Microbial Community and Metabolic Pathways in Anaerobic Digestion of Organic Solid Wastes: Progress, Challenges and Prospects
Abstract
1. Introduction
2. Microbial Community Structure in AD
3. Anaerobic Digestion of Organic Solid Wastes
3.1. AD of Sludge
3.2. AD of Straw
3.3. AD of Food Waste
3.4. AD of Livestock Manure
3.5. Summary on Main Metabolisms in AD of Four OSWs
Type of OSWs | Key Components | Inhibitory Factors | Effects on Microbial Communities | Effects on Metabolic Pathways | References |
---|---|---|---|---|---|
Sludge | Proteins, humic substances, and polysaccharides occupy 40–60%, 10–30% and 10–20% of organic components in sludge, respectively. | Low C/N ratio (6–10) | Methanogens shifting from acetotrophic to hydrogenotrophic. | Consistent with the NH4+ inhibition mechanisms outlined in livestock manure. | [51,52,109] |
Presence of humic substances | Inhibitory effects on Firmicutes and methanogens, particularly hydrogenotrophic methanogens. | (1) Acceleration of the conversion of glyceradehyde-3P → D-glycerate 1,3-diphosphate, and pyruvate → acetyl-CoA; (2) Inhibition of the activity of coenzyme F420. | [53] | ||
Presence of microplastics | Reduction the abundance of Firmicutes, Bacterioides sp., Clostridium_sensu_stricto_12, Proteobacyeria, and Chloroflex, as well as archaea (methanogens), e.g., Euryarchaeota. | (1) Reduction of the relative abundance of mcrA (methyl-coenzyme M reductase) and ACS (acetyl-CoA synthetase); (2) Toxic oxidative stress, disruption of redox signaling pathways, and impaired intramembrane electron transfer. | [36,57,58,59] | ||
Presence of metals | Reduction of the relative abundance of fabG, fas, fabHY, accABCD, and bccA in the hydrolysis and acidogenic stages and four methanogenic modules (M00357, M00567, M00356, M00563). | [60] | |||
Antibiotics | (1) Reduction of the relative abundance of Firmicutes. (2) Improvement of the relative abundance of Methanosarcina. | (1) Inhibition of ATP and protein synthesis as well as damaging the cells through interference with DNA/RNA replication and cell wall formation; (2) Reduction of the relative abundance of genes associated with the glycolytic pathway, inhibiting the conversion of serine to pyruvate and decreasing the relative abundance of methyl-coenzyme M reductase (mcrA) from methanogenesis. | [37,62,63,64,67] | ||
Surfactants | Enrichment of Firmicutes, Acetoanaerobium and Fususibacter | (1) Disruption of the function and integrity of biological membranes, affecting cellular viability; (2) Inhibiting enzymes (including the activity of coenzyme F420), decelerating microbial growth, and promoting VFA accumulation adversely affect methanogenesis, thereby reducing methane production efficiency. | [69,70,71] | ||
Straw | A complex matrix of cross-linked cellulose, hemicellulose, glycosylated proteins, and lignin | A-rich ligin | (1) Firmicutes, Bacteroidetes, and Proteobacteria dominate the straw AD; (2) Prevotella, Eubacteria, Clostridium, Lachnoclostridium, Cellvibrio, Luteimonas, Fibrobacter, and Proteiniphilum play a significant role in lignocellulose degradation by providing an array of carbohydrate-active enzymes; (3) Proteiniphilum and Fermentimonas exhibit significant syntrophic interactions with methanogens to produce acetate. | [77,78,79] | |
Lack of essential micronutrients such as Fe and Ni | Acetotrophic methanogens are dominant in the system, due to the lack of hydrogenase. | Reduction of electron transfer efficiency. | [86,87] | ||
Food waste | High biodegradability and rapid hydrolysis | High NaCl content | Actinobacteria exhibit greater salt tolerance compared to Bacteroidetes. | (1) Intracellular water loss in methanogens and reduction of key enzyme activity; (2) Inhibition of acidification; (3) Transition from butyrate to propionate fermentation. | [38,91] |
High C/N ratio | (1) Rapid acidification promotes the proliferation of acidogens, which in turn inhibits methanogenic activity, leading to the accumulation of VFAs; (2) A shift occurs in the dominant methanogenic pathway from hydrogenotrophic to acetotrophic methanogenesis, concomitant with a declining relative abundance of Methanosaeta; (3) The metabolic advantage of Lactobacillus species becomes more pronounced. | Lactate can serve as an electron donor and be fermented to propionate and acetate by Megasphaera elsdenii and Clostridium propionicum, while the reducing equivalents are eliminated via the reduction of lactate to propionate through a linear pathway involving HS-CoA derivatives. | [52,93,96] | ||
