Application of Fungi in Bioconversions and Mycoremediation

A special issue of Fermentation (ISSN 2311-5637). This special issue belongs to the section "Microbial Metabolism, Physiology & Genetics".

Deadline for manuscript submissions: closed (15 August 2025) | Viewed by 6215

Special Issue Editor


E-Mail Website
Guest Editor
Laboratory of General and Agricultural Microbiology, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
Interests: solid state fermentation; mushroom cultivation; analytical techniques

Special Issue Information

Dear Colleagues,

Fungi, among other properties, possess a powerful arsenal of oxidizing and hydrolytic enzymes, capable of degrading numerous complex compounds (such as lignin, cellulose, phenols, etc.), contributing in this way to the degradation/detoxification, bioconversion, and/or valorization of agricultural, forestry, and agro-industrial by-products. For example, the ability of many macrofungi to grow on a large range of plant residues is exploited towards the production of various high-value products, such as mushrooms, feed, bioactive compounds, biomaterials, etc. Furthermore, fungi have the ability to degrade wastes containing significant amounts of toxic compounds and pollutants (e.g., dyes, olive mill wastes, industrial effluents), while they are also suitable for the bioremediation of contaminated soil and water receptors. Therefore, this Special Issue aims to gather and communicate the latest advances on the above-mentioned properties of fungi, the techniques/methodologies adopted for such purposes, pertinent applications and products, as well as the use of analytical techniques for the evaluation of these bioprocesses.

Dr. Georgios Bekiaris
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Fermentation is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • solid-state fermentation
  • enzymatic activity
  • bioremediation
  • bioconversion
  • mushroom cultivation
  • waste detoxification
  • degradation of pollutants

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

15 pages, 2564 KB  
Article
Optimizing Pleurotus ostreatus Mushroom Cultivation on Various Agro-Industrial By-Products—Development of a Process Analytical Technology Tool for Predicting Biological Efficiency
by Georgios Bekiaris, Christos S. Pappas, Athanasios Mastrogiannis, Lefteris Lachouvaris, Petros A. Tarantilis and Georgios I. Zervakis
Fermentation 2025, 11(10), 555; https://doi.org/10.3390/fermentation11100555 - 27 Sep 2025
Viewed by 528
Abstract
Pleurotus ostreatus is among the most widely cultivated mushroom species on a global scale, valued for its relative ease of cultivation, excellent organoleptic qualities, and notable nutraceutical properties. P. ostreatus could use a wide range of by-products as growth substrates by excreting a [...] Read more.
Pleurotus ostreatus is among the most widely cultivated mushroom species on a global scale, valued for its relative ease of cultivation, excellent organoleptic qualities, and notable nutraceutical properties. P. ostreatus could use a wide range of by-products as growth substrates by excreting a potent array of hydrolytic and oxidative enzymes. In this study, a diverse range of agricultural residues and agro-industrial by-products, enriched (or not) with various supplements, was evaluated for the cultivation of five commercial P. ostreatus strains. Key cultivation parameters were assessed, including biological efficiency and productivity. A process analytical technology (PAT) approach, utilizing FTIR spectroscopy in combination with multivariate analysis, was employed to develop a predictive model for biological efficiency based solely on substrate’s spectral profile. Substrates based on wheat and barley straw supplemented with soybean demonstrated superior performance across most strains. The biological efficiency value reached 185% in some cases for a total cultivation period of only 35 days. The resulting model exhibited excellent predictive capability, with a coefficient of determination (R2) of 0.90 and low relative prediction error of just 6%. The developed innovative PAT tool will be beneficial for mushroom growers since it allows the fast and costless evaluation of agro-industrial by-products in respect to their potential exploitation as mushroom substrates. Full article
(This article belongs to the Special Issue Application of Fungi in Bioconversions and Mycoremediation)
Show Figures

