-
Bioprocessing of Spent Coffee Grounds as a Sustainable Alternative for the Production of Bioactive Compounds
-
Genomic and Fermentation Characterization of Kluyveromyces marxianus and Saccharomyces cerevisiae in Root Extract-Based Low-Alcohol Beverage
-
The Effect of Saliva with Different Nitrogen Compositions on Ruminal Fermentation in a Rumen Simulator Technique (Rusitec®) System Fed a Lactating Dairy Cow Diet
-
Evaluation of the Potential of Corynebacterium glutamicum ATCC 21492 for L-Lysine Production Using Glucose Derived from Textile Waste
Journal Description
Fermentation
Fermentation
is an international, peer-reviewed, open access journal on fermentation process and technology published monthly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), PubAg, FSTA, Inspec, CAPlus / SciFinder, and other databases.
- Journal Rank: JCR - Q2 (Biotechnology and Applied Microbiology) / CiteScore - Q1 (Plant Science)
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 15.5 days after submission; acceptance to publication is undertaken in 3.9 days (median values for papers published in this journal in the first half of 2025).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
Impact Factor:
3.3 (2024);
5-Year Impact Factor:
3.5 (2024)
Latest Articles
Direct Application of Fermented Solid Containing Lipases from Pycnoporus sanguineus in Esterification Reactions and Kinetic Resolution of Sec-alcohols
Fermentation 2025, 11(9), 523; https://doi.org/10.3390/fermentation11090523 - 5 Sep 2025
Abstract
Lipases are widely used as biocatalysts in synthetic applications because of their high chemo-, regio-, and enantioselectivities, which play key roles in the synthesis of esters and the resolution of racemates. These biocatalytic steps are essential for the production of various products, including
[...] Read more.
Lipases are widely used as biocatalysts in synthetic applications because of their high chemo-, regio-, and enantioselectivities, which play key roles in the synthesis of esters and the resolution of racemates. These biocatalytic steps are essential for the production of various products, including cosmetic ingredients, building blocks in the pharmaceutical and agrochemical industries. In this study, we produced lipases through solid-state fermentation of agricultural by-products and domestic wastes using the fungus Pycnoporus sanguineus. After fermentation, the dried solids containing lipases from P. sanguineus exhibited high catalytic activity. Lipase production was achieved via solid-state fermentation using a substrate composed of wheat bran and sugarcane bagasse supplemented with either residual frying oil or urea, resulting in an enzymatic activity of 24 U mL−1 after 96 h. The resulting P. sanguineus fermentation solids (PSFS) efficiently catalyzed the esterification of capric acid with ethanol, achieving 95% ester conversion within 28 h. Additionally, PSFS proved to be effective in the kinetic resolution of (RS)-1-phenyl-1-ethanol via transesterification with various acyl donors, selectively forming the (R)-enantiomer. This process yielded a 16% conversion to (R)-1-phenylethyl propionate and an enantiomeric ratio (E) exceeding 200 after 72 h. These results demonstrate the potential of PSFS for applications in ester synthesis and resolution of enantiomerically pure sec-alcohols.
Full article
(This article belongs to the Section Microbial Metabolism, Physiology & Genetics)
►
Show Figures
Open AccessArticle
Effect of Harvesting Time on Starch Degradation in Rumen of Whole-Plant Corn and Its Silage
by
Long Zhang, Shiqin Liu, Xuepeng Wang, He Wang, Songze Li, Yuguo Zhen and Xuefeng Zhang
Fermentation 2025, 11(9), 522; https://doi.org/10.3390/fermentation11090522 - 4 Sep 2025
Abstract
Whole-plant corn silage is a critical feedstuff in global ruminant production, and its nutrient composition is closely tied to harvest timing. As starch acts as the primary energy source in silage-based diets, investigating changes in starch degradation rate provides a theoretical basis for
[...] Read more.
Whole-plant corn silage is a critical feedstuff in global ruminant production, and its nutrient composition is closely tied to harvest timing. As starch acts as the primary energy source in silage-based diets, investigating changes in starch degradation rate provides a theoretical basis for optimizing the efficient utilization of whole-plant corn and its silage in ruminant production. In this study, whole-plant corn (harvested from the milk stage to full ripening stage) and its corresponding silage were used as experimental materials. An in vitro simulated rumen fermentation system was employed to determine the contents of starch, prolamin, amylose, and amylopectin in the samples. The results showed that with delayed harvest time, starch content in both whole-plant corn and its silage increased significantly; prolamin and amylose contents first decreased, then increased; amylopectin content first rose significantly before decreasing; and both starch disappearance rate and speed exhibited a trend of first increasing, then decreasing. After silage fermentation, the silage had significant increases in starch, amylose, and amylopectin contents, and starch disappearance rate; prolamin content decreased; and starch disappearance speed increased extremely significantly. This study indicates that whole-plant corn harvest time and silage fermentation regulate the ruminal starch degradation pattern by altering starch structure, prolamin content, and the proportion of rapidly degradable starch.
Full article
(This article belongs to the Special Issue Application of Fermentation Technology in Animal Nutrition: 2nd Edition)
►▼
Show Figures