High-lipid | Clostridium and Longilinea thrive due to their ability to degrade long-chain fatty acids (LCFAs) into smaller organic molecules. | [98] | |||
Capsaicin | Capsaicin compromises cellular integrity and disrupts metabolic functions, leading to a significant reduction in the abundance and diversity of microbial communities. | (1) The activity of key enzymes associated with methanogenic metabolic processes (e.g., CoA, AK, F420, CoM, etc.) was markedly inhibited; (2) There was a 99% reduction in electron transfer rates. | [39] | ||
Livestock manure | High nutrient content and potential pathogen load. | Antibiotics | (1) Suppression of the hydrolysis stage through the inhibition of hydrolytic/acidogenic bacterial growth. (2) The dominance of hydrogenotrophic methanogens, particularly those within the order Methanobacteria, which exhibit the highest cellular activity. | [102] | |
Low C/N ratio | (1) The diffusion of NH3 into the cell disrupts proton homeostasis, increases energy demands for cellular maintenance, depletes potassium, and interacts antagonistically with Ca2+ and Na+, ultimately inhibiting enzymatic reactions; (2) Hydrogenotrophic methanogens have greater tolerance; (3) The syntrophic interactions between hydrogenotrophic methanogens and SAOB are enhanced; (4) The phylum Firmicutes and the genus Methanosarcina dominate the microbial community. | Genes associated with hydrotrophic methanogenesis (eha, ehc, ehb) and those involved in energy conservation and osmoprotectant synthesis (ablB, kch, BCCT) are upregulated to facilitate adaptation to the increased ammonia concentrations. | [6,41,101,103,105] |
Functional Step | Reaction | (kJ/mol) |
---|---|---|
Acetotrophic methanogenesis | −31 | |
Hydrogenotrophic methanogenesis | −131 |
4. Challenges and Prospects
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Twagirayezu, G.; Huang, K.; Xia, H. Effects of Bio-Contaminants in Organic Waste Products on the Soil Environment. In Fate of Biological Contaminants During Recycling of Organic Wastes; Elsevier: Amsterdam, The Netherlands, 2023; pp. 187–212. ISBN 978-0-323-95998-8. [Google Scholar]
- Atelge, M.R.; Krisa, D.; Kumar, G.; Eskicioglu, C.; Nguyen, D.D.; Chang, S.W.; Atabani, A.E.; Al-Muhtaseb, A.H.; Unalan, S. Biogas Production from Organic Waste: Recent Progress and Perspectives. Waste Biomass Valorization 2020, 11, 1019–1040. [Google Scholar] [CrossRef]
- Pawar, P.R.; Rao, P.; Prakash, G.; Lali, A.M. Organic Waste Streams as Feedstock for the Production of High Volume-Low Value Products. Environ. Sci. Pollut. Res. 2021, 28, 11904–11914. [Google Scholar] [CrossRef]
- Wu, D.; Li, L.; Zhao, X.; Peng, Y.; Yang, P.; Peng, X. Anaerobic Digestion: A Review on Process Monitoring. Renew. Sust. Energ. Rev. 2019, 103, 1–12. [Google Scholar] [CrossRef]
- Zamri, M.F.M.A.; Hasmady, S.; Akhiar, A.; Ideris, F.; Shamsuddin, A.H.; Mofijur, M.; Fattah, I.M.R.; Mahlia, T.M.I. A Comprehensive Review on Anaerobic Digestion of Organic Fraction of Municipal Solid Waste. Renew. Sustain. Energy Rev. 2021, 137, 110637. [Google Scholar] [CrossRef]
- Obileke, K.; Nwokolo, N.; Makaka, G.; Mukumba, P.; Onyeaka, H. Anaerobic Digestion: Technology for Biogas Production as a Source of Renewable Energy—A Review. Energy Environ. 2021, 32, 191–225. [Google Scholar] [CrossRef]
- Vanwonterghem, I.; Jensen, P.D.; Ho, D.P.; Batstone, D.J.; Tyson, G.W. Linking Microbial Community Structure, Interactions and Function in Anaerobic Digesters Using New Molecular Techniques. Curr. Opin. Biotechnol. 2014, 27, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Henze, M.; Van Loosdrecht, M.C.M.; Ekama, G.A.; Brdjanovic, D. Biological Wastewater Treatment: Principles, Modelling and Design; IWA Publishing: London, UK, 2008; ISBN 978-1-78040-186-7. [Google Scholar]
- Lin, Q.; Li, L.; De Vrieze, J.; Li, C.; Fang, X.; Li, X. Functional Conservation of Microbial Communities Determines Composition Predictability in Anaerobic Digestion. ISME J. 2023, 17, 1920–1930. [Google Scholar] [CrossRef]
