Metabolic and Endocrine Regulation in Ruminants: Second Edition

A special issue of Animals (ISSN 2076-2615). This special issue belongs to the section "Animal Physiology".

Deadline for manuscript submissions: closed (11 May 2025) | Viewed by 2722

Special Issue Editors


E-Mail Website
Guest Editor
Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
Interests: production animal; physiology; metabolism; ruminant nutrition; feed additives; alternate proteins; environmental stress; feed efficiency
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
Interests: dairy goat; immunity; feeding; physiology; metabolism; ruminant nutrition

Special Issue Information

Dear Colleagues,

Understanding metabolic and endocrine processes in ruminants is crucial to many processes relevant to production, animal productivity, and health. Ruminant species are important globally for food (such as milk and meat) and fiber (such as wool) production. Advances are required in our understanding of energy and protein metabolism, endocrine control, metabolic signaling, and homeorhetic and homeostatic controls, as well as inflammation and immune responses. This includes the broader areas of nutrition, digestion, and digestive physiology, understanding the nutritional states of animals, comparisons between ruminant species, nutritional deficiencies, nutritional supplements and novel feeds, and their impact on metabolism and physiology. Progress in these topics will allow further understanding of how ruminants can be supported, for example, through genetic selection or nutritional interventions, to ensure that their maximal production capacity can be achieved. Considering the success of our previous Special Issue, we are pleased to launch “Metabolic and Endocrine Regulation in Ruminants: Second Edition”. For this Special Issue, we are seeking contributions that advance ideas regarding all elements of ruminant metabolism and endocrinology. We welcome the submission of novel research papers and literature reviews.

Dr. Kristy DiGiacomo
Dr. Fernanda Zamuner
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Animals is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • metabolic
  • endocrine
  • ruminants

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 5241 KiB  
Article
Effects of Prolactin Inhibition on Lipid Metabolism in Goats
by Xiaona Liu, Chunhui Duan, Xuejiao Yin, Xianglong Li, Meijing Chen, Jiaxin Chen, Wen Zhao, Lechao Zhang, Yueqin Liu and Yingjie Zhang
Animals 2024, 14(23), 3364; https://doi.org/10.3390/ani14233364 - 22 Nov 2024
Viewed by 921
Abstract
Prolactin (PRL) has recently been found to play a role in lipid metabolism in addition to its traditional roles in lactation and reproduction. However, the effects of PRL on lipid metabolism in liver and adipose tissues are unclear. Therefore, we aimed to study [...] Read more.
Prolactin (PRL) has recently been found to play a role in lipid metabolism in addition to its traditional roles in lactation and reproduction. However, the effects of PRL on lipid metabolism in liver and adipose tissues are unclear. Therefore, we aimed to study the role of PRL on lipid metabolism in goats. Twenty healthy eleven-month-old Yanshan cashmere goats with similar body weights (BWs) were selected and randomly divided into a control (CON) group and a bromocriptine (BCR, a PRL inhibitor, 0.06 mg/kg, BW) group. The experiment lasted for 30 days. Blood was collected on the day before BCR treatment (day 0) and on the 15th and 30th days after BCR treatment (days 15 and 30). On day 30 of treatment, all goats were slaughtered to collect their liver, subcutaneous adipose, and perirenal adipose tissues. A portion of all collected tissues was stored in 4% paraformaldehyde for histological observation, and another portion was immediately stored in liquid nitrogen for RNA extraction. The PRL inhibition had inconclusive effects found on BW and average daily feed intake (ADFI) in goats (p > 0.05). PRL inhibition decreased the hormone-sensitive lipase (HSL) levels on day 30 (p < 0.05), but the effects were inconclusive on days 0 and 15. PRL inhibition had inconclusive effects found on total cholesterol (TCH), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), fatty acid synthase (FAS), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), and acetyl-CoA carboxylase (ACC) on days 0, 15, and 30 (p > 0.05). Furthermore, hematoxylin–eosin (HE) staining of the liver, subcutaneous adipose, and perirenal adipose sections showed that PRL inhibition had inconclusive effects on the pathological changes in their histomorphology (p > 0.05), but measuring adipocytes showed that the area of perirenal adipocytes decreased in the BCR group (p < 0.05). The qPCR results showed that PRL inhibition increased the expression of PRL, long-form PRL receptor (LPRLR), and short-form PRL receptor (SPRLR) genes, as well as the expression of genes related to lipid metabolism, including sterol regulatory element binding transcription factor 1 (SREBF1); sterol regulatory element binding transcription factor 2 (SREBF2); acetyl-CoA carboxylase alpha (ACACA); fatty acid synthase (FASN); 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR); 7-dehydrocholesterol reductase (DHCR7); peroxisome proliferator-activated receptor gamma (PPARG); and lipase E, hormone-sensitive type (LIPE) in the liver (p < 0.05). In the subcutaneous adipose tissue, PRL inhibition increased SPRLR gene expression (p < 0.05) and decreased the expression of genes related to lipid metabolism, including SREBF1, SREBF2, ACACA, PPARG, and LIPE (p < 0.05). In the perirenal adipose tissue, the inhibition of PRL decreased the expression of the PRL, SREBF2, and HMGCR genes (p < 0.05). In conclusion, the inhibition of PRL decreases the serum HSL levels in cashmere goats; the effects of PRL on lipid metabolism are different in different tissues; and PRL affects lipid metabolic activity by regulating different PRLRs in liver and subcutaneous adipose tissues, as well as by decreasing the expression of the PRL, SREBF2, and HMGCR genes in perirenal adipose tissue. Full article
(This article belongs to the Special Issue Metabolic and Endocrine Regulation in Ruminants: Second Edition)
Show Figures