Figure 1
Open AccessArticle
Yellow Pea Flour Fermented with Kefir as a Valuable Ingredient for the Techno-Functional and Sensory Improvement of Gluten-Free Bread
by
Débora N. López, Pamela S. Forastieri, Natalia L. Calvo, María Belén Cossia, Camila Tedaldi, Emilce E. Llopart, María Eugenia Steffolani and Valeria Boeris
Fermentation 2025, 11(9), 521; https://doi.org/10.3390/fermentation11090521 - 4 Sep 2025
Abstract
This work studies yellow pea flour (YPF) fermentation with kefir (1:1.5 mass ratio, incubated 30 h at 25 °C) for gluten-free breadmaking. Three samples were evaluated: untreated YPF, YPF mixed with kefir (UF), and fermented YPF (FF). Structural changes were minimal, but fermentation
[...] Read more.
This work studies yellow pea flour (YPF) fermentation with kefir (1:1.5 mass ratio, incubated 30 h at 25 °C) for gluten-free breadmaking. Three samples were evaluated: untreated YPF, YPF mixed with kefir (UF), and fermented YPF (FF). Structural changes were minimal, but fermentation improved the flour functionality. Bulk density (g/mL) decreased from 0.54 ± 0.02 in YPF and 0.47 ± 0.01 in UF to 0.43 ± 0.01 in FF, while the water absorption capacity (g/g) increased from 1.20 ± 0.01 in YPF and 1.50 ± 0.05 in UF to 1.92 ± 0.02 in FF. YPF showed the lowest oil absorption capacity (0.90 ± 0.02 g/g), while higher values were obtained for FF and UF (averaging 1.54 g/g). The yellowness index showed a clear tendency: higher in UF (34.9 ± 0.2), intermediate in FF (32.869 ± 0.008), and lower in YPF (22.4 ± 0.1). In gluten-free bread, baking loss did not show significant differences between FF-B and UF-B (averaging 15.65%) but they were significantly lower than that of YPF-B (18.5 ± 0.5%). The highest specific volume (mL/g) was observed in FF-B (1.96 ± 0.02), followed by UF-B (1.33 ± 0.02) and YPF-B (1.08 ± 0.02). Significantly reduced “pea” sensory attributes were perceived in FF-B, while acidity perception increased. Hardness was similar among breads, although chewiness was higher in FF-B. These results suggest that kefir fermentation enhances YPF functionality in gluten-free breadmaking.
Full article
(This article belongs to the Section Fermentation for Food and Beverages)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Growth Kinetics and Extracellular Enzyme Secretion of Aureobasidium pullulans m11-2 as an Alternative Source of Polysaccharidases for Winemaking
by
María Eugenia Sevillano, Vilma Inés Morata and María Carolina Martín
Fermentation 2025, 11(9), 520; https://doi.org/10.3390/fermentation11090520 - 3 Sep 2025
Abstract
Microbial enzymes, due to their efficiency, specificity, and sustainability, are central to innovative biotechnological strategies aimed at optimizing industrial processes such as winemaking. In this study, the potential of Aureobasidium pullulans m11-2, a native dimorphic fungus from the wine ecosystem, was evaluated as
[...] Read more.
Microbial enzymes, due to their efficiency, specificity, and sustainability, are central to innovative biotechnological strategies aimed at optimizing industrial processes such as winemaking. In this study, the potential of Aureobasidium pullulans m11-2, a native dimorphic fungus from the wine ecosystem, was evaluated as a source of hydrolytic enzymes capable of degrading grape cell wall polysaccharides. The strain was identified at the molecular level and characterised in terms of its morphology. To maximise enzyme production, various culture media were tested. Among the concentrations tested, the optimal levels of glucose and pectin were 1 g L−1 and 10 g L−1, respectively. The partially constitutive and inducible nature of the various polysaccharidase activities (pectinases, cellulases, and xylanases) was confirmed. The effect of grape skins (a winemaking by-product) on microbial growth and enzyme synthesis was evaluated, achieving a pectinase activity of 0.622 U mL−1 when combined with 1 g L−1 of glucose. Maximum enzyme yields were detected during the exponential growth phase in both citrus pectin and grape skin media, suggesting favorable conditions for continuous bioprocessing. These results confirm that A. pullulans m11-2 is an interesting microbial option for producing polysaccharidases that can be adapted to sustainable production systems.
Full article
(This article belongs to the Special Issue Microbial Production of Industrial Enzymes)
►▼
Show Figures

Figure 1
Open AccessArticle
Characterization of a Hyaluronidase from Paenibacillus residui BSSK58 and Evaluation of Its Industrial Applicability
by
Jung-Soo Park, Hyewon Choe, Ji Sun Kim, Hyun Ho Lee, Seogwon Lee, Joo-Woong Park and Jin Ree
Fermentation 2025, 11(9), 519; https://doi.org/10.3390/fermentation11090519 - 3 Sep 2025
Abstract
Hyaluronidase is a hydrolytic enzyme that cleaves β-1,4-glycosidic linkages in high-molecular-weight hyaluronic acid, generating low-molecular-weight oligosaccharides with enhanced biological functions. These products exhibit immunomodulatory, antioxidant, and tissue-regenerative properties, making them valuable in pharmaceutical, cosmetic, and functional food applications. However, most commercial hyaluronidases originate
[...] Read more.
Hyaluronidase is a hydrolytic enzyme that cleaves β-1,4-glycosidic linkages in high-molecular-weight hyaluronic acid, generating low-molecular-weight oligosaccharides with enhanced biological functions. These products exhibit immunomodulatory, antioxidant, and tissue-regenerative properties, making them valuable in pharmaceutical, cosmetic, and functional food applications. However, most commercial hyaluronidases originate from pathogenic bacteria or recombinant hosts, raising concerns over their biosafety and regulatory acceptance, particularly in food-grade applications. In this study, we report the isolation and characterization of a novel non-pathogenic soil bacterium, Paenibacillus residui BSSK58, which produces an extracellular hyaluronidase. Whole-genome sequencing revealed the absence of known virulence factors and antibiotic resistance genes. Phenotypic safety evaluations confirmed that there was no hemolytic activity, biogenic amine production, or cytotoxicity against human intestinal epithelial cell lines (Caco-2 and HT-29). The purified BSSK58 hyaluronidase exhibited a molecular weight of approximately 170 kDa, with optimal activity at pH 8.0–9.0 and 50 °C. The enzyme showed broad substrate specificity toward hyaluronic acid, chondroitin sulfate, and alginate, and its depolymerizing activity was confirmed using gel permeation chromatography. Furthermore, a 13-week oral repeated-dose toxicity study under Good Laboratory Practice conditions demonstrated no adverse effects. These findings support the use of BSSK58 hyaluronidase as a safe, non-recombinant biocatalyst suitable for industrial applications under regulatory-compliant frameworks.
Full article
(This article belongs to the Section Industrial Fermentation)
►▼
Show Figures