- Jiang, F.; Wang, S.; Zhang, Y.; Ma, S.; Huang, Y.; Fan, H.; Li, Q.; Wang, H.; Wang, A.; Liu, H.; et al. Variation of Metagenome From Feedstock to Digestate in Full-Scale Biogas Plants. Front. Microbiol. 2021, 12, 660225. [Google Scholar] [CrossRef]
- Yadav, M.; Joshi, C.; Paritosh, K.; Thakur, J.; Pareek, N.; Masakapalli, S.K.; Vivekanand, V. Reprint of Organic Waste Conversion through Anaerobic Digestion: A Critical Insight into the Metabolic Pathways and Microbial Interactions. Metab. Eng. 2022, 71, 62–76. [Google Scholar] [CrossRef]
- Venkiteshwaran, K.; Bocher, B.; Maki, J.; Zitomer, D. Relating Anaerobic Digestion Microbial Community and Process Function: Supplementary Issue: Water Microbiology. Microbiol. Insights 2015, 8, 37–44. [Google Scholar] [CrossRef]
- Jourdain, L.; Gu, W. Designing Synthetic Microbial Communities for Enhanced Anaerobic Waste Treatment. Appl. Environ. Microb. 2025, 91, e00404-25. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, C.; Yuan, Z.; Wang, R.; Angelidaki, I.; Zhu, G. Syntrophy Mechanism, Microbial Population, and Process Optimization for Volatile Fatty Acids Metabolism in Anaerobic Digestion. Chem. Eng. J. 2023, 452, 139137. [Google Scholar] [CrossRef]
- Shi, Z.; Campanaro, S.; Usman, M.; Treu, L.; Basile, A.; Angelidaki, I.; Zhang, S.; Luo, G. Genome-Centric Metatranscriptomics Analysis Reveals the Role of Hydrochar in Anaerobic Digestion of Waste Activated Sludge. Environ. Sci. Technol. 2021, 55, 8351–8361. [Google Scholar] [CrossRef]
- Zhang, L.; Gong, X.; Wang, L.; Guo, K.; Cao, S.; Zhou, Y. Metagenomic Insights into the Effect of Thermal Hydrolysis Pre-Treatment on Microbial Community of an Anaerobic Digestion System. Sci. Total Environ. 2021, 791, 148096. [Google Scholar] [CrossRef]
- Zhang, L.; Gong, X.; Chen, Z.; Zhou, Y. Genome-Centric Metagenomics Analysis Revealed the Metabolic Function of Abundant Microbial Communities in Thermal Hydrolysis-Assisted Thermophilic Anaerobic Digesters under Propionate Stress. Bioresour. Technol. 2022, 360, 127574. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, H.; Liu, K.; Wang, H.; Hua, Y. Modulating Interspecies Electron and Proton Transfer by Conductive Materials toward Enhanced Anaerobic Digestion: A Review. Chem. Eng. J. 2024, 498, 155411. [Google Scholar] [CrossRef]
- Liu, H.; Xu, Y.; Li, L.; Dai, X.; Dai, L. A Review on Application of Single and Composite Conductive Additives for Anaerobic Digestion: Advances, Challenges and Prospects. Resour. Conserv. Recycl. 2021, 174, 105844. [Google Scholar] [CrossRef]
- Liu, H.; Xu, Y.; Li, L.; Li, X.; Dai, X. Enhancing Proton-Coupled Electron Transfer Drives Efficient Methanogenesis in Anaerobic Digestion. Water Res. 2024, 266, 122331. [Google Scholar] [CrossRef]
- Cao, J.; Xu, Y.; Zhang, C.; Li, X.; Liu, R.; Wang, X.; Dai, X. Enhancing the Participation of Water in the Anaerobic Digestion of Sewage Sludge for Highly Efficient Methanogenesis. Water Res. 2025, 284, 124047. [Google Scholar] [CrossRef]
- Ajay, C.M.; Mohan, S.; Dinesha, P.; Rosen, M.A. Review of Impact of Nanoparticle Additives on Anaerobic Digestion and Methane Generation. Fuel 2020, 277, 118234. [Google Scholar] [CrossRef]
- Su, K.; Li, L.; Wang, Q.; Cao, R. A Review on the Interspecies Electron Transfer of Methane Production in Anaerobic Digestion System. Fermentation 2023, 9, 467. [Google Scholar] [CrossRef]
- Menzel, T.; Neubauer, P.; Junne, S. Role of Microbial Hydrolysis in Anaerobic Digestion. Energies 2020, 13, 5555. [Google Scholar] [CrossRef]
- Li, C.; Lü, F.; Peng, W.; He, P.-J.; Zhang, H. Functional Redundant Microbiome Enhanced Anaerobic Digestion Efficiency under Ammonium Inhibition Conditions. Environ. Sci. Technol. 2024, 58, 6659–6669. [Google Scholar] [CrossRef]
- Ljungdahl, L.G.; Wood, H.G. Total synthesis of acetate from CO2 by heterotrophic bacteria. Annu. Rev. Microbiol. 1969, 23, 515–538. [Google Scholar] [CrossRef]
- Drake, H.L.; Gößner, A.S.; Daniel, S.L. Old Acetogens, New Light. Ann. N. Y. Acad. Sci. 2008, 1125, 100–128. [Google Scholar] [CrossRef]
- McCarty, P.L.; Smith, D.P. Anaerobic Wastewater Treatment. Environ. Sci. Technol. 1986, 20, 1200–1206. [Google Scholar] [CrossRef]
