Red-Billed Blue Magpie Optimizer for Modeling and Estimating the State of Charge of Lithium-Ion Battery
Abstract
1. Introduction
- The RBMO is suggested for the first time for determining the parameters of the Li-ion battery.
- The results attained via the RBMO are compared with those attained via other algorithms.
- The model and the SOC of the Li-ion battery estimated via the RBMO are validated under variable loading conditions.
2. Model of Li-Ion Battery
3. RBMO
3.1. Initialization
3.2. Seeking Food
3.3. Attacking Prey
3.4. Storing Food
4. Results and Analysis
5. Conclusions
- The best fetched values of the fitness function, 1.4951 × 10−4 and 2.66176 × 10−4, have been obtained through the suggested RBMO for the two considered batteries, respectively.
- The RBMO has achieved the best SD values of 6.5684 × 10−4 and 6.04758 × 10−4 for the two batteries considered, respectively.
- Statistical tests have yielded the superiority of the suggested approach compared to the comparable methods.
- The performance examination of the RBMO for modeling and estimating the SOC of the Li-ion battery under the disturbed load has confirmed the ability of the built model to handle load disturbance.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nasser, M.; Hassan, H. Assessment of standalone streetlighting energy storage systems based on hydrogen of hybrid PV/electrolyzer/fuel cell/ desalination and PV/batteries. J. Energy Storage 2023, 63, 106985. [Google Scholar] [CrossRef]
- Dodón, A.; Quintero, V.; Austin, M.C.; Mora, D. Bio-inspired electricity storage alternatives to support massive demand-side energy generation: A review of applications at building scale. Biomimetics 2021, 6, 51. [Google Scholar] [CrossRef]
- Calati, M.; Hooman, K.; Mancin, S. Thermal storage based on phase change materials (PCMs) for refrigerated transport and distribution applications along the cold chain: A review. Int. J. Thermofluids 2022, 16, 100224. [Google Scholar] [CrossRef]
- Khan, M.; Ding, X.; Zhao, H.; Wang, Y.; Zhang, N.; Chen, X.; Xu, J. Recent Advancements in Selenium-Based Cathode Materials for Lithium Batteries: A Mini-Review. Electrochem 2022, 3, 285–308. [Google Scholar] [CrossRef]
- Mama, M.; Solai, E.; Capurso, T.; Danlos, A.; Khelladi, S. Comprehensive review of multi-scale Lithium-ion batteries modeling: From electro-chemical dynamics up to heat transfer in battery thermal management system. Energy Convers. Manag. 2025, 325, 119223. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, B.; Wang, F.; Zheng, S.; Yu, Q.; Zhai, Z.; Chen, X. Exploration of Imbalanced Regression in state-of-health estimation of Lithium-ion batteries. J. Energy Storage 2025, 105, 114542. [Google Scholar] [CrossRef]
- Yang, X.; Li, P.; Guo, C.; Yang, W.; Zhou, N.; Huang, X.; Yang, Y. Research progress on wide-temperature-range liquid electrolytes for lithium-ion batteries. J. Power Sources 2024, 624, 235563. [Google Scholar] [CrossRef]
- Madani, S.S.; Schaltz, E.; Kær, S.K. Thermal Simulation of Phase Change Material for Cooling of a Lithium-Ion Battery Pack. Electrochem 2020, 1, 439–449. [Google Scholar] [CrossRef]
- Alipour, M.; Hassanpouryouzband, A.; Kizilel, R. Investigation of the Applicability of Helium-Based Cooling System for Li-Ion Batteries. Electrochem 2021, 2, 135–148. [Google Scholar] [CrossRef]