Figure 1
Open AccessArticle
Monensin Degradation and Methane Production from Sugarcane Vinasse in Two-Phase Thermophilic Anaerobic Fixed-Bed and Sludge Blanket Bioreactors
by
Sami Chatila and Marcelo Zaiat
Fermentation 2025, 11(9), 518; https://doi.org/10.3390/fermentation11090518 - 3 Sep 2025
Abstract
Sugarcane vinasse, a byproduct of ethanol production, presents environmental challenges due to its high organic content and occasional contamination with antibiotics, such as monensin. This study successfully evaluated thermophilic two-phase anaerobic digestion for simultaneous monensin degradation and biogas production. The system, consisting of
[...] Read more.
Sugarcane vinasse, a byproduct of ethanol production, presents environmental challenges due to its high organic content and occasional contamination with antibiotics, such as monensin. This study successfully evaluated thermophilic two-phase anaerobic digestion for simultaneous monensin degradation and biogas production. The system, consisting of an acidogenic anaerobic structured-bed bioreactor (ASTBR) operating at with a hydraulic retention time (HRT) of 7.5 h followed by a methanogenic reactor at HRT = 24 h, with two options of the methanogenic phase, an upflow anaerobic sludge blanket (UASB), and an ASTBR, operated continuously for 254 days with incremental monensin concentrations (0–2000 ng·mL−1). The acidogenic reactor consistently removed over 70% of monensin across all phases, demonstrating its effectiveness as a pretreatment step. At realistic residual concentrations (20–100 ng·mL−1), monensin not only failed to inhibit biogas production but enhanced methane yield by up to 100% through selective pressure on the microbial community. This study demonstrated that anaerobic digestion can effectively degrade monensin while increasing the value of vinasse, providing a scalable solution for mitigating antibiotic contamination and enhancing bioenergy recovery in the sugarcane–ethanol industry.
Full article
(This article belongs to the Section Industrial Fermentation)
►▼
Show Figures

Figure 1
Open AccessArticle
Impact of Lactic Acid Bacteria on Sour India Pale Ale (IPA) Fermentation: Growth Dynamics, Acidification, and Flavor Modulation
by
Yue Chih, Shen-Shih Chiang and Ching-Hsiu Tsai
Fermentation 2025, 11(9), 517; https://doi.org/10.3390/fermentation11090517 - 2 Sep 2025
Abstract
Sour beer production is strongly influenced by the choice of lactic acid bacteria (LAB), yet few studies have systematically compared strain-specific contributions under controlled kettle souring conditions. This study evaluated the fermentation performance and flavor-modulating potential of three LAB species—Lacticaseibacillus paracasei,
[...] Read more.
Sour beer production is strongly influenced by the choice of lactic acid bacteria (LAB), yet few studies have systematically compared strain-specific contributions under controlled kettle souring conditions. This study evaluated the fermentation performance and flavor-modulating potential of three LAB species—Lacticaseibacillus paracasei, Pediococcus pentosaceus, and Leuconostoc mesenteroides—in sour India Pale Ale (IPA) brewing. Growing assessments showed that P. pentosaceus exhibited the most rapid and stable proliferation, while L. mesenteroides required a longer adaptation period. Acidification trials demonstrated that L. paracasei achieved the lowest pH (3.26–3.43), contributing to intense sourness, whereas P. pentosaceus and L. mesenteroides yielded milder acidity (pH 3.41–3.65). Gas chromatography-mass spectrometry showed that P. pentosaceus and L. mesenteroides produced significantly higher levels of fruity and floral esters, including 2-pentanol propanoate, which was approximately 4-fold higher than in the control. Principal component analysis further distinguished the beers according to their volatile profiles. These findings highlight the strain-specific potential of LAB in sour beer brewing and provide practical guidance for flavor differentiation in craft beer production.
Full article
(This article belongs to the Section Fermentation for Food and Beverages)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Assessment of the Sequential Dark Fermentation and Photofermentation of Organic Solid Waste with Magnetite and Substrate Pre-Treatment Aimed at Hydrogen Use
by
Gabriela Cadete de Souza, Jessica Silva Souza, Isabela Faria Silva, Regina Mambeli Barros, Geraldo Lúcio Tiago Filho, Ivan Felipe Silva dos Santos, Diego Mauricio Yepes Maya, Electo Eduardo Silva Lora, Rafael da Silva Capaz, João Victor Rocha de Freitas and Aylla Joani Mendonça de Oliveira Pontes
Fermentation 2025, 11(9), 516; https://doi.org/10.3390/fermentation11090516 - 2 Sep 2025
Abstract
This study examines the enhancement of dark sequential fermentation and photofermentation of organic solid waste using magnetite and substrate pre-treatment for hydrogen production within the context of transitioning to cleaner energy sources, particularly low-carbon hydrogen. Experimental dark fermentation and photofermentation apparatuses were used,
[...] Read more.
This study examines the enhancement of dark sequential fermentation and photofermentation of organic solid waste using magnetite and substrate pre-treatment for hydrogen production within the context of transitioning to cleaner energy sources, particularly low-carbon hydrogen. Experimental dark fermentation and photofermentation apparatuses were used, utilizing microorganisms to decompose biomass at a mesophilic temperature (35 °C) of Organic Fraction of Municipal Solid Waste (OFMSW), inoculated with UASB sludge and enhanced with magnetite. A dosage of 120 mg/L of magnetite was the most effective, yielding an average value of 4144 mL H2/gVS. Additionally, the analysis revealed that the levelized cost of hydrogen (LCOH) decreases as more organic waste is utilized, making biohydrogen production a sustainable option, reaching USD 5/kg of OFMSW. Ultimately, generating hydrogen from organic waste can help reduce greenhouse gas emissions and promote a cleaner energy matrix.
Full article
(This article belongs to the Special Issue Fermentative Biohydrogen Production, 2nd Edition)
►▼
Show Figures

