 2007, 318, 426–430. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Na, Y.S.; Choi, S.; Song, I.T.; Kim, W.Y.; Lee, H. Non-covalent self-assembly and covalent polymerization co-contribute to polydopamine formation. Adv. Funct. Mater. 2012, 22, 4711–4717. [Google Scholar] [CrossRef]
- Hong, S.; Wang, Y.; Park, S.Y.; Lee, H. Progressive fuzzy cation-π assembly of biological catecholamines. Sci. Adv. 2018, 4, 7457. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Xing, Y.; Wang, Z.; Zheng, X.; Zhang, J.; Cai, K. Nanoscale polydopamine (PDA) meets π-π interactions: An interface-directed coassembly approach for mesoporous nanoparticles. Langmuir 2016, 32, 12119–12128. [Google Scholar] [CrossRef]
- Kang, S.M.; Rho, J.; Choi, I.S.; Messersmith, P.B.; Lee, H. Norepinephrine: Material independent, multifunctional surface modification. J. Am. Chem. Soc. 2009, 131, 13224–13225. [Google Scholar] [CrossRef]
- Jaber, M.; Lambert, J.F. A new nanocomposite: L-DOPA/Laponite. J. Phys. Chem. Lett. 2010, 1, 85–88. [Google Scholar] [CrossRef]
- Du, X.; Li, L.; Li, J.; Yang, C.; Frenkel, N.; Welle, A.; Heissler, S.; Nefedov, A.; Grunze, M.; Levkin, P.A. UV-triggered dopamine polymerization: Control of polymerization, surface coating, and photopatterning. Adv. Mater. 2014, 26, 8029–8034. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Ou, Y.; Lei, W.X.; Wan, L.S.; Ji, J.; Xu, Z.K. CuSO4/ H2O2-Induced Rapid Deposition of Polydopamine Coatings with High Uniformity and Enhanced Stability. Angew. Chem. Int. Ed. 2016, 128, 3106–3109. [Google Scholar] [CrossRef]
- Ponzio, F.; Barthes, J.; Bour, J.; Michel, M.; Bertani, P.; Hemmerlé, J.; d’Ischia, M.; Ball, V. Oxidant control of polydopamine surface chemistry in acids: A mechanism based entry to superhydrophilic-superoeophobic coatings. Chem. Mater. 2016, 18, 4697–4705. [Google Scholar] [CrossRef]
- Svodoba, J.; Král, M.; Dendisová, M.; Matĕjka, P.; Pop-Georgievski, O. Unravelling the influence of substrate on the growth rate, morphology and covalent structure of surface adherent polydopamine films. Colloids Surf. B Biointerfaces 2021, 205, 111897. [Google Scholar]
- Ponzio, F.; Payamyar, P.; Schneider, A.; Winterhalter, M.; Bour, J.; Addiego, F.; Krafft, M.-P.; Hemmerlé, J.; Ball, V. Polydopamine films from the forgotten air/water interface. J. Phys. Chem. Lett. 2014, 5, 3436–3440. [Google Scholar] [CrossRef]
- Coy, E.; Iatsunskyi, I.; Colmenares, J.C.; Kim, Y.; Mrόwczyński, R. Polydopamine films with 2D-like layered structure and high mechanical resilience. ACS Appl. Mater. Interfaces 2021, 13, 23113–23120. [Google Scholar] [CrossRef]
- Hong, S.; Schaber, C.F.; Dening, K.; Appel, E.; Gorb, S.N.; Lee, H. Air/Water Interfacial Formation of Freestanding, Stimuli Responsive, Self-Healing Catecholamine Janus-Faced Microfilms. Adv. Mater. 2014, 26, 7581–7587. [Google Scholar] [CrossRef]
- Yang, H.C.; Xu, W.; Du, Y.; Wu, J.; Xu, Z.K. Composite Free Standing Films of Polydopamine/Polyethyleneimine Grown at the Air/Water Interface. RSC Adv. 2014, 4, 45415–45418. [Google Scholar] [CrossRef]
- Alfieri, M.L.; Micillo, R.; Panzella, L.; Crescenzi, O.; Oscurato, S.L.; Maddalena, P.; Napolitano, A.; Ball, V.; d’Ischia, M. Structural basis of polydopamine film formation: Probing 5,6-dihydroxyindole-based eumelanin type units and the porphyrin issue. ACS Appl. Mater. Interfaces 2018, 10, 7670–7680. [Google Scholar]
- Cui, J.; Iturri, J.; Paez, J.; Shafiq, Z.; Serrano, C.; d’Ischia, M.; del Campo, A. Dopamine-based coatings and hydrogels: Toward substitution related structure-property relationship. Macromol. Chem. Phys. 2014, 215, 2403–2413. [Google Scholar] [CrossRef]
- Dreyer, D.R.; Miller, D.J.; Freeman, B.D.; Paul, D.R.; Bielawski, C.W. Elucidating the structure of poly(dopamine). Langmuir 2012, 28, 6428–6435. [Google Scholar] [CrossRef]