- Pourvali Souraki, H.; Radmehr, M.; Rezanejad, M. Distributed energy storage system-based control strategy for hybrid DC/AC microgrids in grid-connected mode. Int. J. Energy Res. 2019, 43, 6283–6295. [Google Scholar] [CrossRef]
- Zhu, J.; Dewi Darma, M.S.; Knapp, M.; Sørensen, D.R.; Heere, M.; Fang, Q.; Wang, X.; Dai, H.; Mereacre, L.; Senyshyn, A.; et al. Investigation of lithium-ion battery degradation mechanisms by combining differential voltage analysis and alternating current impedance. J. Power Sources 2020, 448, 28–30. [Google Scholar] [CrossRef]
- Samadani, E.; Mastali, M.; Farhad, S.; Fraser, R.A.; Fowler, M. Li-ion battery performance and degradation in electric vehicles under different usage scenarios. Int. J. Energy Res. 2016, 40, 379–392. [Google Scholar] [CrossRef]
- Förstl, M.; Azuatalam, D.; Chapman, A.; Verbič, G.; Jossen, A.; Hesse, H. Assessment of residential battery storage systems and operation strategies considering battery aging. Int. J. Energy Res. 2020, 44, 718–731. [Google Scholar] [CrossRef]
- He, Z.; Ni, X.; Pan, C.; Li, W.; Han, S. Power Batteries State of Health Estimation of Pure Electric Vehicles for Charging Process. J. Electrochem. Energy Convers. Storage 2023, 21, 031007. [Google Scholar] [CrossRef]
- Liu, Z.; Qiu, Y.; Feng, J.; Chen, S.; Yang, C. A Simplified Fractional Order Modeling and Parameter Identification for Lithium-Ion Batteries. J. Electrochem. Energy Convers. Storage 2021, 19, 021001. [Google Scholar] [CrossRef]
- Zhang, R.; Li, X.; Sun, C.; Yang, S.; Tian, Y.; Tian, J. State of Charge and Temperature Joint Estimation Based on Ultrasonic Reflection Waves for Lithium-Ion Battery Applications. Batteries 2023, 9, 335. [Google Scholar] [CrossRef]
- Sarmah, S.B.; Kalita, P.; Garg, A.; Niu, X.; Zhang, X.-W.; Peng, X.; Bhattacharjee, D. A Review of State of Health Estimation of Energy Storage Systems: Challenges and Possible Solutions for Futuristic Applications of Li-Ion Battery Packs in Electric Vehicles. J. Electrochem. Energy Convers. Storage 2019, 16, 040801. [Google Scholar] [CrossRef]
- Lijun, F.; Changshi, L.; Zhang, W. Half-open time-dependent multi-depot electric vehicle routing problem considering battery recharging and swapping. Int. J. Ind. Eng. Comput. 2023, 14, 129–146. [Google Scholar] [CrossRef]
- De Pascali, L.; Biral, F.; Onori, S. Aging-Aware Optimal Energy Management Control for a Parallel Hybrid Vehicle Based on Electrochemical-Degradation Dynamics. IEEE Trans. Veh. Technol. 2020, 69, 10868–10878. [Google Scholar] [CrossRef]
- Hu, X.; Li, S.; Peng, H. A comparative study of equivalent circuit models for Li-ion batteries. J. Power Sources 2012, 198, 359–367. [Google Scholar] [CrossRef]
- Kim, U.S.; Yi, J.; Shin, C.B.; Han, T.; Park, S. Modeling the Thermal Behaviors of a Lithium-Ion Battery during Constant-Power Discharge and Charge Operations. J. Electrochem. Soc. 2013, 160, A990. [Google Scholar] [CrossRef]
- Zou, C.; Manzie, C.; Nešić, D. A Framework for Simplification of PDE-Based Lithium-Ion Battery Models. IEEE Trans. Control Syst. Technol. 2016, 24, 1594–1609. [Google Scholar] [CrossRef]
- Wang, Q.; Kang, J.; Tan, Z.; Luo, M. An online method to simultaneously identify the parameters and estimate states for lithium ion batteries. Electrochim. Acta 2018, 289, 376–388. [Google Scholar] [CrossRef]
