Construction of Synthetic Microbial Communities for Fermentation of Mung Bean Sour Pulp and Analysis of Nutritional Components
Abstract
1. Introduction
2. Materials and Methods
2.1. Media and Microbial Cultivation
2.2. Screening and Identification of Dominant Microbia in Traditionally Fermented MBSP
2.3. Construction of Synthetic Microbial Communities for MBSP’s Preparation
2.4. Sensory Evaluation
2.5. Test of Nutrition Components
2.6. Determining the In Vitro Antioxidant Capacity
2.7. Analysis Volatile Flavor Compounds
2.8. Statistical Analysis
3. Results and Discussion
3.1. Strain Isolation and Identification
3.2. Response Surface Methodology (RSM) Optimizes Artificial Constructed Strain Fermented MBSP
3.3. Changes in Nutritional Components and In Vitro Antioxidant Capacity
3.4. Changes in Free Amino Acids Content
3.5. Changes in Organic Acid Content
3.6. Changes in Volatile Flavor Compounds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chandrasiri, S.D.; Liyanage, R.; Vidanarachchi, J.K.; Weththasinghe, P.; Jayawardana, B.C. Does processing have a considerable effect on the nutritional and functional properties of mung bean (Vigna radiata)? Procedia Food Sci. 2016, 6, 352–355. [Google Scholar] [CrossRef]
- Li, J.Q.; Lu, Y.Y.; Chen, H.L.; Wang, L.X.; Wang, S.H.; Guo, X.B.; Cheng, X.Z. Effect of photoperiod on vitamin E and carotenoid biosynthesis in mung bean (Vigna radiata) sprouts. Food Chem. 2021, 358, 129915. [Google Scholar] [CrossRef]
- Jahan, S.; Bisrat, F.; Omar, M.; Faruque Md Jannatul, F.; Shompa, S.K.; Tasnim, F. Formulation of nutrient enriched germinated wheat and mung-bean based weaning food compare to locally available similar products in Bangladesh. Heliyon 2021, 7, e06974. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Shen, X.; Shen, H.; Shen, H.F.; Zhou, Y.; Yao, X.M. Effect of optimized germination technology on polyphenol content and hypoglycemic activity of mung bean. Front. Nutr. 2023, 10, 1138739. [Google Scholar] [CrossRef]
- Li, C.; Tang, C.; Zeng, X.Y.; Zhang, Y.; He, L.P.; Yan, Y. Exploration of carbonyl compounds in red-fleshed kiwifruit wine and perceptual interactions among non-volatile organic acids. Food Chem. 2024, 448, 139118. [Google Scholar] [CrossRef]
- Li, X.; Wu, Y.; Shu, L.Y.; Zhao, L.N.; Cao, L.; Li, X.; Tie, S.S.; Tian, P.P.; Gu, S.B. Unravelling the correlations among the microbial community, physicochemical properties, and volatile compounds of traditional mung bean sour liquid. LWT Food Sci. Technol. 2024, 198, 115971. [Google Scholar] [CrossRef]
- Wang, X.D.; Wang, X.Y.; Lou, H.W.; Li, Y.; Reham k Zhao, R.Y. Understanding the correlation between formation of flavor compounds and dominant bacteria during Luoyang mung bean sour fermentation. Food Biosci. 2024, 60, 104374. [Google Scholar] [CrossRef]
- Liang, Z.Q.; Sun, J.W.; Yang, S.; Wen, R.; Liu, L.B.; Du, P.; Li, C.; Zhang, G.F. Fermentation of mung bean milk by Lactococcus lactis: Focus on the physicochemical properties, antioxidant capacities and sensory evaluation. Food Biosci. 2022, 48, 101798. [Google Scholar] [CrossRef]
- Kahala, M.; Blasco, L.; Bragge, R.; Porcellato, D.; Østlie, H.M.; Rundberget, T.; Baz-Lomba, J.A.; Pihlava, J.-M.; Hellström, J.; Jørgensen, E.G.; et al. Lactic and propionic acid bacteria starter cultures for improved nutritional properties of pea, faba bean and lentil. LWT Food Sci. Technol. 2024, 208, 116691. [Google Scholar] [CrossRef]
- Li, Y.; Nguyen, T.T.H.; Jin, J.; Lim, J.; Lee, J.; Piao, M.; Mok, I.-K.; Kim, D. Brewing of glucuronic acid-enriched apple cider with enhanced antioxidant activities through the co-fermentation of yeast (Saccharomyces cerevisiae and Pichia kudriavzevii) and bacteria (Lactobacillus plantarum). Food Sci. Biotechnol. 2021, 30, 555–564. [Google Scholar] [CrossRef] [PubMed]