Figure 1
Open AccessArticle
Fermentation Performance of Epigenetically Modified Yeast
by
Yanzhuo Kong, Suhasna Palihakkara, Leo Vanhanen and Venkata Chelikani
Fermentation 2025, 11(9), 515; https://doi.org/10.3390/fermentation11090515 - 2 Sep 2025
Abstract
This study investigates the impact of epigenetic modification on Saccharomyces cerevisiae using sodium butyrate (SB), a histone deacetylase inhibitor (HDACi), to enhance sensory characteristics in beer fermentation. Epigenetics offers a non-GMO approach to modifying gene expression, with potential for cost-effective strain development in
[...] Read more.
This study investigates the impact of epigenetic modification on Saccharomyces cerevisiae using sodium butyrate (SB), a histone deacetylase inhibitor (HDACi), to enhance sensory characteristics in beer fermentation. Epigenetics offers a non-GMO approach to modifying gene expression, with potential for cost-effective strain development in brewing. A commercial ale yeast was cultured under different SB exposure regimes and used to ferment wort. Sensory evaluation was conducted with untrained participants, alongside GC-MS and enzymatic assays for ethanol, glycerol, and residual sugars. While no significant differences were found in ethanol production or smoothness and creaminess—likely due to uniform wort composition—flavor and taste scores varied between treatments. Notably, yeast pre-treated with SB but fermented without additional SB (1G W/O) received the highest flavor acceptability. Treatments involving SB during fermentation showed reduced sensory scores, likely due to butyric off-notes. Higher alcohol levels remained within acceptable thresholds and were more likely influenced by wort amino acid content than epigenetic modification. Though SB had a limited impact on metabolic pathways, this study highlights the feasibility of using dietary epigenetic modifiers to develop novel yeast strains with improved sensory profiles in beer or other fermented beverages and warrants further investigation with alternative compounds.
Full article
(This article belongs to the Special Issue 10th Anniversary of Fermentation: Feature Papers in the "Fermentation for Food and Beverages" Section)
►▼
Show Figures

Figure 1
Open AccessArticle
Towards the Potential of Using Downstream-Separated Solvents as the Pulping Liquor of Upstream Lignocellulose Fractionation for Enhanced Acetone–Butanol–Ethanol Production
by
Changsheng Su, Yunxing Gao, Gege Zhang, Hao Wen, Rui Chen, Jiajing Wang, Yujie Li, Mingyuan Sun, Jikang Cao and Di Cai
Fermentation 2025, 11(9), 514; https://doi.org/10.3390/fermentation11090514 - 1 Sep 2025
Abstract
Developing efficient, clean, and sustainable lignocellulose pretreatment technologies is essential for second-generation biofuel production. In this study, we attempted to use downstream-separated binary acetone-water, n-butanol-water, and ethanol-water solutions as the initial liquor for upstream organosolv pulping, in order to achieve the efficient
[...] Read more.
Developing efficient, clean, and sustainable lignocellulose pretreatment technologies is essential for second-generation biofuel production. In this study, we attempted to use downstream-separated binary acetone-water, n-butanol-water, and ethanol-water solutions as the initial liquor for upstream organosolv pulping, in order to achieve the efficient and economic closed-circuit clean fractionation of the lignocelluloses for biological acetone–butanol–ethanol (ABE) production. Parameters, including concentration and temperature of the organosolv pulping, were optimized systematically. Results indicated that the 50 wt% ethanol and 30 wt% acetone aqueous solutions and pulping at 200 °C for 1 h exhibited better corn stover fractionation performances with higher fermentable sugar production. The total monosaccharide recovery (including glucose and xylose) was 50.92% and 50.89%, respectively, in subsequent enzymatic saccharification. While pulping corn stover using n-butanol solution as initial liquor showed higher delignification 86.16% (50 wt% of n-butanol and 200 °C for 1 h), the hydrolysate obtained by the organosolv pulps always exhibited good fermentability. A maximized 15.0 g/L of ABE with 0.36 g/g of yield was obtained in Ethanol-200 °C-50% group, corresponding to 112 g of ABE production from 1 kg of raw corn stover. As expected, the lignin specimens fractionated by closed-circuit organosolv pulping exhibited narrow molecule weight distribution, high purity, and high preservation of active groups, which supports further valorization. This novel strategy tightly bridges the upstream and downstream processes of second-generation ABE production, providing a new route for ‘energy-matter intensive’ and environmentally friendly lignocelluloses biorefineries.
Full article
(This article belongs to the Special Issue Bioprocesses for Biomass Valorization in Biorefineries)
►▼
Show Figures