- Zhao, X.; Chen, H.; Meng, Q.; Chen, Q.; Jia, Y.; Xu, C.; Zheng, Z.; Li, Z.; Hou, Y.; Lei, L.; et al. Enhancing Anaerobic Digestion of Waste Activated Sludge by Dielectric Barrier Discharge Pretreatment: Nutrient Release, Sludge Hydrolysis and Microbial Community Succession. Sep. Purif. Technol. 2024, 330, 125530. [Google Scholar] [CrossRef]
- Jiang, W.; Jiang, Y.; Tao, J.; Luo, J.; Xie, W.; Zhou, X.; Yang, L.; Ye, Y. Enhancement of Methane Production from Anaerobic Co-Digestion of Food Waste and Dewatered Sludge by Thermal, Ultrasonic and Alkaline Technologies Integrated with Protease Pretreatment. Bioresour. Technol. 2024, 411, 131357. [Google Scholar] [CrossRef] [PubMed]
- Blasius, J.P.; Contrera, R.C.; Maintinguer, S.I.; Alves De Castro, M.C.A. Effects of Temperature, Proportion and Organic Loading Rate on the Performance of Anaerobic Digestion of Food Waste. Biotechnol. Rep. 2020, 27, e00503. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; You, Z.; Sun, Y.; Chen, H. Improving Methane Production from Waste-Activated Sludge by Coupling Thermal Hydrolysis with Potassium Ferrate Pretreatment. J. Environ. Manag. 2024, 371, 123332. [Google Scholar] [CrossRef]
- Xu, Y.; Geng, H.; Chen, R.; Liu, R.; Dai, X. Enhancing Methanogenic Fermentation of Waste Activated Sludge via Isoelectric-Point Pretreatment: Insights from Interfacial Thermodynamics, Electron Transfer and Microbial Community. Water Res. 2021, 197, 117072. [Google Scholar] [CrossRef] [PubMed]
- Geng, H.; Xu, Y.; Liu, R.; Yang, D.; Dai, X. Magnetic Porous Microspheres Enhancing the Anaerobic Digestion of Sewage Sludge: Synergistic Free and Attached Methanogenic Consortia. Water Res. 2024, 254, 121393. [Google Scholar] [CrossRef] [PubMed]
- Geng, H.; Xu, Y.; Liu, R.; Xu, J.; Li, X.; Yang, D.; Dai, X. Magnetic Porous Microspheres Altering Interfacial Thermodynamics of Sewage Sludge to Drive Metabolic Cooperation for Efficient Methanogenesis. Water Res. 2024, 261, 122022. [Google Scholar] [CrossRef]
- Wei, W.; Huang, Q.-S.; Sun, J.; Wang, J.-Y.; Wu, S.-L.; Ni, B.-J. Polyvinyl Chloride Microplastics Affect Methane Production from the Anaerobic Digestion of Waste Activated Sludge through Leaching Toxic Bisphenol-A. Environ. Sci. Technol. 2019, 53, 2509–2517. [Google Scholar] [CrossRef]
- Xiang, Y.; Xiong, W.; Yang, Z.; Xu, R.; Zhang, Y.; Wu, M.; Ye, Y.; Peng, H.; Tong, J.; Wang, D. Coexistence of Microplastics Alters the Inhibitory Effect of Antibiotics on Sludge Anaerobic Digestion. Chem. Eng. J. 2023, 455, 140754. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, Y.; Wang, D.; Chen, F.; Li, X.; Zeng, G.; Yang, Q. Potential Impact of Salinity on Methane Production from Food Waste Anaerobic Digestion. Waste Manag. 2017, 67, 308–314. [Google Scholar] [CrossRef]
- Yue, L.; Cheng, J.; Zhang, H.; Yuan, L.; Hua, J.; Dong, H.; Li, Y.; Zhou, J. Inhibition of N-Vanillylnonanamide in Anaerobic Digestion of Lipids in Food Waste: Microorganisms Damage and Blocked Electron Transfer. J. Hazard. Mater. 2020, 399, 123098. [Google Scholar] [CrossRef]
- Fotidis, I.A.; Wang, H.; Fiedel, N.R.; Luo, G.; Karakashev, D.B.; Angelidaki, I. Bioaugmentation as a Solution To Increase Methane Production from an Ammonia-Rich Substrate. Environ. Sci. Technol. 2014, 48, 7669–7676. [Google Scholar] [CrossRef]
- Jiménez, J.; Theuerl, S.; Bergmann, I.; Klocke, M.; Guerra, G.; Romero-Romero, O. Prokaryote Community Dynamics in Anaerobic Co-Digestion of Swine Manure, Rice Straw and Industrial Clay Residuals. Water Sci. Technol. 2016, 74, 824–835. [Google Scholar] [CrossRef]
- Cheng, X.-Y.; Zhong, C. Effects of Feed to Inoculum Ratio, Co-Digestion, and Pretreatment on Biogas Production from Anaerobic Digestion of Cotton Stalk. Energy Fuels 2014, 28, 3157–3166. [Google Scholar] [CrossRef]
- Awadalla, O.A.; Atawy, W.A.; Bedaiwy, M.Y.; Ali, S.S.; Mahmoud, Y.A.-G. Anaerobic Digestion of Lignocellulosic Waste for Enhanced Methane Production and Biogas-Digestate Utilization. Ind. Crops Prod. 2023, 195, 116420. [Google Scholar] [CrossRef]
- Guven, H.; Akca, M.S.; Iren, E.; Keles, F.; Ozturk, I.; Altinbas, M. Co-Digestion Performance of Organic Fraction of Municipal Solid Waste with Leachate: Preliminary Studies. Waste Manag. 2018, 71, 775–784. [Google Scholar] [CrossRef]