- Kim, J.; Chun, H.; Kim, H.; Lee, M.; Han, S. Strategically switching metaheuristics for effective parameter estimation of electrochemical lithium-ion battery models. J. Energy Storage 2023, 64, 107094. [Google Scholar] [CrossRef]
- Lochrie, G.; Yoon, Y. Anti-Windup Co-Estimation of Open Circuit Voltage and Equivalent Circuit Model Parameters for Lithium-Ion Battery Diagnostics. IFAC-PapersOnLine 2023, 56, 11179–11184. [Google Scholar] [CrossRef]
- Zhang, C.; Allafi, W.; Dinh, Q.; Ascencio, P.; Marco, J. Online estimation of battery equivalent circuit model parameters and state of charge using decoupled least squares technique. Energy 2018, 142, 678–688. [Google Scholar] [CrossRef]
- Lai, Q.; Ahn, H.J.; Kim, Y.J.; Kim, Y.N.; Lin, X. New data optimization framework for parameter estimation under uncertainties with application to lithium-ion battery. Appl. Energy 2021, 295, 117034. [Google Scholar] [CrossRef]
- Fornaro, P.; Puleston, P.; Battaiotto, P. On-line parameter estimation of a Lithium-Ion battery/supercapacitor storage system using filtering sliding mode differentiators. J. Energy Storage 2020, 32, 101889. [Google Scholar] [CrossRef]
- Saleem, K.; Mehran, K.; Ali, Z. Online reduced complexity parameter estimation technique for equivalent circuit model of lithium-ion battery. Electr. Power Syst. Res. 2020, 185, 106356. [Google Scholar] [CrossRef]
- Shi, S.; Zhang, M.; Lu, M.; Wu, C.; Cai, X. State of Charge Estimation for Lithium-Ion Batteries Based on Extended Kalman Particle Filter and Orthogonal Optimized Battery Model. Adv. Theory Simul. 2024, 7, 2301022. [Google Scholar] [CrossRef]
- Wu, J.; Xu, H.; Zhu, P. State-of-Charge and State-of-Health Joint Estimation of Lithium-Ion Battery Based on Iterative Unscented Kalman Particle Filtering Algorithm With Fused Rauch–Tung–Striebel Smoothing Structure. J. Electrochem. Energy Convers. Storage 2023, 20, 041008. [Google Scholar] [CrossRef]
- Guo, F.; Hu, G.; Xiang, S.; Zhou, P.; Hong, R.; Xiong, N. A multi-scale parameter adaptive method for state of charge and parameter estimation of lithium-ion batteries using dual Kalman filters. Energy 2019, 178, 79–88. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, Z.; Tang, L.; Wang, H. Lithium-Ion Battery Capacity Prediction Method Based on Improved Extreme Learning Machine. J. Electrochem. Energy Convers. Storage 2024, 22, 011002. [Google Scholar] [CrossRef]
- Han, Y.; Yuan, H.; Shao, Y.; Li, J.; Huang, X. Capacity Consistency Prediction and Process Parameter Optimization of Lithium-Ion Battery based on Neural Network and Particle Swarm Optimization Algorithm. Adv. Theory Simul. 2023, 6, 2300125. [Google Scholar] [CrossRef]
- Ma, S.; Sun, B.; Chen, X.; Zhang, X.; Zhang, X.; Zhang, W.; Ruan, H.; Zhao, X. Machine learning and feature engineering-based anode potential estimation method for lithium-ion batteries with application. J. Energy Storage 2024, 103, 114387. [Google Scholar] [CrossRef]
- Nicodemo, N.; Di Rienzo, R.; Lagnoni, M.; Bertei, A.; Baronti, F. Estimation of lithium-ion battery electrochemical properties from equivalent circuit model parameters using machine learning. J. Energy Storage 2024, 99, 113257. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, Z.; Yang, L.; Zhang, S. State of health estimation for lithium-ion batteries based on incremental capacity analysis and Transformer modeling. Appl. Soft Comput. 2024, 165, 112072. [Google Scholar] [CrossRef]