Figure 1
Open AccessArticle
Development, Characterization, and Stability of Flavored Water Kefir: Impact of Fermentation and Storage
by
Samarha Pacheco Wichello, Kamila Ferreira Chaves, Wallaf Costa Vimercati, Sérgio Henriques Saraiva and Luciano Jose Quintão Teixeira
Fermentation 2025, 11(9), 513; https://doi.org/10.3390/fermentation11090513 - 31 Aug 2025
Abstract
The increasing demand for functional beverages sparked greater interest in health-promoting craft drinks, highlighting the need to optimize production parameters and assess their stability. This study aimed to develop, optimize, and characterize a grape juice-flavored naturally carbonated water kefir, evaluating its sensory qualities,
[...] Read more.
The increasing demand for functional beverages sparked greater interest in health-promoting craft drinks, highlighting the need to optimize production parameters and assess their stability. This study aimed to develop, optimize, and characterize a grape juice-flavored naturally carbonated water kefir, evaluating its sensory qualities, physicochemical and microbiological stability. Fermentation conditions (F1) were optimized using Central Composite Rotational Design, leading to the selection of 24 h at 30 °C with (6.5% w/v) brown sugar, ensuring efficient pH reduction to safe levels. Sensory analysis selected grape juice as the flavoring agent, and a mixture design coupled with the desirability function determined the optimal formulation as 50% kefired water, 46.4% grape juice, and 3.6% water, resulting in high overall sensory desirability. During 42 days of refrigerated storage (4 °C), the beverage exhibited progressive sugar consumption from residual metabolic activity, a dynamic antioxidant profile characterized by increases in total phenolic compounds and FRAP activity, stability in ABTS activity, and decline in DPPH activity. Lactic acid bacteria counts remained stable during storage, while acetic acid bacteria and yeast populations decreased. Furthermore, pH (~3.30) and alcohol content (~1.86 °GL) remained stable, although the latter requires clear labeling in compliance with regulations for similar fermented beverages.
Full article
(This article belongs to the Section Fermentation for Food and Beverages)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Impact of Cation-Exchange Resin Treatment on Acidification and Quality of Monastrell Red Wine
by
Alejandro Martínez-Moreno, Ana Leticia Pérez-Mendoza, Paola Sánchez-Bravo, Encarna Gómez-Plaza, Ricardo Jurado-Fuentes and Ana Belén Bautista-Ortín
Fermentation 2025, 11(9), 512; https://doi.org/10.3390/fermentation11090512 - 31 Aug 2025
Abstract
Climate change is having a significant impact on vine physiology and grape composition, leading to notable alterations in wine quality, such as reduced acidity, increased ethanol content, and higher pH levels. These effects are particularly problematic in arid and semi-arid regions, such as
[...] Read more.
Climate change is having a significant impact on vine physiology and grape composition, leading to notable alterations in wine quality, such as reduced acidity, increased ethanol content, and higher pH levels. These effects are particularly problematic in arid and semi-arid regions, such as Mediterranean areas, where high summer temperatures and low rainfall accelerate the degradation of organic acids in grapes. As a result, wines produced under these conditions often lack the acidity required to preserve their freshness and enological quality. This study evaluated the effect of must acidification using cation-exchange resins on the composition and quality of red wines made from the Monastrell variety, comparing them with wines acidified using tartaric acid to reach the same target pH. The results showed that treating a portion of the must (20% and 30%) with cation-exchange resins significantly reduced wine pH values and increased total acidity compared to the control wine. A similar result was observed in wines acidified with tartaric acid. However, as an additional effect, the treatment with resin more markedly reduced the concentration of pro-oxidant metal cations such as iron, copper, and manganese, contributing to lower values of volatile acidity and a greater stability against oxidation of phenolic compounds. Must acidification with both methods improved wine color quality by increasing color intensity and decreasing hue values. Although no significant differences were found in the total concentration of phenolic compounds, variations were detected in their compositional profile. Furthermore, the acidification also affected the concentration and composition of aromatic compounds in the final wine. Sensory analysis revealed that the treated wines—particularly those made with must acidified using cation-exchange resins—exhibited greater aromatic intensity, more pronounced fruity notes, and reduced astringency, resulting in a fresher mouthfeel. In conclusion, must treatment with cation-exchange resins appears to be a low-cost good alternative compared tartaric acid addition for reducing pH and increasing acidity in Monastrell red wines, thereby enhancing their quality in winegrowing regions with arid or semi-arid climates.
Full article
(This article belongs to the Special Issue Biotechnology in Winemaking)
►▼
Show Figures

Figure 1
Open AccessArticle
Green Tea Modulates Temporal Dynamics and Environmental Adaptation of Microbial Communities in Daqu Fermentation
by
Liang Zhao, Fangfang Li, Hao Xiao, Tengfei Zhao, Yanxia Zhong, Zhihui Hu, Lu Jiang, Xiangyong Wang and Xinye Wang
Fermentation 2025, 11(9), 511; https://doi.org/10.3390/fermentation11090511 - 31 Aug 2025
Abstract
This study investigated the impact of green tea addition on microbial community dynamics during Daqu fermentation, a critical process in traditional baijiu production. Four Daqu variants (0%, 10%, 20%, 30% tea) were analyzed across six fermentation periods using 16S rRNA/ITS sequencing, coupled with
[...] Read more.
This study investigated the impact of green tea addition on microbial community dynamics during Daqu fermentation, a critical process in traditional baijiu production. Four Daqu variants (0%, 10%, 20%, 30% tea) were analyzed across six fermentation periods using 16S rRNA/ITS sequencing, coupled with STR, TDR, Sloan neutral model, and phylogenetic analyses. Results showed time-dependent increases in bacterial/fungal richness, with 30% tea maximizing species richness. Tea delayed bacterial shifts until day 15 but accelerated fungal reconstruction from day 6, expanding the temporal response window. While stochastic processes dominated initial assembly (77–94% bacteria, 88–99% fungi), deterministic processes intensified with tea concentration, particularly in fungi (1% → 12%). Tea increased bacterial dispersal limitation and reduced phylogenetic conservatism of endogenous factors. This work proposed a framework for rationally engineering fermentation ecosystems by decoding evolutionary-ecological rules of microbial assembly. It revealed how plant-derived additives can strategically adjust niche partitioning and ancestral constraints to reprogram microbiome functionality. These findings provided a theoretical foundation in practical strategies for optimizing industrial baijiu production through targeted ecological interventions.
Full article
(This article belongs to the Special Issue Development and Application of Starter Cultures, 2nd Edition)
►▼
Show Figures