- Liebscher, J. Chemistry of polydopamine-scope, variation, and limitation. Eur. J. Org. Chem. 2019, 4976–4994. [Google Scholar] [CrossRef]
- Chen, S.; Li, X.; Yang, Z.; Zhou, S.; Luo, R.; Maitz, M.F.; Zhao, Y.; Wang, J.; Xiong, K.; Huang, N. A simple one-step modification of various materials for introducing effective multi-functional groups. Colloids Surf. B Biointerfaces 2014, 113, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Suárez-García, S.; Sedó, J.; Saiz-Poseu, J.; Ruiz-Molina, D. Copolymerization of a catechol and a diamine as a versatile polydopamine like platform for surface functionalization: The case of a hydrophobic coating. Biomimetics 2017, 2, 22. [Google Scholar] [CrossRef] [PubMed]
- Iacomino, M.; Paez, J.I.; Avolio, R.; Carpentieri, A.; Panzella, L.; Falco, G.; Pizzo, E.; Errico, M.E.; Napolitano, A.; del Campo, A.; et al. Multifunctional thin films and coatings from caffeic acid and a cross linking diamine. Langmuir 2017, 33, 2096–2102. [Google Scholar] [CrossRef] [PubMed]
- Alfieri, M.L.; Panzella, L.; Oscurato, S.L.; Salvatore, M.; Avolio, R.; Errico, M.E.; Maddalena, P.; Napolitano, A.; Ball, V.; d’Ischia, M. Hexamethylenediamine-mediated polydopamine film deposition: Inhibition by resorcinol as a strategy for mapping quinone targeting mechanisms. Front. Chem. 2019, 7, 407. [Google Scholar] [CrossRef]
- Behboodi-Sadabad, F.; Li, S.; Lei, W.; Liu, Y.; Sommer, T.; Friederich, P.; Sobek, C.; Messersmith, P.B.; Levkin, P.A. High-throughput screening of multifunctional nanocoatings based on combinations of polyphenols and catecholamines. Mater. Today Bio 2021, 10, 100108. [Google Scholar] [CrossRef]
- Sileika, T.S.; Barrett, G.; Zhang, R.; Lau, K.H.A.; Messersmith, P.B. Colorless multifuntional coatings inspired from polyphenols found in tea, chocolate and wine. Angew. Chem. Int. Ed. 2013, 52, 10766–10770. [Google Scholar] [CrossRef]
- Ejima, H.; Richardson, J.J.; Liang, K.; Best, J.P.; van Koeverden, M.P.; Such, G.K.; Cui, J.; Caruso, F. One-step assembly of coordination complexes for versatile film and particle engineering. Science 2013, 341, 154–157. [Google Scholar] [CrossRef]
- Rahim, M.A.; Ejima, H.; Cho, K.L.; Kempe, K.; Müllner, M.; Best, J.P.; Caruso, F. Coordination-driven multistep assembly of metal–polyphenol films and capsules. Chem. Mater. 2014, 26, 1645–1653. [Google Scholar] [CrossRef]
- Pezzella, A.; Barra, M.; Musto, A.; Navarra, A.; Alfè, M.; Manini, P.; Parisi, S.; Cassinese, A.; Criscuolo, V.; d’Ischia, M. Stem cell-compatible eumelanin biointerface fabricated by chemically controlled solid state polymerization. Mater. Horiz. 2015, 2, 212–220. [Google Scholar] [CrossRef]
- Lino, V.; Castaldo, R.; Gentile, G.; Manini, P. Reusable melanin-based biosorbents for efficient methylene blue removal: The new frontier of fungi-inspired allomelanin coatings for sustainable water remediation processes. Mater. Today Sustain. 2023, 21, 100283. [Google Scholar] [CrossRef]
- Bejerano, T.; Forgacs, C.; Gileadi, E. Selective inhibition of electrode reactions by organic compounds: I. The inhibition of Br2 and I2 evolution on platinum by phenol. J. Electroanal. Chem. Interfacial Electrochem. 1970, 27, 69–79. [Google Scholar] [CrossRef]
- Li, Y.; Liu, M.; Xiang, C.; Xie, X.; Yao, S. Electrochemical quartz crystal microbalance study on growth and property of the polymer deposit at gold electrodes during oxidation of dopamine in aqueous solution. Thin Solid Film. 2006, 497, 270–278. [Google Scholar] [CrossRef]
- Bernsmann, F.; Voegel, J.-C.; Ball, V. Different synthesis methods allow to tune the permeability and permselectivity of dopamine-melanin films to electrochemical probes. Electrochim. Acta 2011, 56, 3914–3919. [Google Scholar] [CrossRef]