Figure 1

18 pages, 4311 KB  
Article
Mycomaterials from Agave Bagasse: A Valorization Strategy for Sustainable Tequila Packaging
by Flavio A. de Anda-Rodríguez, Mariana R. Corona-Ramírez, Carlos D. Patiño-Arévalo, Marco A. Zárate-Navarro, Ana I. Zárate-Guzmán and Luis A. Romero-Cano
Fermentation 2025, 11(9), 500; https://doi.org/10.3390/fermentation11090500 - 26 Aug 2025
Viewed by 1776
Abstract
A sustainable strategy is proposed for the valorization of solid waste from the Tequila industry through the development of bio-packaging for Tequila bottles using mycelium from Ganoderma lucidum. The fungus was isolated from Bosque de la Primavera (Jalisco, Mexico) and cultivated on [...] Read more.
A sustainable strategy is proposed for the valorization of solid waste from the Tequila industry through the development of bio-packaging for Tequila bottles using mycelium from Ganoderma lucidum. The fungus was isolated from Bosque de la Primavera (Jalisco, Mexico) and cultivated on lignocellulosic substrates: agave bagasse and corn stover. These agricultural residues were dried, ground, and pasteurized to optimize their performance as growth media. Their structural integration before and after fermentation was evaluated using optical microscopy. The high cellulose and hemicellulose content of both substrates supported robust mycelial development, enabling the formation of moldable materials through solid-state fermentation. After growth, the mycelium colonized the substrate, forming a functional mold adapted to the geometry of a Tequila bottle prototype. The molded parts were dried to halt fungal activity, prevent fruiting, and stabilize the structure. Physical and mechanical characterization showed competitive performance with regard to bulk density (0.11 ± 0.1 g cm−3), water absorption (78.1 ± 4.2%), and high impact resistance (evaluated via Solidworks simulation). A life cycle assessment revealed that mycelium packaging has a significantly lower environmental impact than expanded polystyrene. The material supports circular economy principles within the Tequila production chain. Full article
(This article belongs to the Special Issue Application of Fungi in Bioconversions and Mycoremediation)
Show Figures

Figure 1

21 pages, 3887 KB  
Article
Biotransformation of Acetaminophen by Ganoderma parvulum Ligninolytic Enzymes Immobilized on Chitosan Microspheres
by María Alejandra Flórez-Restrepo, Xiomara López-Legarda, Magdalena de Jesús Rostro-Alanis, Roberto Parra-Saldívar and Freimar Segura-Sánchez
Fermentation 2025, 11(7), 387; https://doi.org/10.3390/fermentation11070387 - 5 Jul 2025
Viewed by 840
Abstract
Water quality is essential for safeguarding human health and ensuring the stability of ecosystems. Nonetheless, the rising prevalence of emerging contaminants, particularly pharmaceutical compounds, has raised serious environmental concerns due to their bioactivity, widespread use, persistence, and potential toxicity. Among these, acetaminophen (paracetamol) [...] Read more.
Water quality is essential for safeguarding human health and ensuring the stability of ecosystems. Nonetheless, the rising prevalence of emerging contaminants, particularly pharmaceutical compounds, has raised serious environmental concerns due to their bioactivity, widespread use, persistence, and potential toxicity. Among these, acetaminophen (paracetamol) is one of the most frequently detected pharmaceutical pollutants in aquatic environments. Among the various degradation strategies explored, biological methods, especially those involving white-rot fungi, have shown substantial promise owing to their production of ligninolytic enzymes capable of degrading complex pollutants. This study investigates the use of laccases from Ganoderma parvulum, covalently immobilized on chitosan microspheres, for acetaminophen degradation. The immobilization involved a 10% crosslinking agent, 60-min crosslinking time, and 10,000 U/L enzyme concentration, resulting in an immobilization efficiency of 123%, 203%, and 218%, respectively. The immobilized enzymes displayed enhanced stability across pH 3–8 and temperatures between 20 and 60 °C. Biodegradation assays achieved 97% acetaminophen removal within four hours. Nuclear Magnetic Resonance (1H NMR and COSY) confirmed structural transformation. The enzymes also retained over 95% catalytic activity after multiple reuse cycles. These findings highlight the novel application of laccases as efficient and reusable biocatalysts for pharmaceutical pollutant removal, providing valuable insights into the mechanisms of enzymatic environmental remediation. Full article
(This article belongs to the Special Issue Application of Fungi in Bioconversions and Mycoremediation)
Show Figures