- Arya, S.P.; Mahajan, M.; Jain, P. Photometric methods for the determination of vitamin C: Reviews. Anal. Sci. 2005, 14, 889–895. [Google Scholar] [CrossRef]
- Yang, H.; Liu, Y.; Ning, Y.; Wang, X.; Zhang, X.; Weng, P.; Wu, Z.F. Characterization of an intracellular alkaline serine protease from Bacillus velezensis SW5 with fibrinolytic activity. Curr. Microbiol. 2020, 77, 1610–1621. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Bian, Y.Y.; Liu, T.Z.; Xu, Z.; Song, Z.Q.; Wang, F.; Li, T.P.; Li, S.H. Antioxidant potential and in vitro inhibition of starch digestion of flavonoids from Crataegus pinnatifida. Heliyon 2022, 8, e11058. [Google Scholar] [CrossRef]
- Ai, M.; Qiu, X.; Huang, J.; Wu, C.; Jin, Y.; Zhou, R. Characterizing the microbial diversity and major metabolites of Sichuan bran vinegar augmented by Monascus purpureus. Int. J. Food Microbiol. 2019, 292, 83–90. [Google Scholar] [CrossRef]
- Wang, D.H.; Wang, M.Y.; Cao, L.W.; Wang, X.T.; Sun, J.R.; Yuan, J.F.; Gu, S.B. Changes and correlation of microorganism and flavor substances during persimmon vinegar fermentation. Food Biosci. 2022, 46, 101565. [Google Scholar] [CrossRef]
- Zhai, C.K.; Lu, C.M.; Zhang, X.Q.; Sun, G.J.; Lorenz, K.J. Comparative study on nutritional value of Chinese and north American wild rice. J. Food Compos. Anal. 2001, 14, 371–382. [Google Scholar] [CrossRef]
- Su, M.S.; Silva Juan, L. Antioxidant activity, anthocyanins, and phenolics of rabbiteye blueberry (Vaccinium ashei) by-products as affected by fermentation. Food Chem. 2005, 97, 447–451. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolourization assay. Free. Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Jimenez, M.E.; O’Donovan, C.M.; Ullivarri, M.F.; Cotter, P.D. Microorganisms present in artisanal fermented food from South America. Front. Microbiol. 2022, 13, 941866. [Google Scholar] [CrossRef]
- Huang, Z.L.; Li, Y.; Fan, M.C.; Qian, H.F.; Wang, L. Recent advances in mung bean protein: From structure, function to application. Int. J. Biol. Macromol. 2024, 273 Pt 2, 133210. [Google Scholar] [CrossRef]
- Raffaella, D.C.; Rosalinda, F.S.; Annalisa, P.; Maria, D.A.; Jean-Christophe, S.; Solange, B.; Laura, D.G.; Marco, G. Effect of autochthonous lactic acid bacteria starters on health-promoting and sensory properties of tomato juices. Int. J. Food Microbiol. 2009, 128, 473–483. [Google Scholar] [CrossRef]
- Cui, R.B.; Yoo Michelle, J.Y.; Zhu, F. Comparison of microwave and conventional heating on physicochemical properties and phenolic profiles of purple sweetpotato and wheat flours. Food Biosci. 2022, 46, 101602. [Google Scholar] [CrossRef]
- Tkacz, K.; Chmielewska, J.; Turkiewicz, I.P.; Nowicka, P.; Wojdyło, A. Dynamics of changes in organic acids, sugars and phenolic compounds and antioxidant activity of sea buckthorn and sea buckthorn-apple juices during malolactic fermentation. Food Chem. 2020, 332, 127382. [Google Scholar] [CrossRef]
- Sarıtaş, S.; Portocarrero, A.C.M.; Miranda, L.J.M.; Lombardo, M.; Koch, W.; Raposo, A.; Hesham, R.E.S.; Alves, J.L.D.B.; Esatbeyoglu, T.; Karav, S.; et al. The impact of fermentation on the antioxidant activity of food products. Molecules 2024, 29, 3941. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Yan, J.; Qi, X.R.; Wang, Y.H.; Zheng, Z.T.; Liang, J.Q.; Ling, J.T.; Chen, Y.X.; Tang, X.Y.; et al. Application of fermented Chinese herbal medicines in food and medicine field: From an antioxidant perspective. Trends Food Sci. Technol. 2024, 148, 104410. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Luan, D. Thermal degradation characteristics of amino acids in rainbow trout fillets during traditional high temperature short time processing and microwave processing. J. Food Meas. Charact. 2023, 17, 1940–1952. [Google Scholar] [CrossRef]