Figure 1

12 pages, 8688 KiB  
Article
Differences in Lipid Metabolism between the Perirenal Adipose Tissue of Chinese Simmental Cattle and Angus Cattle (Bos taurus) Based on Metabolomics Analysis
by Siyuan Wang, Yue Pang, Lixiang Wang, Qi Wang, Zhongling Chen, Chengjiao Li, Fengjiao Li, Guoxi Zhang, Xiaoying Wang, Shuxin Gao and Xingjian Xu
Animals 2024, 14(17), 2536; https://doi.org/10.3390/ani14172536 - 31 Aug 2024
Viewed by 1166
Abstract
The aim of this experiment was to investigate the differences in metabolites in perirenal fat (PF) between Chinese Simmental cattle and Angus cattle. Six healthy 18-month-old male Angus cattle and Chinese Simmental cattle were selected, and the perirenal adipose tissue was collected after [...] Read more.
The aim of this experiment was to investigate the differences in metabolites in perirenal fat (PF) between Chinese Simmental cattle and Angus cattle. Six healthy 18-month-old male Angus cattle and Chinese Simmental cattle were selected, and the perirenal adipose tissue was collected after slaughtering. HE staining, a triglyceride assay kit, and liquid chromatography–tandem mass spectrometry (LC-MS/MS) technology were used to compare and analyze the differences in the cell morphology, lipid accumulation, and metabolites of the two types of PF. The results showed that the PF of Angus cattle had a larger cell area and stronger lipid deposition ability than that of Simmental cattle. A total of 567 metabolites were detected by LC-MS/MS technology, of which 119 were significantly upregulated in Angus cattle PF and 129 were significantly upregulated in Simmental cattle PF. Differential metabolites were enriched in pathways such as fatty acid biosynthesis, polyunsaturated fatty acid biosynthesis, regulation of adipocyte lipolysis, and oxidative phosphorylation. Finally, 12 metabolites that may cause phenotypic differences between the two types of perirenal adipose tissue were screened out from these pathways. This study has preliminarily screened out biomarkers that may affect lipid metabolism in PF, providing basic data for the further exploration of the metabolic characteristics of PF. Full article
(This article belongs to the Special Issue Metabolic and Endocrine Regulation in Ruminants: Second Edition)
Show Figures

Figure 1

Back to TopTop