- Hossain Lipu, M.S.; Rahman, M.S.A.; Mansor, M.; Rahman, T.; Ansari, S.; Fuad, A.M.; Hannan, M.A. Data driven health and life prognosis management of supercapacitor and lithium-ion battery storage systems: Developments, implementation aspects, limitations, and future directions. J. Energy Storage 2024, 98, 113172. [Google Scholar] [CrossRef]
- Sun, C.; Gao, M.; Xu, F.; Zhu, C.; Cai, H. Data-Driven State-of-Charge Estimation of a Lithium-Ion Battery Pack in Electric Vehicles Based on Real-World Driving Data. J. Energy Storage 2024, 101, 113986. [Google Scholar] [CrossRef]
- Wang, Z.; Feng, G.; Liu, X.; Gu, F.; Ball, A. A novel method of parameter identification and state of charge estimation for lithium-ion battery energy storage system. J. Energy Storage 2022, 49, 104124. [Google Scholar] [CrossRef]
- Shu, X.; Li, G.; Shen, J.; Lei, Z.; Chen, Z.; Liu, Y. A uniform estimation framework for state of health of lithium-ion batteries considering feature extraction and parameters optimization. Energy 2020, 204, 117957. [Google Scholar] [CrossRef]
- Ferahtia, S.; Djeroui, A.; Rezk, H.; Chouder, A.; Houari, A.; Machmoum, M. Optimal parameter identification strategy applied to lithium-ion battery model. Int. J. Energy Res. 2021, 45, 16741–16753. [Google Scholar] [CrossRef]
- Fathy, A.; Yousri, D.; Alharbi, A.G.; Abdelkareem, M.A. A New Hybrid White Shark and Whale Optimization Approach for Estimating the Li-Ion Battery Model Parameters. Sustainability 2023, 15, 5667. [Google Scholar] [CrossRef]
- Fathy, A.; Ferahtia, S.; Rezk, H.; Yousri, D.; Abdelkareem, M.A.; Olabi, A.G. Robust parameter estimation approach of Lithium-ion batteries employing bald eagle search algorithm. Int. J. Energy Res. 2022, 46, 10564–10575. [Google Scholar] [CrossRef]
- Ferahtia, S.; Rezk, H.; Djerioui, A.; Houari, A.; Motahhir, S.; Zeghlache, S. Modified bald eagle search algorithm for lithium-ion battery model parameters extraction. ISA Trans. 2023, 134, 357–379. [Google Scholar] [CrossRef]
- Hasanien, H.M.; Alsaleh, I.; Tostado-Véliz, M.; Alassaf, A.; Alateeq, A.; Jurado, F. Optimal parameters estimation of lithium-ion battery in smart grid applications based on gazelle optimization algorithm. Energy 2023, 285, 129509. [Google Scholar] [CrossRef]
- Fu, S.; Li, K.; Huang, H.; Ma, C.; Fan, Q.; Zhu, Y. Red-billed blue magpie optimizer: A novel metaheuristic algorithm for 2D/3D UAV path planning and engineering design problems. Artif. Intell. Rev. 2024, 57, 134. [Google Scholar] [CrossRef]
- Kong, W.; Zhou, M.; Hu, F.; Zhu, Z. Manuscript Title:Thermal-Electrical scheduling of Low-Carbon Industrial energy systems with rooftop PV: An improved Red-Billed blue magpie optimization approach. Therm. Sci. Eng. Prog. 2025, 61, 103599. [Google Scholar] [CrossRef]
- Sharma, A. Improved Red-Billed Blue Magpie Optimizer for Unmanned Aerial Vehicle Path Planning. In Proceedings of the 2024 International Conference on Computational Intelligence and Network Systems (CINS), Dubai, United Arab Emirates, 28–29 November 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Zhang, Z.L.; Han, C.; Shen, K.; Hao, Q.; Jiang, J.; Zhang, Z. Trajectory Tracking Control for USVs Based on Redbilled Blue Magpie Optimized ADRC. J. Phys. Conf. Ser. 2024, 2891, 112019. [Google Scholar] [CrossRef]