- Neis, E.; Dejong, C.; Rensen, S. The Role of Microbial Amino Acid Metabolism in Host Metabolism. Nutrients 2015, 7(4), 2930–2946. [Google Scholar] [CrossRef] [PubMed]
- Curiel, J.A.; Coda, R.; Centomani, I.; Summo, C.; Gobbetti, M.; Rizzello, C.G. Exploitation of the nutritional and functional characteristics of traditional Italian legumes: The potential of sourdough fermentation. Int. J. Food Microbiol. 2015, 196, 51–61. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, P.C.; Liu, P.P.; Song, X.W.; Guo, F.; Li, Y.Y.; Ni, D.J.; Jiang, C.J. Novel insight into the role of withering process in characteristic flavor formation of teas using transcriptome analysis and metabolite profiling. Food Chem. 2019, 272, 313–322. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Zhu, Y.W.; Wang, W.L.; Zhou, X.R.; Chen, G.L.; Liu, Y. Seven novel umami peptides from Takifugu rubripes and their taste characteristics. Food Chem. 2020, 330, 127204. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, S.; Kong, X.; Ji, Z.; Han, X.; Wu, J.; Mao, J. Elucidation of the aroma compositions of Zhenjiang aromatic vinegar using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry and gas chromatography- olfactometry. J. Chromatogr. A 2017, 1487, 218–226. [Google Scholar] [CrossRef]
- Wu, Z.; Tu, M.; Yang, X.; Xu, J.; Yu, Z. Effect of cutting and storage temperature on sucrose and organic acids metabolism in post-harvest melon fruit. Postharvest Biol. Technol. 2020, 161, 111081. [Google Scholar] [CrossRef]
- Liu, N.; Pan, J.H.; Miao, S.; Qin, L.K. Microbial community in Chinese traditional fermented acid rice soup (rice-acid) and its correlations with key organic acids and volatile compounds. Food Res. Int. 2020, 137, 109672. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.J.; Lu, Z.M.; Yu, N.H.; Xu, W.; Li, G.Q.; Shi, J.S.; Xu, Z.H. HS-SPME/GC-MS and chemometrics for volatile composition of Chinese traditional aromatic vinegar in the Zhenjiang region. J. Inst. Brew. 2012, 118, 133–141. [Google Scholar] [CrossRef]
- Xu, S.; Ma, Z.; Chen, Y.; Li, J.; Jiang, H.; Qu, T.; Zhang, W.; Li, C.; Liu, S. Characterization of the flavor and nutritional value of coconut water vinegar based on metabolomics. Food Chem. 2022, 369, 130872. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.X.; Ye, S.L.; Huang, X.L.; Li, C.G.; Feng, Y.Q.; Min, X.; Yu, Q.; Zhang, X.L.; Wang, Q. Fermentation with a multi-strain to enhance the flavor of HongJun Tofu, a Chinese fermented okara food. LWT Food Sci. Technol. 2023, 189, 115495. [Google Scholar] [CrossRef]
- Kim, K.N.; Chun, I.J.; Suh, J.H.; Sung, J.H. Relationships between sensory properties and metabolomic profiles of different apple cultivars. Food Chem. X 2023, 18, 100641. [Google Scholar] [CrossRef]
- Ishita, P.; Pratap, B.S.B.; Adinpunya, M. Seasonal and diel variations in scent composition of ephemeral Murraya paniculata (Linn.) Jack flowers are contributed by separate volatile components. Biochem. Syst. Ecol. 2020, 89, 104004. [Google Scholar] [CrossRef]
- Wu, J.H.; Li, Y.; Zhao, H.; Huang, M.Q.; Sun, Y.; Zhang, J.L.; Sun, B.J. Recent advances in the understanding of off-flavors in alcoholic beverages: Generation, regulation, and challenges. J. Food Compos. Anal. 2021, 103, 104117. [Google Scholar] [CrossRef]
- Lu, Y.H.; Chi, Y.L.; Lv, Y.P.; Yang, G.H.; He, Q. Evolution of the volatile flavor compounds of Chinese horse bean-chili-paste. LWT Food Sci. Technol. 2019, 102, 131–135. [Google Scholar] [CrossRef]
- Chen, Y.W.; Jiang, J.Q.; Li, Y.K.; Xie, Y.; Cui, M.; Hu, Y.; Yin, R.; Ma, X.M.; Niu, J.M.; Cheng, W.D.; et al. Enhancing physicochemical properties, organic acids, antioxidant capacity, amino acids and volatile compounds for ‘Summer Black’ grape juice by lactic acid bacteria fermentation. LWT Food Sci. Technol. 2024, 209, 116791. [Google Scholar] [CrossRef]