- Almeida, L.C.; Correia, J.P.; Viana, A.S. Electrochemical and optical characterization of thin polydopamine films on carbon surfaces for enzymatic sensors. Electrochim. Acta 2018, 263, 480–489. [Google Scholar] [CrossRef]
- Li, S.; Wang, H.; Young, M.; Xu, F.; Cheng, G.; Cong, H. Properties of electropolymerized dopamine and its analogues. Langmuir 2019, 35, 1119–1125. [Google Scholar] [CrossRef]
- D’Alvise, T.M.; Harvey, S.; Hueske, L.; Szemwicka, J.; Veith, L.; Knowles, T.P.J.; Kubiczek, D.; Flaig, C.; Port, F.; Gottschalk, K.-E.; et al. Ultrathin polydopamine films with phospholipid nanodiscs containing a glycophorin A domain. Adv. Funct. Mater. 2020, 30, 2000378. [Google Scholar] [CrossRef]
- Szewczyk, J.; Aguilar-Ferrer, D.; Coy, E. Polydopamine films: Electrochemical growth and sensing applications. Eur. Polym. J. 2022, 174, 111346. [Google Scholar] [CrossRef]
- Ball, V. Electrodeposition of pyrocatechol based films: Influence of potential scan rate, pyrocatechol concntration and pH. Colloids Surf. A Physicochem. Eng. Asp. 2017, 518, 109–115. [Google Scholar] [CrossRef]
- Ball, V. Electrodeposition of pyrogallol versus pyrocatechol using cyclic voltammetry and chronoamperometry. J. Electroanal. Chem. 2022, 909, 116142. [Google Scholar] [CrossRef]
- Ma, M.; Liu, H.; Xu, J.; Li, Y.; Wan, Y. Electrochemical polymerization of o-dihydroxybenzene and characterization of its polymers as polyacetylene derivatives. J. Phys. Chem. 2007, 111, 6889–6896. [Google Scholar]
- Enache, T.A.; Oliveira-Brett, A.M. Phenol and para-substituted phenols electrochemical oxidation pathways. J. Electroanal. Chem. 2011, 655, 9–16. [Google Scholar] [CrossRef]
- Marchesi d’Alvise, T.; Sunder, S.; Hasler, R.; Moser, J.; Knoll, W.; Synatschke, C.; Harvey, S.; Weil, T. Preparation of ultrathin and degradable polymeric films by electropolymerization of 3-amino-L-tyrosine. Macromol. Rapid Commun. 2023, 44, 2200332. [Google Scholar] [CrossRef]
- Ball, V. Impedance spectroscopy and zeta potential titration of melanin films produced by oxidation of dopamine. Colloids Surf. A Physicochem. Eng. Asp. 2010, 363, 92–97. [Google Scholar] [CrossRef]
- Ziegler, K.; Boecker, M.; Ball, V.; Sanchez, C.; Boissiere, C.; Ersen, O.; Ihiawakrim, D.; Kissmann, A.-K.; Marchesi d’Alvise, T.; Moser, J.; et al. Multifunctional thick films obtained by Electrodeposition of 1,8-dihydroxynaphtalene, an Allomelanin Precursor. Langmuir 2025, 41, 3971–3985. [Google Scholar] [CrossRef]
- Vatral, J.; Boča, R.; Linert, W. Oxidation properties of dopamine at the and near physiological conditions. Monatshefte Chem. 2015, 146, 1799–1805. [Google Scholar] [CrossRef]
- Kim, S.; Jang, L.K.; Park, H.S.; Lee, J.Y. Electrochemical deposition of conductive and adhesive polypyrrole-dopamine films. Sci. Rep. 2016, 6, 30475. [Google Scholar] [CrossRef]
- Kiss, L.; SzabÓ, P.; Kunsági-Máté, S. Comparison between electrooxidation of 1-naphtol and 2-naphtol in different non-aqueous solvents and suppression of layer growth of polymers. Surfaces 2024, 7, 164–180. [Google Scholar] [CrossRef]
- Peña, N.O.; Ihiawakrim, D.; Ball, V.; Stanescu, S.; Rastei, M.; Sanchez, C.; Portehault, D.; Ersen, O. Correlative microscopy insight on electrodeposited ultrathin graphite oxide films. J. Phys. Chem. Lett. 2020, 11, 9117–9122. [Google Scholar] [CrossRef] [PubMed]
- Heinze, J. Electrochemistry of conducting polymers. Synth. Met. 1991, 43, 2805–2823. [Google Scholar] [CrossRef]
- Zhou, M.; Heinze, J. Electropolymerization of pyrrole and electrochemical study of polypyrrole; 1. Evidence for structural diversity of polypyrrole. Electrochim. Acta 1999, 44, 1733–1748. [Google Scholar] [CrossRef]