- El-Fergany, A.A.; Agwa, A.M. Red-Billed Blue Magpie Optimizer for Electrical Characterization of Fuel Cells with Prioritizing Estimated Parameters. Technologies 2024, 12, 156. [Google Scholar] [CrossRef]
- Tremblay, O.; Dessaint, L.A. Experimental validation of a battery dynamic model for EV applications. In Proceedings of the 24th International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition 2009 (EVS 24), Stavanger, Norway, 13–16 May 2009; Volume 2, pp. 930–939. [Google Scholar]
- Enache, B.; Lefter, E.; Stoica, C. Comparative study for generic battery models used for electric vehicles. In Proceedings of the 2013 8th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Bucharest, Romania, 23–25 May 2013; pp. 1–6. [Google Scholar] [CrossRef]
Ref. | Year | Method | Limitations |
---|---|---|---|
[24] | 2023 | Switched optimizers | No generic performance, reliance on switch logic |
[25] | 2023 | Anti-windup evaluation | Complication, possibility of unsuitability for all models |
[26] | 2018 | Uncoupled least squares | Uncoupled method may miss inter-variable exactness |
[27] | 2021 | Deviation minimization structure | Influence of data uncertainty, large computation cost |
[28] | 2020 | Sliding mode differentiator | Requirement of tuning of sliding mode coefficients |
[29] | 2020 | Confidence zone optimization | Lesser complexity trades off some accurateness |
[30] | 2024 | EKF | Reliance on a precise model and noise evaluation |
[31] | 2023 | UKF | Influence of parameter identification quality on results, complexity |
[32] | 2019 | DKF | More complex; higher computational cost |
[33] | 2024 | improved extreme ML | Impact of data quality on ML precision |
[34] | 2023 | PSO + ML | Sensitivity to data, complexity, overfitting risk |
[35] | 2024 | ML + feature engineering | Intensive data, incomplete popularization |
[36] | 2024 | ML | Reliance on learning data; popularization problems |
[37] | 2024 | Incremental capacity study + transformer model | A lot of resources are required for the transformer model |
[38] | 2024 | Data-driven ML | Need of huge datasets, difficult real-time operation |
[39] | 2024 | Real-world data + ML | Requirements of different high-quality operating data |
[40] | 2022 | PSO | Metaheuristic restrictions (convergence velocity, adjusting) |
[41] | 2020 | Feature extraction + GA | Model complexity, coefficient sensitivity |
[42] | 2023 | AEO | Sensitivity to initial conditions, popularization problems |
[43] | 2023 | Modified WSO | Mixed complexity, need of performance adjusting |
[44] | 2022 | BEA | Risk of local optima, performance variation with problem |
[45] | 2023 | Modified BEA | Reliance on tuning, sensitivity to initial conditions |
[46] | 2023 | Gazelle optimizer | Limited exploration, shortage of benchmarks through problems |
This work | Red-billed blue magpie optimizer | No tuning required, effective escape from local optima, global exploration |
Vnom (V) | (V) | (Ah) | (Ω) | (V) | (Ah−1) | (s) | ||
---|---|---|---|---|---|---|---|---|
Battery 1 | 220 | 238.559 | 120 | 0.01833 | 18.475 | 0.01374 | 0.509 | 20 |
Battery 2 | 280 | 303.6205 | 1500 | 0.0018667 | 23.5133 | 0.0010988 | 0.040708 | 20 |
AEO [42] | Modified WSO [43] | DO | SWO | BMO | ISA | RBMO | |
---|---|---|---|---|---|---|---|