- Wu, B.; Wang, Y.; He, L.; Liu, M.; Xiang, J.; Chen, Y.; Gu, L.; Li, J.; Li, L.; Pan, W.; et al. Enhancing Anaerobic Digestion of Food Waste by Combining Carriers and Microaeration: Performance and Potential Mechanisms. ACS EST Eng. 2024, 4, 2506–2519. [Google Scholar] [CrossRef]
- Cui, Z.; Shi, J.; Li, Y. Solid-State Anaerobic Digestion of Spent Wheat Straw from Horse Stall. Bioresour. Technol. 2011, 102, 9432–9437. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Hans, M.; Kumar, S.; Yadav, Y.K. Thermophilic Anaerobic Digestion: An Advancement towards Enhanced Biogas Production from Lignocellulosic Biomass. Sustainability 2023, 15, 1859. [Google Scholar] [CrossRef]
- Liu, X.; Liu, J.; Deng, D.; Li, R.; Guo, C.; Ma, J.; Chen, M. Investigation of Extracellular Polymeric Substances (EPS) in Four Types of Sludge: Factors Influencing EPS Properties and Sludge Granulation. J. Water Process Eng. 2021, 40, 101924. [Google Scholar] [CrossRef]
- Yang, N.; Zhang, Y.; Yang, S. Structural Characteristics of Organics Released from Sludge Pretreatment and Their Performance in the Synthesis of Biomass Plastics. Chem. Eng. J. 2024, 490, 151391. [Google Scholar] [CrossRef]
- Shah, M.P. Application of Sewage Sludge in Industrial Wastewater Treatment; Wiley: Hoboken, NJ, USA, 2024; ISBN 978-1-119-85736-5. [Google Scholar]
- Ren, Y.; Yu, M.; Wu, C.; Wang, Q.; Gao, M.; Huang, Q.; Liu, Y. A Comprehensive Review on Food Waste Anaerobic Digestion: Research Updates and Tendencies. Bioresour. Technol. 2018, 247, 1069–1076. [Google Scholar] [CrossRef]
- Zhang, S.; Liang, C.; Xiao, M.; Chui, C.; Wang, N.; Ji, Y.; Wang, Z.; Shi, J.; Liu, L. Metagenomic Characterization of the Enhanced Performance of Multicomponent Synergistic Thermophilic Anaerobic Co-Digestion of Food Waste Utilizing Kitchen Waste or Garden Waste as Co-Substrate. Water Res. 2023, 244, 120457. [Google Scholar] [CrossRef]
- Luo, J.; Zhang, Q.; Zhao, J.; Wu, Y.; Wu, L.; Li, H.; Tang, M.; Sun, Y.; Guo, W.; Feng, Q.; et al. Potential Influences of Exogenous Pollutants Occurred in Waste Activated Sludge on Anaerobic Digestion: A Review. J. Hazard. Mater. 2020, 383, 121176. [Google Scholar] [CrossRef]
- Long, S.; Yang, J.; Hao, Z.; Shi, Z.; Liu, X.; Xu, Q.; Wang, Y.; Wang, D.; Ni, B.-J. Multiple Roles of Humic Substances in Anaerobic Digestion Systems: A Review. J. Clean. Prod. 2023, 418, 138066. [Google Scholar] [CrossRef]
- Cheng, Y.; Hu, X.; Gao, Y.; Wang, L.; Wang, G. Revealing How Polyvinyl Chloride Microplastic Physicochemically Affect the Anaerobic Digestion of Waste Activated Sludge. Bull. Environ. Contam. Toxicol. 2024, 112, 5. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Ren, X.; Tsui, T.-H.; Barcelo, D.; Wang, Q.; Zhang, Z.; Yongzhen, D. Microplastics as an Underestimated Emerging Contaminant in Solid Organic Waste and Their Biological Products: Occurrence, Fate and Ecological Risks. J. Hazard. Mater. 2023, 445, 130596. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Chen, X.; Ni, B.-J. Different Pathways of Microplastics Entering the Sludge Treatment System Distinctively Affect Anaerobic Sludge Fermentation Processes. Environ. Sci. Technol. 2021, 55, 11274–11283. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Chen, Y. Effects of Microplastics on Wastewater and Sewage Sludge Treatment and Their Removal: A Review. Chem. Eng. J. 2020, 382, 122955. [Google Scholar] [CrossRef]
- Das, A. The Emerging Role of Microplastics in Systemic Toxicity: Involvement of Reactive Oxygen Species (ROS). Sci. Total Environ. 2023, 895, 165076. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, S.; Li, J.; Wang, Y.; Liu, M.; Li, H.; Li, L.; Gu, L.; Pan, W.; He, Q. Insights into the Impact of Metals in Waste Activated Sludge on Its Anaerobic Digestion: From Perspectives of Physical Structure and Organic Matter Composition. Fuel 2024, 371, 131880. [Google Scholar] [CrossRef]
- Xu, Y.; Lu, Y.; Dai, X.; Dong, B. The Influence of Organic-Binding Metals on the Biogas Conversion of Sewage Sludge. Water Res. 2017, 126, 329–341. [Google Scholar] [CrossRef]
- Czatzkowska, M.; Harnisz, M.; Korzeniewska, E.; Wolak, I.; Rusanowska, P.; Paukszto, Ł.; Jastrzębski, J.P.; Bajkacz, S. Long-Term, Simultaneous Impact of Antimicrobials on the Efficiency of Anaerobic Digestion of Sewage Sludge and Changes in the Microbial Community. Energies 2022, 15, 1826. [Google Scholar] [CrossRef]