Figure 1
Open AccessArticle
How Does Methanogenic Inhibition Affect Large-Scale Waste-to-Energy Anaerobic Digestion Processes? Part 1—Techno-Economic Analysis
by
Denisse Estefanía Díaz-Castro, Ever Efraín García-Balandrán, Alonso Albalate-Ramírez, Carlos Escamilla-Alvarado, Sugey Ramona Sinagawa-García, Pasiano Rivas-García and Luis Ramiro Miramontes-Martínez
Fermentation 2025, 11(9), 510; https://doi.org/10.3390/fermentation11090510 - 31 Aug 2025
Abstract
This two-part study assesses the impact of biogas inhibition on large-scale waste-to-energy anaerobic digestion (WtE-AD) plants through techno-economic and life cycle assessment approaches. The first part addresses technical and economic aspects. An anaerobic co-digestion system using vegetable waste (FVW) and meat waste (MW)
[...] Read more.
This two-part study assesses the impact of biogas inhibition on large-scale waste-to-energy anaerobic digestion (WtE-AD) plants through techno-economic and life cycle assessment approaches. The first part addresses technical and economic aspects. An anaerobic co-digestion system using vegetable waste (FVW) and meat waste (MW) was operated at laboratory scale in a semi-continuous regime with daily feeding to establish a stable process and induce programmed failures causing methanogenic inhibition, achieved by removing MW from the reactor feed and drastically reducing the protein content. Experimental data, combined with bioprocess scale-up models and cost engineering methods, were then used to evaluate the effect of inhibition periods on the profitability of large-scale WtE-AD processes. In the experimental stage, the stable process achieved a yield of 521.5 ± 21 mL CH4 g−1 volatile solids (VS) and a biogas productivity of 0.965 ± 0.04 L L−1 d−1 (volume of biogas generated per reactor volume per day), with no failure risk detected, as indicated by the volatile fatty acids/total alkalinity ratio (VFA/TA, mg VFA L−1/mg L−1) and the VFA/productivity ratio (mg VFA L−1/L L−1 d−1), both recognized as effective early warning indicators. However, during the inhibition period, productivity decreased by 64.26 ± 11.81% due to VFA accumulation and gradual TA loss. With the progressive reintroduction of the FVW:MW management and the addition of fresh inoculum to the reaction medium, productivity recovered to 96.7 ± 1.70% of its pre-inhibition level. In WtE-AD plants processing 60 t d−1 of waste, inhibition events can reduce net present value (NPV) by up to 40.2% (from 0.98 M USD to 0.55 M USD) if occurring once per year. Increasing plant capacity (200 t d−1), combined with higher revenues from waste management fees (99.5 USD t−1) and favorable electricity markets allowing higher selling prices (up to 0.23 USD kWh−1), can enhance resilience and offset inhibition impacts without significantly compromising profitability. These findings provide policymakers and industry stakeholders with key insights into the economic drivers influencing the competitiveness and sustainability of WtE-AD systems.
Full article
(This article belongs to the Special Issue Technological Advances in Lignocellulosic Biomass Conversion to Bioenergy)
►▼
Show Figures

Figure 1
Open AccessReview
Novel Fermentation Techniques for Improving Food Functionality: An Overview
by
Precious O. Ajanaku, Ayoyinka O. Olojede, Christiana O. Ajanaku, Godshelp O. Egharevba, Faith O. Agaja, Chikaodi B. Joseph and Remilekun M. Thomas
Fermentation 2025, 11(9), 509; https://doi.org/10.3390/fermentation11090509 - 31 Aug 2025
Abstract
Fermentation has been a crucial process in the preparation of foods and beverages for consumption, especially for the purpose of adding value to nutrients and bioactive compounds; however, conventional approaches have certain drawbacks such as not being able to fulfill the requirements of
[...] Read more.
Fermentation has been a crucial process in the preparation of foods and beverages for consumption, especially for the purpose of adding value to nutrients and bioactive compounds; however, conventional approaches have certain drawbacks such as not being able to fulfill the requirements of the ever-increasing global population as well as the sustainability goals. This review aims to evaluate how the application of advanced fermentation techniques can transform the food production system to be more effective, nutritious, and environmentally friendly. The techniques discussed include metabolic engineering, synthetic biology, AI-driven fermentation, quorum sensing regulation, and high-pressure processing, with an emphasis on their ability to enhance microbial activity with a view to enhancing product output. Authentic, wide-coverage scientific research search engines were used such as Google Scholar, Research Gate, Science Direct, PubMed, and Frontiers. The literature search was carried out for reports, articles, as well as papers in peer-reviewed journals from 2010 to 2024. A statistical analysis with a graphical representation of publication trends on the main topics was conducted using PubMed data from 2010 to 2024. In this present review, 112 references were used to investigate novel fermentation technologies that fortify the end food products with nutritional and functional value. Images that illustrate the processes involved in novel fermentation technologies were designed using Adobe Photoshop. The findings indicate that, although there are issues regarding costs, the scalability of the process, and the acceptability of the products by the consumers, the technologies provide a way of developing healthy foods and products produced using sustainable systems. This paper thus calls for more research and development as well as for the establishment of a legal frameworks to allow for the integration of these technologies into the food production system and make the food industry future-proof.
Full article
(This article belongs to the Special Issue Feature Review Papers in Fermentation for Food and Beverages 2024)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Bacillus subtilis Genome Reduction Improves Surfactin Production
by
Vitória Fernanda Bertolazzi Zocca, Fabiane de Oliveira Barban, Guilherme Engelberto Kundlatsch, Leonardo Ferro Tavares, Flávio Pereira Picheli, Adriana Candido da Silva Moura and Danielle Biscaro Pedrolli
Fermentation 2025, 11(9), 508; https://doi.org/10.3390/fermentation11090508 - 30 Aug 2025
Abstract
Bacillus subtilis ∆6 is a genome-reduced strain derived from the laboratory strain 168 through deletion of six prophages and AT-rich islands. The parental and the genome-reduced strains were edited to restore the capacity to synthesize surfactin. Although the genome deletions are not directly
[...] Read more.
Bacillus subtilis ∆6 is a genome-reduced strain derived from the laboratory strain 168 through deletion of six prophages and AT-rich islands. The parental and the genome-reduced strains were edited to restore the capacity to synthesize surfactin. Although the genome deletions are not directly related to surfactin biosynthesis, the ∆6 strain produces more surfactin while building lower biomass compared to the parental strain. Further editions to ∆6, such as srfA promoter replacement, codY deletion, and comA overexpression, were deleterious to surfactin production. The results showcase that the ∆6 is metabolically distinct from its parental strain and other surfactin-producing strains, as the gene editions made have been previously described to increase surfactin production in these strains. The ∆6 produced the highest surfactin titer, rate, and yield in LB medium enriched with glucose, compared to other commonly used media for B. subtilis. This work demonstrates the enhanced capacity of a genome-reduced strain to produce surfactin compared to the parental strain, as well as the metabolic changes resulting from genome engineering.
Full article
(This article belongs to the Special Issue The Industrial Feasibility of Biosurfactants)
►▼
Show Figures