- Akkad, R.; Buchko, A.; Johnston, S.P.; Han, J.; House, J.D.; Curtis, J.M. Sprouting improves the flavour quality of faba bean flours. Food Chem. 2021, 364, 130355. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Ma, X.R.; Wang, W.P.; Xu, D.D.; Zhang, X.; Zhang, J.; Sun, Y. Characterization of flavor fingerprinting of red sufu during fermentation and the comparison of volatiles of typical products. Food Sci. Hum. Wellness 2019, 8, 375–384. [Google Scholar] [CrossRef]
Criteria | Standard of Evaluation | Scores |
---|---|---|
Taste | Excitant sour taste, hard to swallow | 1–2 |
Light sour taste, weak MBSP taste | 3–5 | |
Medium sour taste, strong MBSP taste | 6–8 | |
Flavor | Strong pungent odor, unpleasant smell | 1–2 |
Acceptable acidic aroma, with a slight odor | 3–5 | |
Pleasant acidic aroma, distinct bean aroma | 6–8 | |
Texture | Slightly thin, runny | 1–2 |
Moderate sticky, soft and fluffy | 3–5 | |
Sticky, smooth and dense | 6–8 |
Sources of Variance | Sum of Squares | Degree of Freedom | Mean Squared | F-Value | Prob > F | Rank Significance |
---|---|---|---|---|---|---|
Regression model | 268.78 | 9 | 29.86 | 278.73 | <0.0001 | ** |
A | 6.12 | 1 | 6.12 | 57.17 | 0.0001 | ** |
B | 1.13 | 1 | 1.13 | 10.50 | 0.0142 | * |
C | 4.50 | 1 | 4.50 | 42.00 | 0.0003 | ** |
AB | 0.25 | 1 | 0.25 | 2.33 | 0.1705 | |
AC | 9.00 | 1 | 9.00 | 84.00 | <0.0001 | ** |
BC | 1.00 | 1 | 1.00 | 9.33 | 0.0185 | * |
A2 | 133.22 | 1 | 133.22 | 1243.42 | <0.0001 | ** |
B2 | 55.33 | 1 | 55.33 | 516.40 | <0.0001 | ** |
C2 | 34.80 | 1 | 34.80 | 324.82 | <0.0001 | ** |
Residual | 0.75 | 7 | 0.11 | |||
Lack of fit | 0.75 | 3 | 0.25 | |||
Net error | 0.000 | 4 | 0.000 | |||
Sum | 269.53 | 16 | ||||
R2 | 0.9972 | |||||
R2Adj | 0.9936 |
A | B | |
---|---|---|
Protein content (mg/mL) | 0.03 ± 0.01 a | 4.55 ± 0.03 b |
Flavone content (mg/mL) | 0.05 ± 0 a | 0.01 ± 0 b |
Polyphenol content (mg/mL) | 0.06 ± 0 a | 0.11 ± 0 b |
Vitamin content (μg/mL) | 5.73 ± 0.09 a | 7.75 ± 0.06 b |
DPPH (%) | 24.04 ± 0.08 a | 49.07 ± 0.11 b |
ABTS (%) | 18.67 ± 0.06 a | 37.45 ± 0.06 b |
A | B | |
---|---|---|
Pyruvic acid (mg/mL) | 0.75 ± 0.01 a | 0.89 ± 0.01 b |
Lactic acid (mg/mL) | 6.98 ± 0.45 a | 19.49 ± 1.15 b |
Oxalic acid (mg/mL) | 0.07 ± 0 a | 0.17 ± 0.02 |
Acetic acid (mg/mL) | 0.96 ± 0.06 a | 0.58 ± 0.04 |
Tartatic acid (mg/mL) | 0.33 ± 0.03 a | - |
α-Ketoglutarate (mg/mL) | 0.54 ± 0.01 a | - |
Malic acid (mg/mL) | 6.33 ± 0.33 a | - |
Total (mg/mL) | 15.97 ± 0.76 a | 21.13 ± 0.95 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Cao, L.; Yang, H.; Li, P.; Wang, D. Construction of Synthetic Microbial Communities for Fermentation of Mung Bean Sour Pulp and Analysis of Nutritional Components. Fermentation 2025, 11, 443. https://doi.org/10.3390/fermentation11080443
Zhang Y, Cao L, Yang H, Li P, Wang D. Construction of Synthetic Microbial Communities for Fermentation of Mung Bean Sour Pulp and Analysis of Nutritional Components. Fermentation. 2025; 11(8):443. https://doi.org/10.3390/fermentation11080443
Chicago/Turabian StyleZhang, Yanfang, Luwei Cao, Haining Yang, Peng Li, and Dahong Wang. 2025. "Construction of Synthetic Microbial Communities for Fermentation of Mung Bean Sour Pulp and Analysis of Nutritional Components" Fermentation 11, no. 8: 443. https://doi.org/10.3390/fermentation11080443
APA StyleZhang, Y., Cao, L., Yang, H., Li, P., & Wang, D. (2025). Construction of Synthetic Microbial Communities for Fermentation of Mung Bean Sour Pulp and Analysis of Nutritional Components. Fermentation, 11(8), 443. https://doi.org/10.3390/fermentation11080443