- Kohanski, M.A.; Dwyer, D.J.; Collins, J.J. How Antibiotics Kill Bacteria: From Targets to Networks. Nat. Rev. Microbiol. 2010, 8, 423–435. [Google Scholar] [CrossRef]
- Bai, Y.; Xu, R.; Wang, Q.-P.; Zhang, Y.-R.; Yang, Z.-H. Sludge Anaerobic Digestion with High Concentrations of Tetracyclines and Sulfonamides: Dynamics of Microbial Communities and Change of Antibiotic Resistance Genes. Bioresour. Technol. 2019, 276, 51–59. [Google Scholar] [CrossRef]
- Xu, R.; Fang, S.; Zhang, L.; Huang, W.; Shao, Q.; Fang, F.; Feng, Q.; Cao, J.; Luo, J. Distribution Patterns of Functional Microbial Community in Anaerobic Digesters under Different Operational Circumstances: A Review. Bioresour. Technol. 2021, 341, 125823. [Google Scholar] [CrossRef] [PubMed]
- Buckel, W. Energy Conservation in Fermentations of Anaerobic Bacteria. Front. Microbiol. 2021, 12, 703525. [Google Scholar] [CrossRef] [PubMed]
- Ni, R.; Wang, S.; Lin, X.; Song, L. Antibiotics Inhibit Methanogenesis during Municipal Solid Waste Decomposition. Sci. Total Environ. 2023, 905, 167397. [Google Scholar] [CrossRef]
- Cserháti, T.; Forgács, E.; Oros, G. Biological Activity and Environmental Impact of Anionic Surfactants. Environ. Int. 2002, 28, 337–348. [Google Scholar] [CrossRef]
- Luo, J.; Wei, Z.; Cheng, X.; Liu, X.; Wang, F.; Huang, W.; Fang, S.; Wu, J.; Wu, Y.; Liu, J.; et al. Surfactant and Antibiotic Co-Occurrence Reshaped the Acidogenic Process for Volatile Fatty Acids Production during Sludge Anaerobic Fermentation. Sci. Total Environ. 2023, 905, 167064. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, Y.; Pan, X.; Zhu, G. The Effects of Anionic and Non-Ionic Surfactant on Anaerobic Co-Digestion of Sludge, Food Wastes and Green Wastes. Environ. Technol. 2019, 40, 2538–2547. [Google Scholar] [CrossRef]
- Shcherbakova, V.A.; Laurinavichius, K.S.; Akimenko, V.K. Toxic Effect of Surfactants and Probable Products of Their Biodegradation on Methanogenesis in an Anaerobic Microbial Community. Chemosphere 1999, 39, 1861–1870. [Google Scholar] [CrossRef]
- Akbari, Z.; Tavallaiee, T.; Ghiassi, R. Effect of Micelles-Forming Surfactant on Performance of Anaerobic Digestion of Synthetic Municipal Wastewater. Int. J. Environ. Sci. Technol. 2025, 22, 3299–3318. [Google Scholar] [CrossRef]
- Huang, X.; Shen, C.; Liu, J.; Lu, L. Improved Volatile Fatty Acid Production during Waste Activated Sludge Anaerobic Fermentation by Different Bio-Surfactants. Chem. Eng. J. 2015, 264, 280–290. [Google Scholar] [CrossRef]
- Huang, W.; Cheng, X.; Li, Y.; Feng, Q.; Wu, Y.; Luo, J. Signaling Molecule Alleviates Inhibitory Impacts of Surfactant on Methane Production during Sludge and Food Waste Co-Digestion: Insights of Electron Bifurcation and Quorum Sensing. J. Hazard. Mater. 2025, 484, 136810. [Google Scholar] [CrossRef]
- Wang, J.; Ma, D.; Lou, Y.; Ma, J.; Xing, D. Optimization of Biogas Production from Straw Wastes by Different Pretreatments: Progress, Challenges, and Prospects. Sci. Total Environ. 2023, 905, 166992. [Google Scholar] [CrossRef]
- Mujtaba, M.; Fernandes Fraceto, L.; Fazeli, M.; Mukherjee, S.; Savassa, S.M.; Araujo De Medeiros, G.; Do Espírito Santo Pereira, A.; Mancini, S.D.; Lipponen, J.; Vilaplana, F. Lignocellulosic Biomass from Agricultural Waste to the Circular Economy: A Review with Focus on Biofuels, Biocomposites and Bioplastics. J. Clean. Prod. 2023, 402, 136815. [Google Scholar] [CrossRef]
- Mirmohamadsadeghi, S.; Karimi, K.; Azarbaijani, R.; Parsa Yeganeh, L.; Angelidaki, I.; Nizami, A.-S.; Bhat, R.; Dashora, K.; Vijay, V.K.; Aghbashlo, M.; et al. Pretreatment of Lignocelluloses for Enhanced Biogas Production: A Review on Influencing Mechanisms and the Importance of Microbial Diversity. Renew. Sustain. Energy Rev. 2021, 135, 110173. [Google Scholar] [CrossRef]
- Sun, L.; Liu, T.; Müller, B.; Schnürer, A. The Microbial Community Structure in Industrial Biogas Plants Influences the Degradation Rate of Straw and Cellulose in Batch Tests. Biotechnol. Biofuels 2016, 9, 128. [Google Scholar] [CrossRef] [PubMed]
- Basak, B.; Kumar, R.; Tanpure, R.S.; Mishra, A.; Tripathy, S.K.; Chakrabortty, S.; Roh, H.-S.; Yadav, K.K.; Chung, W.; Jeon, B.-H. Roles of Engineered Lignocellulolytic Microbiota in Bioaugmenting Lignocellulose Biomethanation. Renew. Sustain. Energy Rev. 2025, 207, 114913. [Google Scholar] [CrossRef]