Figure 1
Open AccessArticle
Physicochemical Exploration of Cocoa Butter During Spontaneous Fermentation: A Comparative Study Across Three Latin American Countries
by
César R. Balcázar-Zumaeta, Jorge L. Maicelo-Quintana, Gilson C. A. Chagas Junior, Nelson Rosa Ferreira, Wandson Braamcamp de Souza Pinheiro, Luis Nelson Cardoso e-C. Filho, Alberdan Silva Santos, Angel F. Iliquin-Chávez, Pedro García-Alamilla, Ilse S. Cayo-Colca and Efraín M. Castro-Alayo
Fermentation 2025, 11(9), 507; https://doi.org/10.3390/fermentation11090507 - 29 Aug 2025
Abstract
This study characterized the physicochemical properties of cocoa butter (CB) extracted from cocoa beans of the Criollo Nativo (Peru), Criollo (Mexico), and Forastero (Brazil) varieties subjected to spontaneous fermentation under traditional local conditions in each country. Cocoa samples were collected at 24-h intervals,
[...] Read more.
This study characterized the physicochemical properties of cocoa butter (CB) extracted from cocoa beans of the Criollo Nativo (Peru), Criollo (Mexico), and Forastero (Brazil) varieties subjected to spontaneous fermentation under traditional local conditions in each country. Cocoa samples were collected at 24-h intervals, and CB was extracted to evaluate its lipid composition through fatty acid profiling and spectroscopic techniques (FT-IR and NMR). Also, the thermal and structural properties via differential scanning calorimetry (DSC), including melting and crystallization profiles, crystallization kinetics, and polymorphism, were determined. The results revealed that stearic, oleic, and palmitic acids were predominant in all varieties, while trace levels of myristic and pentadecanoic acids contributed to molecular packing. FT-IR identified bands associated with glycerol chain formation in TAGs, which were confirmed by NMR through chemical shifts linked to the distribution of POS, SOS, and POP species. CB exhibited melting temperatures between 19.6 and 20.5 °C, favoring polymorphic transitions toward more stable forms. Form I (γ) predominated during early fermentation, while Forms II (α) and III (β′2) were subsequently identified, particularly in Criollo varieties. These findings demonstrate that fermentation time significantly influences the chemical composition, oxidative stability, and crystalline structure of CB, providing valuable insights for optimizing cocoa processing and the development of high-quality chocolate products.
Full article
(This article belongs to the Section Fermentation for Food and Beverages)
►▼
Show Figures

Figure 1
Open AccessArticle
Evaluation of Biomass, Lipid and Chlorophyll Production of a Microalgal Consortium Cultured in Dairy Wastewater
by
Christian Ariel Cabrera-Capetillo, Omar Surisadai Castillo-Baltazar, Vicente Peña-Caballero, Moisés Abraham Petriz-Prieto, Adriana Guzmán-López, Esveidi Montserrat Valdovinos-García and Micael Gerardo Bravo-Sánchez
Fermentation 2025, 11(9), 506; https://doi.org/10.3390/fermentation11090506 - 29 Aug 2025
Abstract
Currently, microalgae cultivation requires strategies to improve yield and reduce production costs for biotechnological purposes. Dual-purpose systems are one of the most widely used strategies for these purposes, using culture media supplemented with wastewater. This study evaluated the growth of a microalgal consortium
[...] Read more.
Currently, microalgae cultivation requires strategies to improve yield and reduce production costs for biotechnological purposes. Dual-purpose systems are one of the most widely used strategies for these purposes, using culture media supplemented with wastewater. This study evaluated the growth of a microalgal consortium in three treatments with different proportions of dairy wastewater (WWDI) and synthetic BBM-3N medium (Bold Basal Medium), with the aim of optimizing biomass, chlorophyll, and lipid production. The treatment with 60% BBM-3N medium and 40% WWDI (Case 3) showed the best performance under experimental conditions, reaching a biomass concentration of 0.7543 g/L, a chlorophyll production of 10.6890 µg/mL, and a lipid content of 14.63%. These results exceeded those obtained in the cases with 100% BBM-3N or 100% WWDI. In addition, a techno-economic evaluation was carried out via SuperPro Designer simulation, which allowed the annual operating costs for each treatment to be estimated. Case 3 stood out as the most viable option, combining good biological performance with lower operating costs compared to the raw material, demonstrating the potential of using wastewater as a partial source of nutrients in microalgal cultures intended for the production of value-added products.
Full article
(This article belongs to the Special Issue Cyanobacteria and Eukaryotic Microalgae (2nd Edition))
►▼
Show Figures