Figure 1

18 pages, 1483 KB  
Article
Bioconversion of Alternative Substrates for the Biosynthesis of HMG-CoA Reductase Inhibitors by Aspergillus spp. Strains with Antimicrobial Potential
by Uiara M. de B. L. Lins, Rafael de S. Mendonça, Sérgio S. S. Dantas, Adriana Ferreira de Souza, Dayana Montero-Rodríguez, Rosileide F. da S. Andrade and Galba M. Campos-Takaki
Fermentation 2024, 10(7), 367; https://doi.org/10.3390/fermentation10070367 - 18 Jul 2024
Viewed by 1230
Abstract
Simvastatin, a semisynthetic drug widely used to lower cholesterol, is among the most prescribed statins worldwide. This study focuses on the direct production of a simvastatin-like biomolecule using alternative substrates by Aspergillus spp. strains. Two species, A. terreus UCP 1276 and A. flavus [...] Read more.
Simvastatin, a semisynthetic drug widely used to lower cholesterol, is among the most prescribed statins worldwide. This study focuses on the direct production of a simvastatin-like biomolecule using alternative substrates by Aspergillus spp. strains. Two species, A. terreus UCP 1276 and A. flavus UCP 0316, were initially evaluated in synthetic media as control. Subsequently, the carbon and nitrogen sources were replaced by agro-industrial substrates, resulting in five modified media. Cultures were maintained at 28 °C, pH 6.5, at 180 rpm for 21 days. Fungal growth kinetics were evaluated and a 23 full-factorial design (FFD) was used to investigate the influence of substrate concentration on statin yield. Presence of inhibitors was confirmed by bioassay, UV–visible spectrophotometry, and thin-layer chromatography (TLC). According to the results, A. flavus UCP yielded 0.24 mg/g of statin in condition 2 of FFD (medium containing 4.5% soluble starch and saline base), suggesting it as a promising candidate for direct production of the biomolecule. Statistical analysis showed the significant effect of soluble starch on inhibitor production, making it a viable and profitable alternative substrate. Moreover, the isolated statin exhibited broad-spectrum antimicrobial activity, including efficacy against Gram-negative and Gram-positive bacteria and yeasts, indicating therapeutic potential against antimicrobial resistance. Full article
(This article belongs to the Special Issue Application of Fungi in Bioconversions and Mycoremediation)
Show Figures

Figure 1

Review

Jump to: Research

25 pages, 12805 KB  
Review
Bioremediation of Polycyclic Aromatic Hydrocarbons (PAHs) in Aqueous Environments: A Review of Biofiltration, Biosorption, and Biodegradation Strategies Using Living Fungal Mycelium
by Claudia Colmo, Martin Tegelaar and Phil Ayres
Fermentation 2025, 11(10), 573; https://doi.org/10.3390/fermentation11100573 - 2 Oct 2025
Viewed by 283
Abstract
Accelerating urbanisation and industrial activity have led to the widespread release of polycyclic aromatic hydrocarbons (PAHs), a class of persistent organic pollutants with serious ecological and health consequences. While physical and chemical remediation techniques are widely used, they often require nonrenewable resources and [...] Read more.
Accelerating urbanisation and industrial activity have led to the widespread release of polycyclic aromatic hydrocarbons (PAHs), a class of persistent organic pollutants with serious ecological and health consequences. While physical and chemical remediation techniques are widely used, they often require nonrenewable resources and generate secondary waste. Fungal-based bioremediation offers a promising alternative, leveraging the unique metabolic pathways and structural properties of fungi to break down or adsorb PAHs. This review focuses on three strategies of PAH remediation in aquatic environments: biofiltration, biosorption, and metabolic degradation. We conduct a comparison between conventional systems and fungal approaches with reference to the literature (2000–2025). Fungal matrices are identified as being able to capture and adsorb PAHs, facilitating localised remediation that capitalises on the biological capabilities of fungal organisms while requiring lower resource inputs than conventional methods. This review highlights fungal matrices as multifunctional water filtration membranes and provides insights for the application and development of engineered living materials (ELMs) for the water detoxification of PAHs. Full article
(This article belongs to the Special Issue Application of Fungi in Bioconversions and Mycoremediation)
Show Figures

Figure 1

Back to TopTop