- Lee, Y.-G.; Ju, Y.; Park, S.; Jin, Y.-S. Acetate-Rich Cellulosic Hydrolysates and Their Bioconversion Using Yeasts. Biotechnol. Bioprocess Eng. 2022, 27, 890–899. [Google Scholar] [CrossRef]
- Xu, R.; Zhang, K.; Liu, P.; Khan, A.; Xiong, J.; Tian, F.; Li, X. A Critical Review on the Interaction of Substrate Nutrient Balance and Microbial Community Structure and Function in Anaerobic Co-Digestion. Bioresour. Technol. 2018, 247, 1119–1127. [Google Scholar] [CrossRef]
- Cox, R.; Narisetty, V.; Castro, E.; Agrawal, D.; Jacob, S.; Kumar, G.; Kumar, D.; Kumar, V. Fermentative Valorisation of Xylose-Rich Hemicellulosic Hydrolysates from Agricultural Waste Residues for Lactic Acid Production under Non-Sterile Conditions. Waste Manag. 2023, 166, 336–345. [Google Scholar] [CrossRef]
- Zhu, X.; Yellezuome, D.; Liu, R.; Wang, Z.; Liu, X. Effects of Co-Digestion of Food Waste, Corn Straw and Chicken Manure in Two-Stage Anaerobic Digestion on Trace Element Bioavailability and Microbial Community Composition. Bioresour. Technol. 2022, 346, 126625. [Google Scholar] [CrossRef]
- Li, X.; Li, L.; Zheng, M.; Fu, G.; Lar, J.S. Anaerobic Co-Digestion of Cattle Manure with Corn Stover Pretreated by Sodium Hydroxide for Efficient Biogas Production. Energy Fuels 2009, 23, 4635–4639. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, L.; Loh, K.-C. Review and Perspectives of Enhanced Volatile Fatty Acids Production from Acidogenic Fermentation of Lignocellulosic Biomass Wastes. Bioresour. Bioprocess. 2021, 8, 68. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Xu, F.; Ge, X.; Li, Y. Challenges and Strategies for Solid-State Anaerobic Digestion of Lignocellulosic Biomass. Renew. Sustain. Energy Rev. 2015, 44, 824–834. [Google Scholar] [CrossRef]
- Hallenbeck, P.C. Fundamentals of the Fermentative Production of Hydrogen. Water Sci. Technol. 2005, 52, 21–29. [Google Scholar] [CrossRef]
- Eniyan, M.C.; Edwin, M. Unleashing the Biomethane Production Potential of Food Waste Through a Non-Toxic Biosurfactant Aided Ultrasonic Disintegration: Impact on Solubilization, Process Optimization, and Energy Feasibility Studies. Arab. J. Sci. Eng. 2025. [Google Scholar] [CrossRef]
- Wu, H.-M.; Li, X.; Chen, J.-N.; Yan, Y.-J.; Kobayashi, T.; Hu, Y.; Zhang, X. Food Waste Anaerobic Digestion Under High Organic Loading Rate: Inhibiting Factors, Mechanisms, and Mitigation Strategies. Processes 2025, 13, 2090. [Google Scholar] [CrossRef]
- Chen, S.; Yao, F.; Pi, Z.; He, L.; Luo, K.; Li, X.; Yang, Q. Evaluating the Role of Salinity in Enhanced Biogas Production from Two-Stage Anaerobic Digestion of Food Waste by Zero-Valent Iron. J. Environ. Manag. 2024, 351, 119911. [Google Scholar] [CrossRef]
- He, X.; Yin, J.; Liu, J.; Chen, T.; Shen, D. Characteristics of Acidogenic Fermentation for Volatile Fatty Acid Production from Food Waste at High Concentrations of NaCl. Bioresour. Technol. 2019, 271, 244–250. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, R.; He, Q.; Ji, B.; Wang, H.; Yang, K. Adaptation to Salinity: Response of Biogas Production and Microbial Communities in Anaerobic Digestion of Kitchen Waste to Salinity Stress. J. Biosci. Bioeng. 2020, 130, 173–178. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, P.; Yang, X.; Lin, P.; Wang, Y.; Cheng, M.; Ren, L. Process Performance and Microbial Communities in Anaerobic Co-Digestion of Sewage Sludge and Food Waste with a Lower Range of Carbon/Nitrogen Ratio. BioEnergy Res. 2022, 15, 1664–1674. [Google Scholar] [CrossRef]
- Wang, S.; Xu, C.; Song, L.; Zhang, J. Anaerobic Digestion of Food Waste and Its Microbial Consortia: A Historical Review and Future Perspectives. Int. J. Environ. Res. Public Health 2022, 19, 9519. [Google Scholar] [CrossRef]
- Tang, L.; O’Dwyer, J.; Kimyon, Ö.; Manefield, M.J. Microbial Community Composition of Food Waste before Anaerobic Digestion. Sci. Rep. 2023, 13, 12703. [Google Scholar] [CrossRef]
- Stams, A.J.M.; Dijkema, C.; Plugge, C.M.; Lens, P. Contribution of 13C-NMR Spectroscopy to the Elucidation of Pathways of Propionate Formation and Degradation in Methanogenic Environments. Biodegradation 1998, 9, 463–473. [Google Scholar] [CrossRef]