Figure 1
Open AccessArticle
Optimization of Monascus purpureus Culture Conditions in Rice Bran for Enhanced Monascus Pigment Biosynthesis
by
Di Chen, Yanping Xu, Han Li and Xuemin Zhu
Fermentation 2025, 11(9), 505; https://doi.org/10.3390/fermentation11090505 - 28 Aug 2025
Abstract
Monascus pigments (MPs) are the most valuable secondary metabolites of Monascus. To improve the production of MPs is of great importance to food processing. Currently, studies using rice bran as the substrate to produce MPs are rare. In this study, rice bran
[...] Read more.
Monascus pigments (MPs) are the most valuable secondary metabolites of Monascus. To improve the production of MPs is of great importance to food processing. Currently, studies using rice bran as the substrate to produce MPs are rare. In this study, rice bran with different carbon sources and cellulase hydrolysis conditions were explored in Monascus purpureus M9 in this study. Through single-factor experiments and Box–Behnken response surface optimization, we demonstrated that mannitol supplementation combined with cellulase treatment of substrate significantly enhanced the yields of MPs. The optimal conditions (4.00% mannitol, cellulase hydrolysis at 60 °C for 2 h) achieved a maximum color value of 3538 U/g. Furthermore, comparative evaluation under different culture conditions, including only rice bran (RB), cellulase hydrolysis of rice bran (Cel), rice bran supplemented with mannitol (Man), mannitol supplementation combined with cellulase pretreatment of substrate (Opti), and only rice (Rice), confirmed the effectiveness of the optimized treatment. The color value of the Opti group was 27.95 times more than that of the RB group and reached 80.96% of the counterpart of the Rice group. The Opti group also significantly enhanced the yields of two orange pigments (Monascorubrin and Rubropunctatin), induced more sexual spore formation, and exhibited the maximum biomass and colony diameter among different groups. The hyphae of the Man and Opti groups were full, intact, and tubular. The citrinin content in the Opti group was under the limit standard of China. The data provides a theoretical basis reference for improving the yields of MPs with RB as the substrate.
Full article
(This article belongs to the Section Microbial Metabolism, Physiology & Genetics)
►▼
Show Figures

Figure 1
Open AccessArticle
Photofermentative Hydrogen Production from Real Dark Fermentation Effluents: A Sequential Valorization of Orange Peel Waste
by
Brenda Nelly López-Hernández, Carlos Escamilla-Alvarado, Alonso Albalate-Ramírez, Pasiano Rivas-García, Héctor Javier Amézquita-García, Santiago Rodríguez-Valderrama and María Guadalupe Paredes
Fermentation 2025, 11(9), 504; https://doi.org/10.3390/fermentation11090504 - 28 Aug 2025
Abstract
This study explores the sequential valorization of orange peel waste (OPW) through photo-fermentation using real dark fermentation effluents (DFE) as substrates for hydrogen production using Rhodobacter capsulatus B10. Three DFE types—differing in prior biocompound extraction method—and their concentrations at three levels (25, 35,
[...] Read more.
This study explores the sequential valorization of orange peel waste (OPW) through photo-fermentation using real dark fermentation effluents (DFE) as substrates for hydrogen production using Rhodobacter capsulatus B10. Three DFE types—differing in prior biocompound extraction method—and their concentrations at three levels (25, 35, and 45%) were evaluated. The highest hydrogen yield (126.5 mL H2 g−1 VFA) was achieved with DFE derived from essential oil-extracted OPW at a concentration of 25%. The highest DFE concentration reduced the hydrogen yield due to intensified medium opacity and potential substrate inhibition. Kinetic modeling revealed that the Modified Gompertz and Ti-Gompertz models best described hydrogen production dynamics. This study presents the first evidence of hydrogen production via photo-fermentation using real effluents derived from OPW processing, demonstrating a novel route for citrus waste reuse within a biorefinery framework. These findings underscore the innovation and relevance of integrating waste valorization with clean energy production, while also identifying key operational challenges to be addressed.
Full article
(This article belongs to the Special Issue Technological Advances in Lignocellulosic Biomass Conversion to Bioenergy)
►▼
Show Figures

Figure 1

Journal Menu
► ▼ Journal Menu-
- Fermentation Home
- Aims & Scope
- Editorial Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor’s Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Conferences
- Editorial Office
- 10th Anniversary
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Biomass, Microorganisms, Sustainability, Water, Fermentation, Energies, Materials, Applied Biosciences
Recovery and Use of Bioactive Materials and Biomass
Topic Editors: Xiang Li, Tianfeng Wang, Xianbao XuDeadline: 25 November 2025
Topic in
Applied Microbiology, Fermentation, Foods, Microbiology Research, Microorganisms
Fermented Food: Health and Benefit
Topic Editors: Niel Van Wyk, Alice VilelaDeadline: 31 December 2025
Topic in
Applied Biosciences, Applied Sciences, Fermentation, Marine Drugs, Microorganisms, Phycology
Microalgae: Current Trends in Basic Research and Applications
Topic Editors: Nhuan Nghiem, Tae Hyun KimDeadline: 31 March 2026
Topic in
Applied Biosciences, Applied Microbiology, Fermentation, Marine Drugs, Microorganisms
Microbial Cell Factories for Natural Products
Topic Editors: Carlos Barreiro, Ana Ibáñez, José L. BarredoDeadline: 31 May 2026

Conferences
Special Issues
Special Issue in
Fermentation
In Vitro Fermentation, Fourth Edition
Guest Editors: Mengzhi Wang, Yujia JingDeadline: 15 September 2025
Special Issue in
Fermentation
Functional Properties of Microorganisms in Fermented Foods, 2nd Edition
Guest Editors: Tao Wang, Junjie YiDeadline: 15 September 2025
Special Issue in
Fermentation
Research Progress of Rumen Fermentation
Guest Editor: Aleksandro Da SilvaDeadline: 15 September 2025
Special Issue in
Fermentation
Science and Technology of Winemaking
Guest Editor: Aude A. WatrelotDeadline: 15 September 2025
Topical Collections
Topical Collection in
Fermentation
Bioconversion of Lignocellulosic Materials to Value-Added Products
Collection Editors: Alexander Rapoport, Pietro Buzzini