- Hosu, I.S.; Constantinescu-Aruxandei, D.; Jecu, M.-L.; Oancea, F.; Badea Doni, M. Peroxonitrite sensor based on a screen printed carbon electrode modified with a poly(2,6-dihydroxynaphtalene) film. Sensors 2016, 16, 1975. [Google Scholar] [CrossRef]
- Kim, E.; Kang, M.; Tschirhart, T.; Malo, M.; Dadachova, E.; Cao, G.; Yin, J.-J.; Bentley, W.E.; Wang, Z.; Payne, G.F. Spectroelectrochemical reverse engineering demonstrates that melanin’redox and radical scavenging activities are linked. Biomacromolecules 2017, 18, 4084–4098. [Google Scholar] [CrossRef]
- Kang, M.; Kim, E.; Temoçin, Z.; Li, J.; Dadachova, E.; Wang, Z.; Panzella, L.; Napolitano, A.; Bentley, W.E.; Payne, G.F. Reverse engineering to characterize redox properties: Revealing melanin’s redox activity through mediated electrochemical probing. Chem. Mater. 2018, 30, 5814–5826. [Google Scholar] [CrossRef]
- Kim, E.; Wang, Z.; Phua, J.W.; Bentley, W.E.; Dadachova, E.; Napolitano, A.; Payne, G.F. Enlisting electrochemistry to reveal melanin’s redox related properties. Mater. Adv. 2024, 5, 3082–3093. [Google Scholar] [CrossRef]
- Kim, E.; Chen, C.-Y.; Phua, J.W.; Napolitano, A.; Bentley, W.E.; Payne, G.F. Operando spectroelectrochemical characterization shows that the dynamic flow of electrons through melanin involves its redox-state switching. J. Phys. Chem. C 2023, 127, 19979–19994. [Google Scholar] [CrossRef]
- Yang, L.; Guo, X.; Jin, Z.; Guo, W.; Duan, G.; Liu, X.; Li, Y. Emergence of melanin-inspired supercapacitors. Nano Today 2021, 37, 101075. [Google Scholar] [CrossRef]
- Xu, R.; Gouda, A.; Caso, M.F.; Soavi, F.; Santato, C. Melanin: A greener route to enhance energy storage under solar light. ACS Omega 2019, 4, 12244–12251. [Google Scholar] [CrossRef]






| Catecholamine | DHN | |
|---|---|---|
| Spherical nanoparticles | Requires templating molecules [23]. | [33] |
| Anisotropic nanomaterials | PDA nanofibers in the presence of folic acid [42,43]. | 5 to 10 µm length platelets from the 4,4′-DHN dimer [38]. |
| Porous nanomaterials | Requires sacrificial cores as templates for deposition [45,46]. | Easy to proceed by single solvent change after the synthesis [44]. |
| Paramagnetic properties | [35,36] | [39,41] |
| Versatile film deposition on solid substrates from solution using oxidants | One step process [47] for almost all catecholamines (with DHI as an exception [61]) on almost all kinds of substrates but with some surface specific effects [56]. | Not possible. Should be tested in the presence of amines since cathechols mixed with diamines yield films in the presence of an oxidant [66,67,68]. |
| AISSP deposition | From DHI [73]. | From 1,8-DHN [37] and from its dimers [38]. |
| Electrochemical deposition by CV and CA | [76,77,78,79,80,81,89] | [88] |
| Electrochemical sensing on films (and gels) incorporating melanins | [98,101] | [98] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laporte, C.; Ball, V. Electrochemical and Redox Strategies for the Synthesis of Catecholamine- and Dihydroxynaphthalene-Based Materials: A Comparative Review. Electrochem 2025, 6, 36. https://doi.org/10.3390/electrochem6040036
Laporte C, Ball V. Electrochemical and Redox Strategies for the Synthesis of Catecholamine- and Dihydroxynaphthalene-Based Materials: A Comparative Review. Electrochem. 2025; 6(4):36. https://doi.org/10.3390/electrochem6040036
Chicago/Turabian StyleLaporte, Chloé, and Vincent Ball. 2025. "Electrochemical and Redox Strategies for the Synthesis of Catecholamine- and Dihydroxynaphthalene-Based Materials: A Comparative Review" Electrochem 6, no. 4: 36. https://doi.org/10.3390/electrochem6040036
APA StyleLaporte, C., & Ball, V. (2025). Electrochemical and Redox Strategies for the Synthesis of Catecholamine- and Dihydroxynaphthalene-Based Materials: A Comparative Review. Electrochem, 6(4), 36. https://doi.org/10.3390/electrochem6040036