- Xiao, B.; Qin, Y.; Wu, J.; Chen, H.; Yu, P.; Liu, J.; Li, Y.-Y. Comparison of Single-Stage and Two-Stage Thermophilic Anaerobic Digestion of Food Waste: Performance, Energy Balance and Reaction Process. Energy Convers. Manag. 2018, 156, 215–223. [Google Scholar] [CrossRef]
- Hu, Y.; Zhou, Z.; Shen, C. Microbial Community Acclimation during Anaerobic Digestion of High-Oil Food Waste. Sci. Rep. 2024, 14, 25364. [Google Scholar] [CrossRef]
- Li, Y.; Jin, Y.; Borrion, A.; Li, H. Current Status of Food Waste Generation and Management in China. Bioresour. Technol. 2019, 273, 654–665. [Google Scholar] [CrossRef]
- Neshat, S.A.; Mohammadi, M.; Najafpour, G.D.; Lahijani, P. Anaerobic Co-Digestion of Animal Manures and Lignocellulosic Residues as a Potent Approach for Sustainable Biogas Production. Renew. Sustain. Energy Rev. 2017, 79, 308–322. [Google Scholar] [CrossRef]
- Turker, G.; Aydin, S.; Akyol, Ç.; Yenigun, O.; Ince, O.; Ince, B. Changes in Microbial Community Structures Due to Varying Operational Conditions in the Anaerobic Digestion of Oxytetracycline-Medicated Cow Manure. Appl. Microbiol. Biotechnol. 2016, 100, 6469–6479. [Google Scholar] [CrossRef]
- Rani, J.; Pandey, K.P.; Kushwaha, J.; Priyadarsini, M.; Dhoble, A.S. Antibiotics in Anaerobic Digestion: Investigative Studies on Digester Performance and Microbial Diversity. Bioresour. Technol. 2022, 361, 127662. [Google Scholar] [CrossRef]
- Khoshnevisan, B.; Duan, N.; Tsapekos, P.; Awasthi, M.K.; Liu, Z.; Mohammadi, A.; Angelidaki, I.; Tsang, D.C.; Zhang, Z.; Pan, J.; et al. A Critical Review on Livestock Manure Biorefinery Technologies: Sustainability, Challenges, and Future Perspectives. Renew. Sustain. Energy Rev. 2021, 135, 110033. [Google Scholar] [CrossRef]
- Paul, S.; Dutta, A. Challenges and Opportunities of Lignocellulosic Biomass for Anaerobic Digestion. Resour. Conserv. Recycl. 2018, 130, 164–174. [Google Scholar] [CrossRef]
- Bucci, L.; Ghiotto, G.; Zampieri, G.; Raga, R.; Favaro, L.; Treu, L.; Campanaro, S. Adaptation of Anaerobic Digestion Microbial Communities to High Ammonium Levels: Insights from Strain-Resolved Metagenomics. Environ. Sci. Technol. 2024, 58, 580–590. [Google Scholar] [CrossRef] [PubMed]
- Arnold, P.K.; Finley, L.W.S. Regulation and Function of the Mammalian Tricarboxylic Acid Cycle. J. Biol. Chem. 2023, 299, 102838. [Google Scholar] [CrossRef] [PubMed]
- Ragsdale, S.W.; Pierce, E. Acetogenesis and the Wood–Ljungdahl Pathway of CO2 Fixation. BBA-GEN Subj. 2008, 1784, 1873–1898. [Google Scholar] [CrossRef] [PubMed]
- Jiao, J.-Y.; Fu, L.; Hua, Z.-S.; Liu, L.; Salam, N.; Liu, P.-F.; Lv, A.-P.; Wu, G.; Xian, W.-D.; Zhu, Q.; et al. Insight into the Function and Evolution of the Wood–Ljungdahl Pathway in Actinobacteria. ISME J. 2021, 15, 3005–3018. [Google Scholar] [CrossRef]
- Chow, W.; Chong, S.; Lim, J.; Chan, Y.; Chong, M.; Tiong, T.; Chin, J.; Pan, G.-T. Anaerobic Co-Digestion of Wastewater Sludge: A Review of Potential Co-Substrates and Operating Factors for Improved Methane Yield. Processes 2020, 8, 39. [Google Scholar] [CrossRef]
Participants | Reactions |
---|---|
Denitrifying bacteria | |
PAOs | |
Sulfate-reducing bacteria | |
Methanogens | |
Fe3+-reducing bacteria | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, J.; Zhang, C.; Li, X.; Wang, X.; Dai, X.; Xu, Y. Microbial Community and Metabolic Pathways in Anaerobic Digestion of Organic Solid Wastes: Progress, Challenges and Prospects. Fermentation 2025, 11, 457. https://doi.org/10.3390/fermentation11080457
Cao J, Zhang C, Li X, Wang X, Dai X, Xu Y. Microbial Community and Metabolic Pathways in Anaerobic Digestion of Organic Solid Wastes: Progress, Challenges and Prospects. Fermentation. 2025; 11(8):457. https://doi.org/10.3390/fermentation11080457
Chicago/Turabian StyleCao, Jiachang, Chen Zhang, Xiang Li, Xueye Wang, Xiaohu Dai, and Ying Xu. 2025. "Microbial Community and Metabolic Pathways in Anaerobic Digestion of Organic Solid Wastes: Progress, Challenges and Prospects" Fermentation 11, no. 8: 457. https://doi.org/10.3390/fermentation11080457
APA StyleCao, J., Zhang, C., Li, X., Wang, X., Dai, X., & Xu, Y. (2025). Microbial Community and Metabolic Pathways in Anaerobic Digestion of Organic Solid Wastes: Progress, Challenges and Prospects. Fermentation, 11(8), 457. https://doi.org/10.3390/fermentation11080457