(V) | 238.6283 | 238.568 | 238.5622 | 238.5499 | 238.54 | 238.5371 | 238.5602 |
(Ah) | 120.2189 | 121.637 | 121.8207 | 118.3956 | 122.0000 | 121.9998 | 122.0000 |
(Ω) | 0.018458 | 0.01918 | 0.0188 | 0.0171 | 0.017985 | 0.0178 | 0.0188 |
(V) | 18.4210 | 121.637 | 18.4789 | 18.4790 | 18.4810 | 18.4810 | 18.4833 |
0.0130508 | 0.01352 | 0.0136 | 0.0133 | 0.013531 | 0.0135 | 0.0135 | |
(Ah−1) | 0.50142 | 0.51050 | 0.5093 | 0.5164 | 0.51011 | 0.5101 | 0.5101 |
(s) | 21.80907 | 19.5263 | 20.2573 | 19.7822 | 19.586 | 19.6326 | 19.6131 |
Fobj (V) | 7.11 × 10−4 | 5.6118 × 10−4 | 2.6913 × 10−4 | 1.6620 × 10−3 | 1.5106 × 10−4 | 1.5092 × 10−4 | 1.4951 × 10−4 |
Worst | 2.139 × 10−3 | 6.6383 × 10−4 | 2.0081 × 10−3 | 5.7082 × 10−3 | 5.1664 × 10−4 | 3.2105 × 10−4 | 1.5136 × 10−4 |
Average | 1.219 × 10−3 | 3.7127 × 10−4 | 9.9714 × 10−4 | 3.6627 × 10−3 | 2.9090 × 10−4 | 2.1237 × 10−4 | 1.5045 × 10−4 |
SD | 4.57 × 10−4 | 3.2854 × 10−4 | 5.0166 × 10−4 | 1.0132 × 10−3 | 1.3576 × 10−4 | 7.0697 × 10−5 | 6.5684 × 10−7 |
Elapsed time per trial (s) | 4912 | 1745 | 3026 | 113 | 6054 | 2706 | 6434 |
DO | SWO | BMO | ISA | RBMO | |
---|---|---|---|---|---|
(V) | 303.553 | 303.667 | 303.577 | 303.581 | 303.589 |
(Ah) | 1490.00 | 1494.94 | 1504.87 | 1499.71 | 1499.68 |
(Ω) | 0.00191901 | 0.00191005 | 0.0017 | 1.7488 × 10−3 | 0.00199999 |
(V) | 23.5755 | 23.4234 | 23.5462 | 23.5442 | 23.5441 |
0.00101638 | 0.00104697 | 0.0011 | 1.09943 × 10−3 | 0.00109985 | |
(Ah−1) | 0.0405665 | 0.0413123 | 0.0406678 | 4.06838 × 10−2 | 0.0406879 |
(s) | 20.6021 | 20.8872 | 19.0000 | 20.9986 | 19.4006 |
Fobj (V) | 4.82065 × 10−4 | 3.29567 × 10−3 | 2.85252 × 10−4 | 2.76219 × 10−4 | 2.66176 × 10−4 |
Worst | 2.77386 × 10−3 | 1.2734 × 10−2 | 2.92551 × 10−3 | 3.42083 × 10−4 | 2.80305 × 10−4 |
Average | 1.16742 × 10−3 | 6.7016 × 10−3 | 6.82816 × 10−4 | 2.87921 × 10−4 | 2.74471 × 10−4 |
SD | 7.49439 × 10−4 | 2.8224 × 10−3 | 7.94156 × 10−4 | 1.99556 × 10−5 | 6.04758 × 10−6 |
Elapsed time per trial (s) | 2087 | 98 | 6075 | 2981 | 6420 |
DO | SWO | BMO | ISA | RBMO | |
---|---|---|---|---|---|
Kruskal–Wallis test | |||||
p-value | 1.1664 × 10−8 | ||||
Friedman test | |||||
p-value | 6.2472 × 10−8 | ||||
Friedman rank | 7.4 | 9.4 | 4.8 | 4.3 | 1.6 |
(4) | (5) | (3) | (2) | (1) | |
ANOVA test | |||||
p-value | 1.9130 × 10−20 | ||||
Wilcoxon rank test | |||||
p-value | 1.8165 × 10−4 | 1.8267 × 10−4 | 4.3964 × 10−4 | 5.8284 × 10−4 | - |
h-value | 1 | 1 | 1 | 1 | - |
Null hypothesis rejection | √ | √ | √ | √ | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fathy, A.; Agwa, A.M. Red-Billed Blue Magpie Optimizer for Modeling and Estimating the State of Charge of Lithium-Ion Battery. Electrochem 2025, 6, 27. https://doi.org/10.3390/electrochem6030027
Fathy A, Agwa AM. Red-Billed Blue Magpie Optimizer for Modeling and Estimating the State of Charge of Lithium-Ion Battery. Electrochem. 2025; 6(3):27. https://doi.org/10.3390/electrochem6030027
Chicago/Turabian StyleFathy, Ahmed, and Ahmed M. Agwa. 2025. "Red-Billed Blue Magpie Optimizer for Modeling and Estimating the State of Charge of Lithium-Ion Battery" Electrochem 6, no. 3: 27. https://doi.org/10.3390/electrochem6030027
APA StyleFathy, A., & Agwa, A. M. (2025). Red-Billed Blue Magpie Optimizer for Modeling and Estimating the State of Charge of Lithium-Ion Battery. Electrochem, 6(3), 27. https://doi.org/10.3390/electrochem6030027